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Area distribution of two-dimensional random walkson a square lattieStefan Mashkevih1Shrödinger, 120 West 45th St., New York, NY 10036, USAandBogolyubov Insitute for Theoretial Physis, 03143 Kiev, UkraineStéphane Ouvry2Université Paris-Sud, Laboratoire de Physique Théorique et Modèles Statistiques391405 Orsay, FraneJuly 10, 2009AbstratThe algebrai area probability distribution of losed planar random walks of length N on asquare lattie is onsidered. The generating funtion for the distribution satis�es a reurrenerelation in whih the ombinatoris is enoded. A partiular ase generalizes the q-binomialtheorem to the ase of three addends. The distribution �ts the Lévy probability distribution forBrownian urves with its �rst-order 1/N orretion quite well, even for N rather small.PACS numbers: 05.40.Fb, 05.40.J, 05.30.Jp1 IntrodutionWe are onsidering losed planar random walks on a square lattie. We aim at �nding theprobability distribution of the algebrai area A enlosed by a random walk of length N , startingand ending at the origin.Random walks are a disretized version of losed ontinuous Brownian urves, whih areobtained in the limit N → ∞. In this limit the average size of the walk diverges as √
N , itsaverage area is proportional to N , therefore its �nite renormalized area is a = A/N . As �rstshown by Lévy [1℄, the asymptoti probability distribution is

PN→∞(a) =
π

cosh2(2πa)
. (1)Disrete random walks whose links an point in arbitrary diretions were previously onsidered[2℄, and the Lévy distribution reovered in the ontinuous limit [3℄. Certain analyti results werealso obtained onerning the area distribution of walks in the presene of random traps [4℄, ofdireted random walks (those that begin and end on the y = 0 line) [5℄, as well as walks on�nedto a �nite-size box [6℄.1mash�mashke.org2ouvry�lptms.u-psud.fr3Unité Mixte de Reherhe CNRS-Paris Sud, UMR 86261

http://fr.arxiv.org/abs/0905.1488v2


The problem of the random walks area distribution and n-winding setors area distributionon a square lattie arises, for example, in the ontext of random magneti impurities and theinteger quantum Hall e�et [7℄. Also, the distribution is onneted to the partition funtion ofa lattie gauge model with Z(2) gauge group interating with a Z(2)-valued Higgs �eld [8℄.The problem has been attaked from two sides. For big N , a �nite-size orretion to theLévy distribution at �rst order in 1/N was derived in Ref. [9℄ [see Eq. (29) below℄ by relatingthe number of walks to the trae of the Hamiltonian of the Harper model [10℄, whih is in turnrelated to the Hofstadter model [11℄ of an eletron moving on a two-dimensional square lattiein the presene of a uniform magneti �eld orthogonal to the plane. On the other hand, for a�nite N , all the probabilities involved are rational numbers, therefore the sought distribution isa rational funtion. Properties of its k-th moment � whih turns out to be a rational funtionof N with integer oe�ients � have been studied in Ref. [12℄, where the Lévy distribution wasalso expliitly obtained in the N → ∞ limit (see also [13℄). An exat expression for the �nite Ndistribution has, however, remained out of reah.In this paper we derive a reurrene relation for the generating funtion of the area probabilitydistribution for an arbitrary N , whih is interpreted within a statistial mehanis approah aswell as in terms of q-ommuting operators. The asymptoti limit of the distribution and its�rst-order 1/N -orretion are reprodued numerially.2 Generating funtion of the area distributionDenote links on the lattie pointing right, up, left, and down with operators x, y, x−1, y−1,respetively. By onvention, all walks begin at the origin. A walk of length N is then de�nedby a sequene of links {l1, . . . , lN}, where eah lk an be one of the four operators above. For awalk to be losed, the number of x's has to be equal to the number of x−1's, the same for the
y's and y−1's, hene an even N .In order to alulate the algebrai area A(l1, . . . , lN ) enlosed by a walk (positive/negativewhen enirled antilokwise/lokwise), it is su�ient to note that for two walks di�er-ing only by an interhange of a pair of subsequent links, A(l1, . . . , lk−1, x, y, lk+2, . . . , lN ) =
A(l1, . . . , lk−1, y, x, lk+2, . . . , lN ) + 1. Introdue the q-ommutator

xy = qyx , (2)where q 6= 0 and q 6= ±1. The full ommutation table follows immediately: e.g., multiplyingboth sides by x−1 on the left and on the right yields yx−1 = qx−1y, et. Then the algebrai areaof a losed walk is related to the produt of all links onstituting that walk as
l1 · · · lN = qA(l1,...,lN ) . (3)This an be simply understood by de�ning a normally ordered walk as

{y−1, y−1, . . . , y−1, y, y, . . . , y, x, x, . . . , x, x−1, x−1, . . . , x−1} . (4)Obviously, the area enlosed by suh a walk vanishes, and the produt of its links is 1. Calulatingthe area enlosed by an arbitrary walk, then, redues to normally ordering the produt of its linksand summing up all the powers of q generated by nonommuting links being �arried through�eah other. E.g., a 1 × 1 square enirled antilokwise is y−1xyx−1 = qy−1yxx−1 = q, and thearea is 1. 2



A losed walk of length N ontaining M instanes of x ontains the same number of x−1'sand, orrespondingly, N
2 − M of eah of y's and y−1's. The number of suh losed walks is

CN,M =
N !

M !2(N
2 − M)!2

(5)(N ! permutations of all the links, divided by permutations of idential links), hene the totalnumber of losed walks of length N is
CN =

N/2
∑

M=0

CN,M =

(

N

N/2

)2

. (6)We are interested in �nding the number CN (A) of losed walks of length N enlosing an algebraiarea A; the area probability distribution is then given by
PN (A) =

CN (A)

CN
. (7)We will searh for the generating funtion of said distribution,

ZN (q) =

∞
∑

A=−∞

CN (A) qA . (8)To eluidate the method, onsider at �rst the set of walks obtained from (4) by shu�ing onlythe x's and y's while leaving the x−1's and y−1's in plae. For a given M as de�ned above, thepart of the walk formed by the x's and y's is a �stairase walk� of width M and height
L =

N

2
− M ; (9)for brevity, all it an (M,L) stairase walk. Now invoke the q-binomial theorem [14℄: If x and ysatisfy Eq. (2), then

(x + y)N/2 =
∑

M,L
M+L=N/2

ZM,L(q)yLxM , (10)with ZM,L(q) being the q-binomial oe�ient:
ZM,L(q) =

(

M + L

L

)

q

≡ [M + L]q!

[M ]q![L]q!
, (11)where

[L]q! =
L

∏

i=1

1 − qi

1 − q
= 1(1 + q)(1 + q + q2) · · · (1 + q + . . . + qL−1) . (12)The funtion ZM,L(q) is the generating funtion of the area distribution of (M,L) stairase walks(more preisely, the losures of those walks, obtained by appending x−M to the end of a walk andprepending y−L at the beginning), in the sense of Eq. (8). Indeed, the LHS of (10) is the sum of allombinations of produts of x's and y's, with any ordering, suh that the total number of x's and

y's is N/2. The number of (M,L) walks within this set that yield a multiplier qA when normally3



ordered, i.e., turned into yLxM , is the oe�ient at qA in ZM,L(q). Respetively, the generatingfuntion of the area distribution of all stairase walks of length N/2 is ∑

M+L=N/2 ZM,L(q).Consider now rewriting (x + y)N/2 as (x + y)(x + y)N/2−1 and expand the binomials on bothsides using Eq. (10) to �nd
ZM,L(q) = ZM,L−1(q) + qLZM−1,L(q) , (13)with the initial ondition Z0,0(q) = 1.There is a simple physial interpretation of ZM,L(q). Construting a walk onsisting of Minstanes of x and L instanes of y amounts to distributing the M x's among the L + 1 slotsbetween the y's (slot number 0 being to the right of the last y, slot number k = 1, . . . , L to theleft of the k-th y, ounting the latter from right to left). Denote by mk the number of x's put intoslot number k; there is a onstraint ∑L

k=0 mk = M . To normally order the walk, i.e., to moveall the x's to the right, one has to arry eah of the mk x's through k y's, hene the total areais ∑L
k=0 kmk. Now think of the k-th slot as a single-partile state with energy εk = k and of the

x's as bosons distributed among those states with oupation numbers mk. Then the numberof walks with an algebrai area A is the multipliity of the multipartile level with energy A.Respetively, the generating funtion of the area distribution, ZM,L(q), is equal to the partitionfuntion of M bosons in L + 1 single-partile states with energies 0, . . . , L, with q = e−1/T . Thereurrene relation (13) an be interpreted as the �rst addend on the RHS being the sum overall multipartile states in whih the highest single-partile level (whose energy is L) is empty;the seond addend being the sum over all states in whih that level is oupied by at least oneboson.Note that levels and bosons an atually be interhanged, sine ZM,L(q) = ZL,M (q). At q = 1(in�nite temperature) relation (13) beomes the Pasal triangle equation, and ZM,L(1) =
(M+L

L

)is the total number of multipartile states, or walks.Now onsider all possible losed walks of length N . In order to obtain the generating funtionof their area distribution, one an generalize (10) as
(x + y + x−1 + y−1)N =

∑

M1,M2,L1,L2
M1+M2+L1+L2=N

ZM1,M2,L1,L2(q)y
−L1yL2xM1x−M2 . (14)Proeeding as above, one onludes that ZM,M, N

2
−M, N

2
−M (q) is the generating funtion of thearea distribution of losed walks ontaining M instanes of x (and as many x−1) and N/2 − Minstanes of y (and as many y−1). For all losed walks of length N , one has to sum over allpossible values of M :

ZN (q) =

N/2
∑

M=0

ZM,M, N
2
−M, N

2
−M (q) . (15)The reurrene relation for ZM1,M2,L1,L2(q) generalizes Eq. (13):

ZM1,M2,L1,L2(q) = ZM1,M2,L1−1,L2(q) + ZM1,M2,L1,L2−1(q)

+ qL2−L1ZM1−1,M2,L1,L2(q) + qL1−L2ZM1,M2−1,L1,L2(q) , (16)with the initial ondition Z0,0,0,0(q) = 1.The problem of �nding the area distribution has been redued to solving this reurrenerelation. 4



3 ResultsObvious symmetry onsiderations imply ZM1,M2,L1,L2(q) = ZL1,L2,M1,M2(q), as well as
ZM1,M2,L1,L2(q) = ZM2,M1,L1,L2(1/q) (mirror re�etion). In general,

ZM1,M2,L1,L2(q) =

A+
∑

A=−A−

CM1,M2,L1,L2(A)qA , (17)where the C's are integers and
A± = max(M1,M2)max(L1, L2) −

|(M1 − M2)(L1 − L2)| ± (M1 − M2)(L1 − L2)

2
. (18)

ZM1,M2,L1,L2(1) is the number of walks involved, i.e., the multinomial oe�ient
ZM1,M2,L1,L2(1) =

(M1 + M2 + L1 + L2)!

M1!M2!L1!L2!
(19)[Eq. (5) orresponds to the ase M1 = M2 = M and L1 = L2 = N/2 − M ℄. At �rst order in

q − 1,
ZM1,M2,L1,L2(q) = ZM1,M2,L1,L2(1)

[

1 − (M1 − M2)(L1 − L2)

2
(q − 1) + . . .

]

. (20)Further, when one of the subsripts vanishes, for example M1 = 0, one has4
Z0,M2,L1,L2(q) =

min(L1,L2)
∑

k=0

[(

M2 + L1 + L2

k

)

−
(

M2 + L1 + L2

k − 1

)]

ZM2,L1−k

(

q
)

ZM2,L2−k(
1

q
) .(21)It an be veri�ed by diret alulation, using Eq. (13), that Z0,M2,L1,L2(q) = Z0,M2,L1−1,L2(q) +

Z0,M2,L1,L2−1(q) + qL1−L2Z0,M2−1,L1,L2(q). Furthermore
(x−1 + y + y−1)N =

∑

M2,L1,L2
M2+L1+L2=N

Z0,M2,L1,L2(q)y
−L1yL2x−M2 (22)takes plae. This generalizes the q-binomial theorem onto the ase of three addends.Equation (21) relates to the subset of losed walks obtained from (4) by �rst moving the

x's to the end of the walk and then shu�ing the x−1's, y's and y−1's. Following the sameline of reasoning as for the stairase walks, the slots between the y's and y−1's orrespond to
L1 +L2 +1 single-partile states, again numbered from 0 onwards, but now their energies satisfy
εk = εk−1 ± 1, where the sign oinides with the sign of the power of y at the k-th position fromright (the initial ondition is still ε0 = 0). Hene, the energy of the last state is εL1+L2 = L1−L2.The M2 instanes of x−1 have to be distributed in all possible single-partile spetra stemming4When q = 1, the identity

min(L1,L2)
X

k=0

" 

M2 + L1 + L2

k

!

−

 

M2 + L1 + L2

k − 1

!# 

M2 + L1 − k

M2

! 

M2 + L2 − k

M2

!

=
(M2 + L1 + L2)!

M2!L1!L2!follows. 5



from all possible arrangements of the y's and y−1's, and Eq. (21) is the partition funtion of M2bosons in suh a single-partile spetrum, summed over all possible single-partile spetra.In the speial ase L1 = L2 = L, the single-partile spetra are in one-to-one orrespondenewith all possible bilateral Dyk paths of length 2L. The partition funtion in question is thenrelated to the statistis of suh paths.In the absene of a general losed-form solution for ZM1,M2,L1,L2(q), Eq. (16) has to be solvediteratively (see Table 1).
N = 2 4 6 8 10 12

A = 0 4 28 232 2156 21944 240280
±1 4 72 1008 13160 168780
±2 12 308 5540 87192
±3 48 1560 33628
±4 8 420 11964
±5 80 3636
±6 20 1200
±7 264
±8 72
±9 12Table 1: Nonzero values of CN (A) for N ≤ 12.Note that:(i) if N

2 is even, the maximal possible area is N2

16 , and CN (N2

16 ) = N . The maximal areais obtained for an antilokwise square walk (N
4 × N

4 ), and all suh walks are the N ylipermutations of {x, . . . , x, y, . . . , y, x−1, . . . , x−1, y−1, . . . , y−1};(ii) if N
2 is odd, the maximal possible area is N2−4

16 , and CN (N2−4
16 ) = 2N . The maximal areais obtained for antilokwise retangular walks (N−2

4 × N+2
4 ) and (N+2

4 × N−2
4 ), and all suhwalks are the N yli permutations for one on�guration and the N yli permutations for theother one.(iii) knowing these values, one an alulate the k-th moment of the area distribution as afuntion of N

Rk(N) =
∞

∑

A=−∞

PN (A)Ak . (23)The results for R2(N) and R4(N) oinide with those of Ref. [12℄.4 Asymptoti limitTo make the onnetion with the Harper-Hofstadter model, de�ne a lattie site m = (m1,m2),and magneti translation operators W (m), whih satisfy
W (m)W (m′) = W (m + m′)eiγ(m1m′

2−m2m′

1) , (24)where γ = 2πφ/φ0 with φ the �ux of the magneti �eld per unit ell, φ0 the �ux quantum.Equation (24) is the Harper-Hofstadter ounterpart of Eq. (2) for the algebrai area distributionof random walks. 6
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xFigure 1: ZN (eix/N ) (line) and Tr HN |γ=x/N , the RHS of Eq. (29) (dots), for N = 20.The Harper-Hofstadter Hamiltonian is [9, 11℄
H =

∑

|m1|+|m2|=1

W (m) , (25)suh that
Tr HN =

∑

eiγA , (26)where the trae on the LHS is per unit ell and the summation on the RHS is over all losedwalks of length N . Setting q → eix/N , the mapping of the problem of random walks onto theHarper-Hofstadter problem follows as
ZN (eix/N ) = Tr HN |γ=x/N . (27)From Eqs. (7)�(8) one �nds that

ZN (eix/N )

ZN (1)
=

∞
∑

A=−∞

PN (A) eiAx/N , (28)thus establishing, via (27), a one-to-one orrespondene between the algebrai area probabilitydistribution PN (A) and the N -th moment of the Harper-Hofstadter spetrum Tr HN .Evaluating Tr HN |γ=x/N in the large N limit [9℄, one onludes that
ZN (eix/N ) =

4N+1

2πN

x/4

sinh(x/4)

[

1 − 1

2N

(x/4)2

sinh2(x/4)
+ O(1/N2)

] (29)must take plae. Obviously, for a �nite N , (29) annot hold for all x, sine the LHS is periodiwith period 2πN . Still, for x < πN , alulating ZN from Eqs. (15)�(16) results in an exellentagreement, even for rather small values of N (see Fig. 1).5 ConlusionThe area distribution of losed random walks on a square lattie stems from the nonommutativenature of the links that form suh walks. This is re�eted in the fat that the generating funtion7



of that distribution is diretly onneted with the moments of the spetrum of the Harper-Hofstadter Hamiltonian � a sum of four nearest-neighbor magneti translation operators, whihbeome nonommutative in the presene of an external magneti �eld. Clearly, the reurrenerelation (16) for the generating funtion an be interpreted in terms of multi-body partitionfuntions, as it has been done for stairase walks. The omplexity of the Harper-Hofstadterspetrum is enoded in some way in this reurrene relation.A generalization of the q-binomial theorem has been obtained in the ase of three addends.In the ase of four addends, losed-form expressions for the generating funtion might involve
q-deformed multinomial oe�ients � as suggested by the three-addend solution.Aknowledgements: S.M. would like to thank the LPTMS in Orsay for the hospitality duringthe ompletion of this work. S.O. would like to thank A. Comtet for interesting disussions.Referenes[1℄ P. Lévy, Proessus Stohastiques et Mouvements Browniens, Paris, Gauthier-Villars (1965);in Proeedings Seond Berkeley Symposium on Mathematial Statistis and Probability,University of California Press (1951) 171.[2℄ M.G. Brereton, C. Butler, J. Phys. A: Math. Gen. 20 (1987) 3955.[3℄ D.C. Khandekar, F.W. Wiegel, J. Phys. A: Math. Gen. 21 (1988) L563.[4℄ K.V. Samokhin, Phys. Rev. E 59 (1999) R2501.[5℄ T. Jonsson, J.F. Wheater, J. Stat. Phys. 92 (1998) 713.[6℄ J. Desbois, A. Comtet, J. Phys. A: Math. Gen. 25 (1992) 3097.[7℄ A. Comtet, J. Desbois, S. Ouvry, Nul. Phys. B 453 [FS℄ (1995) 759.[8℄ O.A. Borisenko, private ommuniation.[9℄ J. Bellissard, C. Camaho, A. Barelli, F. Claro, J. Phys. A: Math. Gen. 30 (1997) L707.[10℄ P.G. Harper, Pro. Phys. So. London A 68 (1955) 874; A 68 (1955) 879.[11℄ D.R. Hofstadter, Phys. Rev. B 14 (1976) 2239.[12℄ J.A. Mingo, A. Nia, J. Combinatorial Theory A 84 (1998) 55.[13℄ C. Béguin, A. Valette, A. Zuk, Journal of Geometry and Physis 21 (1997) 337.[14℄ G.E. Andrews, q-Series: Their Development and Appliation in Analysis, Number Theory,Combinatoris, Physis, and Computer Algebra. Providene, RI, Amer. Math. So. (1986),p. 10.
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