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Area distribution of two-dimensional random walkson a square latti
eStefan Mashkevi
h1S
hrödinger, 120 West 45th St., New York, NY 10036, USAandBogolyubov Insitute for Theoreti
al Physi
s, 03143 Kiev, UkraineStéphane Ouvry2Université Paris-Sud, Laboratoire de Physique Théorique et Modèles Statistiques391405 Orsay, Fran
eJuly 10, 2009Abstra
tThe algebrai
 area probability distribution of 
losed planar random walks of length N on asquare latti
e is 
onsidered. The generating fun
tion for the distribution satis�es a re
urren
erelation in whi
h the 
ombinatori
s is en
oded. A parti
ular 
ase generalizes the q-binomialtheorem to the 
ase of three addends. The distribution �ts the Lévy probability distribution forBrownian 
urves with its �rst-order 1/N 
orre
tion quite well, even for N rather small.PACS numbers: 05.40.Fb, 05.40.J
, 05.30.Jp1 Introdu
tionWe are 
onsidering 
losed planar random walks on a square latti
e. We aim at �nding theprobability distribution of the algebrai
 area A en
losed by a random walk of length N , startingand ending at the origin.Random walks are a dis
retized version of 
losed 
ontinuous Brownian 
urves, whi
h areobtained in the limit N → ∞. In this limit the average size of the walk diverges as √
N , itsaverage area is proportional to N , therefore its �nite renormalized area is a = A/N . As �rstshown by Lévy [1℄, the asymptoti
 probability distribution is

PN→∞(a) =
π

cosh2(2πa)
. (1)Dis
rete random walks whose links 
an point in arbitrary dire
tions were previously 
onsidered[2℄, and the Lévy distribution re
overed in the 
ontinuous limit [3℄. Certain analyti
 results werealso obtained 
on
erning the area distribution of walks in the presen
e of random traps [4℄, ofdire
ted random walks (those that begin and end on the y = 0 line) [5℄, as well as walks 
on�nedto a �nite-size box [6℄.1mash�mashke.org2ouvry�lptms.u-psud.fr3Unité Mixte de Re
her
he CNRS-Paris Sud, UMR 86261
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The problem of the random walks area distribution and n-winding se
tors area distributionon a square latti
e arises, for example, in the 
ontext of random magneti
 impurities and theinteger quantum Hall e�e
t [7℄. Also, the distribution is 
onne
ted to the partition fun
tion ofa latti
e gauge model with Z(2) gauge group intera
ting with a Z(2)-valued Higgs �eld [8℄.The problem has been atta
ked from two sides. For big N , a �nite-size 
orre
tion to theLévy distribution at �rst order in 1/N was derived in Ref. [9℄ [see Eq. (29) below℄ by relatingthe number of walks to the tra
e of the Hamiltonian of the Harper model [10℄, whi
h is in turnrelated to the Hofstadter model [11℄ of an ele
tron moving on a two-dimensional square latti
ein the presen
e of a uniform magneti
 �eld orthogonal to the plane. On the other hand, for a�nite N , all the probabilities involved are rational numbers, therefore the sought distribution isa rational fun
tion. Properties of its k-th moment � whi
h turns out to be a rational fun
tionof N with integer 
oe�
ients � have been studied in Ref. [12℄, where the Lévy distribution wasalso expli
itly obtained in the N → ∞ limit (see also [13℄). An exa
t expression for the �nite Ndistribution has, however, remained out of rea
h.In this paper we derive a re
urren
e relation for the generating fun
tion of the area probabilitydistribution for an arbitrary N , whi
h is interpreted within a statisti
al me
hani
s approa
h aswell as in terms of q-
ommuting operators. The asymptoti
 limit of the distribution and its�rst-order 1/N -
orre
tion are reprodu
ed numeri
ally.2 Generating fun
tion of the area distributionDenote links on the latti
e pointing right, up, left, and down with operators x, y, x−1, y−1,respe
tively. By 
onvention, all walks begin at the origin. A walk of length N is then de�nedby a sequen
e of links {l1, . . . , lN}, where ea
h lk 
an be one of the four operators above. For awalk to be 
losed, the number of x's has to be equal to the number of x−1's, the same for the
y's and y−1's, hen
e an even N .In order to 
al
ulate the algebrai
 area A(l1, . . . , lN ) en
losed by a walk (positive/negativewhen en
ir
led anti
lo
kwise/
lo
kwise), it is su�
ient to note that for two walks di�er-ing only by an inter
hange of a pair of subsequent links, A(l1, . . . , lk−1, x, y, lk+2, . . . , lN ) =
A(l1, . . . , lk−1, y, x, lk+2, . . . , lN ) + 1. Introdu
e the q-
ommutator

xy = qyx , (2)where q 6= 0 and q 6= ±1. The full 
ommutation table follows immediately: e.g., multiplyingboth sides by x−1 on the left and on the right yields yx−1 = qx−1y, et
. Then the algebrai
 areaof a 
losed walk is related to the produ
t of all links 
onstituting that walk as
l1 · · · lN = qA(l1,...,lN ) . (3)This 
an be simply understood by de�ning a normally ordered walk as

{y−1, y−1, . . . , y−1, y, y, . . . , y, x, x, . . . , x, x−1, x−1, . . . , x−1} . (4)Obviously, the area en
losed by su
h a walk vanishes, and the produ
t of its links is 1. Cal
ulatingthe area en
losed by an arbitrary walk, then, redu
es to normally ordering the produ
t of its linksand summing up all the powers of q generated by non
ommuting links being �
arried through�ea
h other. E.g., a 1 × 1 square en
ir
led anti
lo
kwise is y−1xyx−1 = qy−1yxx−1 = q, and thearea is 1. 2



A 
losed walk of length N 
ontaining M instan
es of x 
ontains the same number of x−1'sand, 
orrespondingly, N
2 − M of ea
h of y's and y−1's. The number of su
h 
losed walks is

CN,M =
N !

M !2(N
2 − M)!2

(5)(N ! permutations of all the links, divided by permutations of identi
al links), hen
e the totalnumber of 
losed walks of length N is
CN =

N/2
∑

M=0

CN,M =

(

N

N/2

)2

. (6)We are interested in �nding the number CN (A) of 
losed walks of length N en
losing an algebrai
area A; the area probability distribution is then given by
PN (A) =

CN (A)

CN
. (7)We will sear
h for the generating fun
tion of said distribution,

ZN (q) =

∞
∑

A=−∞

CN (A) qA . (8)To elu
idate the method, 
onsider at �rst the set of walks obtained from (4) by shu�ing onlythe x's and y's while leaving the x−1's and y−1's in pla
e. For a given M as de�ned above, thepart of the walk formed by the x's and y's is a �stair
ase walk� of width M and height
L =

N

2
− M ; (9)for brevity, 
all it an (M,L) stair
ase walk. Now invoke the q-binomial theorem [14℄: If x and ysatisfy Eq. (2), then

(x + y)N/2 =
∑

M,L
M+L=N/2

ZM,L(q)yLxM , (10)with ZM,L(q) being the q-binomial 
oe�
ient:
ZM,L(q) =

(

M + L

L

)

q

≡ [M + L]q!

[M ]q![L]q!
, (11)where

[L]q! =
L

∏

i=1

1 − qi

1 − q
= 1(1 + q)(1 + q + q2) · · · (1 + q + . . . + qL−1) . (12)The fun
tion ZM,L(q) is the generating fun
tion of the area distribution of (M,L) stair
ase walks(more pre
isely, the 
losures of those walks, obtained by appending x−M to the end of a walk andprepending y−L at the beginning), in the sense of Eq. (8). Indeed, the LHS of (10) is the sum of all
ombinations of produ
ts of x's and y's, with any ordering, su
h that the total number of x's and

y's is N/2. The number of (M,L) walks within this set that yield a multiplier qA when normally3



ordered, i.e., turned into yLxM , is the 
oe�
ient at qA in ZM,L(q). Respe
tively, the generatingfun
tion of the area distribution of all stair
ase walks of length N/2 is ∑

M+L=N/2 ZM,L(q).Consider now rewriting (x + y)N/2 as (x + y)(x + y)N/2−1 and expand the binomials on bothsides using Eq. (10) to �nd
ZM,L(q) = ZM,L−1(q) + qLZM−1,L(q) , (13)with the initial 
ondition Z0,0(q) = 1.There is a simple physi
al interpretation of ZM,L(q). Constru
ting a walk 
onsisting of Minstan
es of x and L instan
es of y amounts to distributing the M x's among the L + 1 slotsbetween the y's (slot number 0 being to the right of the last y, slot number k = 1, . . . , L to theleft of the k-th y, 
ounting the latter from right to left). Denote by mk the number of x's put intoslot number k; there is a 
onstraint ∑L

k=0 mk = M . To normally order the walk, i.e., to moveall the x's to the right, one has to 
arry ea
h of the mk x's through k y's, hen
e the total areais ∑L
k=0 kmk. Now think of the k-th slot as a single-parti
le state with energy εk = k and of the

x's as bosons distributed among those states with o

upation numbers mk. Then the numberof walks with an algebrai
 area A is the multipli
ity of the multiparti
le level with energy A.Respe
tively, the generating fun
tion of the area distribution, ZM,L(q), is equal to the partitionfun
tion of M bosons in L + 1 single-parti
le states with energies 0, . . . , L, with q = e−1/T . There
urren
e relation (13) 
an be interpreted as the �rst addend on the RHS being the sum overall multiparti
le states in whi
h the highest single-parti
le level (whose energy is L) is empty;the se
ond addend being the sum over all states in whi
h that level is o

upied by at least oneboson.Note that levels and bosons 
an a
tually be inter
hanged, sin
e ZM,L(q) = ZL,M (q). At q = 1(in�nite temperature) relation (13) be
omes the Pas
al triangle equation, and ZM,L(1) =
(M+L

L

)is the total number of multiparti
le states, or walks.Now 
onsider all possible 
losed walks of length N . In order to obtain the generating fun
tionof their area distribution, one 
an generalize (10) as
(x + y + x−1 + y−1)N =

∑

M1,M2,L1,L2
M1+M2+L1+L2=N

ZM1,M2,L1,L2(q)y
−L1yL2xM1x−M2 . (14)Pro
eeding as above, one 
on
ludes that ZM,M, N

2
−M, N

2
−M (q) is the generating fun
tion of thearea distribution of 
losed walks 
ontaining M instan
es of x (and as many x−1) and N/2 − Minstan
es of y (and as many y−1). For all 
losed walks of length N , one has to sum over allpossible values of M :

ZN (q) =

N/2
∑

M=0

ZM,M, N
2
−M, N

2
−M (q) . (15)The re
urren
e relation for ZM1,M2,L1,L2(q) generalizes Eq. (13):

ZM1,M2,L1,L2(q) = ZM1,M2,L1−1,L2(q) + ZM1,M2,L1,L2−1(q)

+ qL2−L1ZM1−1,M2,L1,L2(q) + qL1−L2ZM1,M2−1,L1,L2(q) , (16)with the initial 
ondition Z0,0,0,0(q) = 1.The problem of �nding the area distribution has been redu
ed to solving this re
urren
erelation. 4



3 ResultsObvious symmetry 
onsiderations imply ZM1,M2,L1,L2(q) = ZL1,L2,M1,M2(q), as well as
ZM1,M2,L1,L2(q) = ZM2,M1,L1,L2(1/q) (mirror re�e
tion). In general,

ZM1,M2,L1,L2(q) =

A+
∑

A=−A−

CM1,M2,L1,L2(A)qA , (17)where the C's are integers and
A± = max(M1,M2)max(L1, L2) −

|(M1 − M2)(L1 − L2)| ± (M1 − M2)(L1 − L2)

2
. (18)

ZM1,M2,L1,L2(1) is the number of walks involved, i.e., the multinomial 
oe�
ient
ZM1,M2,L1,L2(1) =

(M1 + M2 + L1 + L2)!

M1!M2!L1!L2!
(19)[Eq. (5) 
orresponds to the 
ase M1 = M2 = M and L1 = L2 = N/2 − M ℄. At �rst order in

q − 1,
ZM1,M2,L1,L2(q) = ZM1,M2,L1,L2(1)

[

1 − (M1 − M2)(L1 − L2)

2
(q − 1) + . . .

]

. (20)Further, when one of the subs
ripts vanishes, for example M1 = 0, one has4
Z0,M2,L1,L2(q) =

min(L1,L2)
∑

k=0

[(

M2 + L1 + L2

k

)

−
(

M2 + L1 + L2

k − 1

)]

ZM2,L1−k

(

q
)

ZM2,L2−k(
1

q
) .(21)It 
an be veri�ed by dire
t 
al
ulation, using Eq. (13), that Z0,M2,L1,L2(q) = Z0,M2,L1−1,L2(q) +

Z0,M2,L1,L2−1(q) + qL1−L2Z0,M2−1,L1,L2(q). Furthermore
(x−1 + y + y−1)N =

∑

M2,L1,L2
M2+L1+L2=N

Z0,M2,L1,L2(q)y
−L1yL2x−M2 (22)takes pla
e. This generalizes the q-binomial theorem onto the 
ase of three addends.Equation (21) relates to the subset of 
losed walks obtained from (4) by �rst moving the

x's to the end of the walk and then shu�ing the x−1's, y's and y−1's. Following the sameline of reasoning as for the stair
ase walks, the slots between the y's and y−1's 
orrespond to
L1 +L2 +1 single-parti
le states, again numbered from 0 onwards, but now their energies satisfy
εk = εk−1 ± 1, where the sign 
oin
ides with the sign of the power of y at the k-th position fromright (the initial 
ondition is still ε0 = 0). Hen
e, the energy of the last state is εL1+L2 = L1−L2.The M2 instan
es of x−1 have to be distributed in all possible single-parti
le spe
tra stemming4When q = 1, the identity

min(L1,L2)
X

k=0

" 

M2 + L1 + L2

k

!

−

 

M2 + L1 + L2

k − 1

!# 

M2 + L1 − k

M2

! 

M2 + L2 − k

M2

!

=
(M2 + L1 + L2)!

M2!L1!L2!follows. 5



from all possible arrangements of the y's and y−1's, and Eq. (21) is the partition fun
tion of M2bosons in su
h a single-parti
le spe
trum, summed over all possible single-parti
le spe
tra.In the spe
ial 
ase L1 = L2 = L, the single-parti
le spe
tra are in one-to-one 
orresponden
ewith all possible bilateral Dy
k paths of length 2L. The partition fun
tion in question is thenrelated to the statisti
s of su
h paths.In the absen
e of a general 
losed-form solution for ZM1,M2,L1,L2(q), Eq. (16) has to be solvediteratively (see Table 1).
N = 2 4 6 8 10 12

A = 0 4 28 232 2156 21944 240280
±1 4 72 1008 13160 168780
±2 12 308 5540 87192
±3 48 1560 33628
±4 8 420 11964
±5 80 3636
±6 20 1200
±7 264
±8 72
±9 12Table 1: Nonzero values of CN (A) for N ≤ 12.Note that:(i) if N

2 is even, the maximal possible area is N2

16 , and CN (N2

16 ) = N . The maximal areais obtained for an anti
lo
kwise square walk (N
4 × N

4 ), and all su
h walks are the N 
y
li
permutations of {x, . . . , x, y, . . . , y, x−1, . . . , x−1, y−1, . . . , y−1};(ii) if N
2 is odd, the maximal possible area is N2−4

16 , and CN (N2−4
16 ) = 2N . The maximal areais obtained for anti
lo
kwise re
tangular walks (N−2

4 × N+2
4 ) and (N+2

4 × N−2
4 ), and all su
hwalks are the N 
y
li
 permutations for one 
on�guration and the N 
y
li
 permutations for theother one.(iii) knowing these values, one 
an 
al
ulate the k-th moment of the area distribution as afun
tion of N

Rk(N) =
∞

∑

A=−∞

PN (A)Ak . (23)The results for R2(N) and R4(N) 
oin
ide with those of Ref. [12℄.4 Asymptoti
 limitTo make the 
onne
tion with the Harper-Hofstadter model, de�ne a latti
e site m = (m1,m2),and magneti
 translation operators W (m), whi
h satisfy
W (m)W (m′) = W (m + m′)eiγ(m1m′

2−m2m′

1) , (24)where γ = 2πφ/φ0 with φ the �ux of the magneti
 �eld per unit 
ell, φ0 the �ux quantum.Equation (24) is the Harper-Hofstadter 
ounterpart of Eq. (2) for the algebrai
 area distributionof random walks. 6
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xFigure 1: ZN (eix/N ) (line) and Tr HN |γ=x/N , the RHS of Eq. (29) (dots), for N = 20.The Harper-Hofstadter Hamiltonian is [9, 11℄
H =

∑

|m1|+|m2|=1

W (m) , (25)su
h that
Tr HN =

∑

eiγA , (26)where the tra
e on the LHS is per unit 
ell and the summation on the RHS is over all 
losedwalks of length N . Setting q → eix/N , the mapping of the problem of random walks onto theHarper-Hofstadter problem follows as
ZN (eix/N ) = Tr HN |γ=x/N . (27)From Eqs. (7)�(8) one �nds that

ZN (eix/N )

ZN (1)
=

∞
∑

A=−∞

PN (A) eiAx/N , (28)thus establishing, via (27), a one-to-one 
orresponden
e between the algebrai
 area probabilitydistribution PN (A) and the N -th moment of the Harper-Hofstadter spe
trum Tr HN .Evaluating Tr HN |γ=x/N in the large N limit [9℄, one 
on
ludes that
ZN (eix/N ) =

4N+1

2πN

x/4

sinh(x/4)

[

1 − 1

2N

(x/4)2

sinh2(x/4)
+ O(1/N2)

] (29)must take pla
e. Obviously, for a �nite N , (29) 
annot hold for all x, sin
e the LHS is periodi
with period 2πN . Still, for x < πN , 
al
ulating ZN from Eqs. (15)�(16) results in an ex
ellentagreement, even for rather small values of N (see Fig. 1).5 Con
lusionThe area distribution of 
losed random walks on a square latti
e stems from the non
ommutativenature of the links that form su
h walks. This is re�e
ted in the fa
t that the generating fun
tion7



of that distribution is dire
tly 
onne
ted with the moments of the spe
trum of the Harper-Hofstadter Hamiltonian � a sum of four nearest-neighbor magneti
 translation operators, whi
hbe
ome non
ommutative in the presen
e of an external magneti
 �eld. Clearly, the re
urren
erelation (16) for the generating fun
tion 
an be interpreted in terms of multi-body partitionfun
tions, as it has been done for stair
ase walks. The 
omplexity of the Harper-Hofstadterspe
trum is en
oded in some way in this re
urren
e relation.A generalization of the q-binomial theorem has been obtained in the 
ase of three addends.In the 
ase of four addends, 
losed-form expressions for the generating fun
tion might involve
q-deformed multinomial 
oe�
ients � as suggested by the three-addend solution.A
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