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Non-loal pair orrelations in the 1D Bose gas at �nite temperatureP. Deuar,1, ∗ A. G. Sykes,2 D. M. Gangardt,3 M. J. Davis,2 P. D. Drummond,4 and K. V. Kheruntsyan21Laboratoire Physique Théorique et Modèles Statistique,Université Paris-Sud, CNRS, 91405 Orsay, Frane2ARC Centre of Exellene for Quantum-Atom Optis, Shool of Physial Sienes,University of Queensland, Brisbane, QLD 4072, Australia3Shool of Physis and Astronomy, University of Birmingham,Edgbaston, Birmingham B15 2TT, United Kingdom4ARC Centre of Exellene for Quantum-Atom Optis,Centre for Atom Optis and Ultra-fast Spetrosopy,Swinburne University of Tehnology, Melbourne, VIC 3122, Australia(Dated: Deember 24, 2008)The behavior of the spatial two-partile orrelation funtion is surveyed in detail for a uniform 1DBose gas with repulsive ontat interations at �nite temperatures. Both long-, medium-, and short-range e�ets are investigated. The results span the entire range of physial regimes, from ideal gas,to strongly interating, and from zero temperature to high temperature. We present perturbativeanalyti methods, available at strong and weak oupling, and �rst-priniple numerial results usingimaginary time simulations with the gauge-P representation in regimes where perturbative methodsare invalid. Nontrivial e�ets are observed from the interplay of thermally indued bunhing behaviorversus interation indued antibunhing.PACS numbers: 67.85.B, 03.75.Hh, 05.10.Gg, 68.65.-kI. INTRODUCTIONThe study of two-body orrelations has a long historydating bak to the 1956 experiment of Hanbury Brownand Twiss (HBT) [1℄. The HBT experiment set out tomeasure the intensity of light oming from a distant star,at two nearby points in spae. The �utuations in the in-tensities were shown to be strongly orrelated in spite ofthe thermal nature of the soure. In more reent times,experimental progress in the �eld of ultra-old atomigases has provided the opportunity to examine similarorrelations in systems of old atoms (as opposed to pho-toni systems). The large thermal de Broglie wavelengthin a old gas means the orrelations our on length saleslarge enough to be resolved using urrent detetors. A pi-oneering experiment of this kind involving a loud of oldNeon atoms, was arried out by Yasuda and Shimizu [2℄as early as 1996. A more omprehensive study was un-dertaken during 2005 − 2007 in Refs. [3, 4℄, where thetwo partile bunhing phenomena assoiated with Boseenhanement (when metastable 4He∗ atoms were used)was juxtaposed with the antibunhing behavior presentin a system of fermions (when 3He∗ atoms were used).In all of the above ases the measured orrelations wereompletely desribed by the statistial exhange intera-tion between partiles in an ideal gas.The behavior of strongly interating systems posessome of the most di�ult questions onfronting urrenttheoretial studies in many-body physis. In this paperwe disuss how our simple understanding of two-body
∗Eletroni address: piotr.deuar�lptms.u-psud.fr

orrelations in an ideal gas an be radially altered inthe presene of interations. To demonstrate this we al-ulate the normalized pair orrelation funtion
g(2)(r) = 〈Ψ̂†(0)Ψ̂†(r)Ψ̂(r)Ψ̂(0)〉/n2 (1)in a homogeneous repulsive one-dimensional (1D) Bosegas [5, 6℄ at �nite temperature over a wide range of in-teration strengths. In Eq. (1), Ψ̂(x) is the �eld operator,and n = 〈Ψ̂†(x)Ψ̂(x)〉 is the linear 1D density. Physially,

g(2)(r) quanti�es the onditional probability of detetinga partile at position r, given that a partile has beendeteted at the origin. Theoretially the 1D Bose gasmodel with δ-funtion interation is one of the simplestparadigms we have of a strongly interating quantum�uid, owing to its exat integrability [5, 6, 7, 8, 9, 10℄. Inthe limit of an in�nitely strong interation it orrespondsto a gas of impenetrable (hard-ore) Bosons treated �rstin Ref. [11℄. It also holds relevane as an experimen-tally aessible system [12, 13, 14, 15, 16, 17, 18, 19, 20,21, 22, 23, 24, 25, 26℄. Opposite from 2D and 3D, thestrongly interating limit of a 1D system is ahieved inthe low density regime. In this regime the wave funtionof the partiles is strongly orrelated and prevents themfrom being lose to eah other, whih results in dramatisuppression of 3-body losses. This allows for the stablereation of strongly interating 1D Bose gases.There has been a substantial amount of previous the-ory on orrelations of the 1D Bose gas model. The Lut-tinger liquid approah provides a method of alulatingthe long-range asymptoti behavior in the deay of non-loal orrelations [9, 10℄. Loal seond- and third-orderorrelations in the homogeneous system have been alu-lated in Refs. [27, 28, 29, 30, 31℄; extensions to inhomo-geneous systems using the loal density approximation
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2(LDA) are given in Ref. [32℄. Numerial alulations atspei� values of interation strength have been arriedout at T = 0 [33℄ and at �nite temperature [34℄. Similarnonloal quantities have been alulated for the T = 0ground state [33, 35, 36, 37, 38, 39℄, and for �nite temper-ature both numerially [34℄ and in the strong interationlimit [40℄. Refs. [8, 9, 10, 41, 42, 43℄ ontain reent re-views of the physis of the 1D Bose gas problem.The fous of the present paper is the nonloal orre-lation funtion at arbitrary interpartile separations r;we give the details of analyti derivations of the resultsdisussed in a reent Letter [44℄ and omplement themwith exat numerial alulations using the stohastigauge-P method of Ref. [34, 45, 46, 47, 48℄. Experi-mental proposals to measure nonloal spatial orrelationsbetween the atoms in a 1D Bose gas have been disussedin Ref. [44, 49℄.The struture of this paper is as follows. In setion IIwe give a brief review of the physis of a 1D Bose gas, em-phasizing the important parameters whih determine thephase diagram. In setion III we outline the details in-volved in the appliation of the (imaginary time) gauge-Pphase spae method to the 1D Bose gas. The more teh-nial details are plaed in appendix A. This method isapable of obtaining numerial results in the ross-overregions of the phase diagram, where analyti results arenot available. In setions IV, V and VI we present theresults of alulating g(2)(r) in the nearly ideal gas limit,the weakly interating limit, and the strongly interatinglimit respetively. The results are obtained from numer-ial alulations and analyti perturbation expansions.We desribe the details of our perturbation expansionin eah respetive setion. In setion VII we analyze,in detail, the nature of the rossover into the fermion-ized Tonks gas regime. Setion VIII disusses the limita-tions of the numerial method. In setion IX we give anoverview and draw onlusions.II. THE INTERACTING BOSE GAS IN 1DWe are onsidering a homogeneous system of N identi-al bosons in a 1D box of length L with periodi bound-ary onditions [5, 6℄. We inlude two-body interationsin the form of a repulsive delta-funtion potential. Theseond-quantized Hamiltonian of the system is given by
Ĥ =

~
2

2m

∫
dx ∂xΨ̂†∂xΨ̂ +

g

2

∫
dx Ψ̂†Ψ̂†Ψ̂Ψ̂, (2)where m is the mass and g > 0 is the oupling on-stant that an be expressed via the 3D s-wave satteringlength a as g ≃ 2~

2a/(ml2⊥) = 2~ω⊥a [50℄. Here, wehave assumed that the atoms are transversely on�nedby a tight harmoni trap with frequeny ω⊥ and that
a is muh smaller than the transverse harmoni osil-lator length l⊥ =

√
~/mω⊥. The 1D regime is realizedwhen the transverse exitation energy ~ω⊥ is muh largerthan both the thermal energy T (with kB = 1) and the

hemial potential µ [32, 51℄. A uniform system in thethermodynami limit (N,L −→ ∞, while the 1D density
n = N/L remains onstant) is ompletely haraterized[5, 7℄ by two parameters: the dimensionless interationstrength

γ =
mg

~2n
(3)and the redued temperature

τ = T/Td, (4)where Td = ~
2n2/(2m) is the temperature of quantumdegeneray in units of energy [30℄.The interplay between these two parameters di-tates the dominating behavior in six physially di�erentregimes. Brie�y, these regimes are:

• Nearly ideal gas regime, where the temperaturealways dominates over the interation strength.This regime splits into two subregimes de�ned by
τ ≪ 1 or τ ≫ 1. In both ases one must have
γ ≪ min

{
τ2,

√
τ
}.

• Weakly interating regime, where both the intera-tion strength and the temperature are small, but
τ2 ≪ γ ≪ 1. This regime realizes the well knownquasi-ondensate phase. Flutuations our due toeither vauum or thermal �utuations, whih de-�nes two further subregimes, with τ ≪ γ or τ ≫ γ,respetively.

• Strongly interating regime, where the interationstrength is large and dominates over temperatureindued e�ets. This an our at high and lowtemperatures, again de�ning two subregimes with
τ ≪ 1 or τ ≫ 1.The basi understanding of the ompetition between in-teration indued e�ets and thermally indued e�etswas outlined in Ref. [44℄.Although the model is integrable via the Bethe ansatz,the umbersome nature of the eigenstates [52℄ inhibitsthe diret alulation of the nonloal two-body orrela-tion funtion. We therefore use numerial integrationin a phase-spae representation, together with perturba-tion theory in eah of the six regimes. The standardBogoliubov proedure, applied to Eq. (2) is appropriatein the ase of the weakly interating regime (see setionV). Perturbation theory in the strongly interating andnearly ideal gas regimes is done using the path integralformalism (see setions IVA and VI respetively).III. NUMERICAL STOCHASTIC GAUGECALCULATIONSA. Gauge-P distributionTo evaluate orrelations away from the regimes of ap-pliability of the analyti approximations, we use the



3gauge-P phase-spae method to generate a stohastievolution from the simple T → ∞ limit (where inter-ations are negligible) down to lower temperatures. Thismethod gives results that orrespond exatly to the fullquantum mehanis using the Hamiltonian (2) as thenumber of averaged realizations (S) goes to in�nity. Thegauge-P method has been desribed in [45, 46, 47℄, andis overed in greatest detail in [48℄, while an initial ap-pliation to the 1D Bose gas was presented in [34℄. Be-low we give a summary of the derivation for this system,and present the basi alulation proedure. Some of themore tehnial details are given in Appendix A.We onsider a grand anonial ensemble with meandensity n, Hamiltonian (2) and inverse temperature givenby β = 1/kBT . When the Hamiltonian ommutes withthe number operator N̂ =
∫
dxΨ̂†(x)Ψ̂(x), as is the asehere, the unnormalized density matrix at temperature Tis given by

ρ̂u = e[µ(β) bN− bH]β , (5)where µ(β) is the hemial potential. In this formulation,
µ an in priniple be hosen at will as any desired funtionof temperature, thus indiretly determining the density
n(T ). In the Shrödinger piture the density matrix isequivalently de�ned by an �imaginary time� master-likeequation

∂ρ̂u(β)

∂β
=
[
µe(β)N̂ − Ĥ

]
ρ̂u(β)

=
1

2

[
µe(β)N̂ − Ĥ , ρ̂u(β)

]

+
(6)and a simple initial (i.e. T → ∞) ondition

ρ̂u(0) = e−λ bN , (7)with λ = − limβ→0 [βµ(β)] and β playing a similar roleto time in the Shrodinger equation for time evolution,apart from a fator of i (hene the name). The se-ond line of (6) follows from the restrited set of densitymatries desribed by the grand anonial ensemble (5),where log ρ̂u ommutes with ρ̂u. Note that µe(β) is atemperature-dependent �e�etive� hemial potential
µe =

∂[βµ(β)]

∂β
, (8)that is not neessarily equal to µ. The initial ondition(7) an then be evolved aording to Eq. (6) to obtainthe equilibrium state at lower temperatures β > 0. How-ever, in the density matrix form, this naturally beomesintratable for more than a few partiles.Phase-spae methods suh as the gauge-P distributionused here redue the omputational resoures needed to amanageable number. This is done by deriving a Fokker-Plank equation for a distribution of phase-spae vari-ables that is equivalent to the full quantum mehanis

(6), and then in a seond step, sampling this distribu-tion stohastially and evolving the samples with a di�u-sive random walk that is equivalent to the Fokker-Plankequation. The general approah is desribed in [53, 54℄.The prie that is paid for tratable alulations is a lossof preision that omes about due to the �nite samplesize S. Fortunately this unertainty an be readily es-timated using the Central Limit theorem and sales as√
S.We utilize the normalized o�-diagonal oherent stateexpansion of the positive-P distribution [53℄ beause thenumber of variables required to desribe a sample is linearin the number of spatial points (tratability) and beauseit desribes all quantum states with a non-negative realdistribution. However, for this investigation two addi-tional elements are needed. Firstly, the evolution (6) doesnot preserve the trae, so an additional weight variable inthe expansion is needed to keep trak of this. Seondly,the evolution equations for the samples given by a bareweighted positive-P treatment are unstable and an leadto systematially bad sampling [55℄. The omplex part ofthe weight variable allows us to remove these instabilitiesusing a stohasti gauge as desribed in [34, 45℄.In pratie, the �rst step is to disretize spae into

M equally spaed points in a box of length L with peri-odi boundary onditions, on whih the �elds are de�ned.There is a lattie spaing of ∆x = L/M per point. Onemust make sure that the lattie is �ne enough and longenough to enompass all relevant detail. In pratie wehek this by inreasing L and, separately, M until nofurther hange in the results is seen. Having this equiv-alent lattie, one an expand the density matrix ρ̂u as
ρ̂u =

∫
G(~v)Λ̂(~v) d4M+2~v, (9)with a positive [45℄ distribution G(~v) of the set of 2M+1omplex phase-spae variables,

~v =
{
α1, . . . , αM , α+

1 , . . . , α
+
M ,Ω

}
, (10)that desribe an operator basis

Λ̂(~v) = Ω ⊗M
j=1 ||αj〉〈(α+

j )∗|| e−
PM

j=1
α+

j
αj (11)omposed of unnormalized (Bargmann) oherent states

||αj〉 = exp
[
αj

√
∆x Ψ̂†(xj)

]
|0〉 at the j-th point at lo-ation xj = (j − 1)∆x and a global weight Ω.The initial ondition (7) orresponds to the distribu-tion

G0(~v) = δ2(Ω − 1)

M∏

j=1

δ2
(
αj − (α+

j )∗
) exp(−|αj |2/nx)

πnx
,(12)where nx = 1/(eλ − 1) = N/M is the mean number ofatoms (N = 〈N̂〉) per spatial point in the initial β =

0 state. We see that, at least initially, α+ = (α)∗ areomplex onjugates.



4B. Fokker-Plank EquationTo generate the Fokker-Plank equation (FPE) for
G(~v) orresponding to the master equation (6) we usethe following di�erential identities for the basis opera-tors

√
∆x Ψ̂(xj)Λ̂ = αj Λ̂, (13a)

√
∆x Ψ̂†(xj)Λ̂ =

(
α+

j +
∂

∂αj

)
Λ̂, (13b)

√
∆x Λ̂Ψ̂(xj) = α+

j Λ̂, (13)
√

∆x Λ̂Ψ̂†(xj) =

(
αj +

∂

∂α+
j

)
Λ̂. (13d)These onvert quantities involving the operators Ψ̂, Ψ̂†and ρ̂u to ones involving only Λ̂ and their derivatives.In what follows it will be onvenient to label the α and

α+ variables as
α

(ν)
j =

{
αj , if ν = 1,
α+

j , if ν = 2.Using (13) on (6) one obtains
∫
∂G(~v)

∂β
Λ̂ d4M+2~v = −

∫
G(~v) (14)

×





g

4∆x

∑

j,ν

(α
(ν)
j )2

∂2

∂(α
(ν)
j )2

+K(~v)

+
1

2

∑

j

[(
∂K(~v)

∂α+
j

)
∂

∂αj
+

(
∂K(~v)

∂αj

)
∂

∂α+
j

]
 Λ̂ d4M+2~v,with

Nj = α+
j αj , (15)

whih is initially the number of partiles at the j-th site,and an e�etive omplex-variable Gibbs fator K orre-sponding to Tr
[
(Ĥ − µeN̂)Λ̂

]
/Tr

[
Λ̂
]:

K(~v) =
∑

j

{
~

2
(
∇α+

j

)
(∇αj)

2m
− µeNj +

gN2
j

2∆x

}
. (16)Here ∇αj is the disretized analogue of the gradient of aomplex �eld α(x) that satis�es α(xj) = αj .To obtain a FPE equation for G(~v) we proeed as fol-lows. Firstly, we an make use of the additional �gauge�identity that follows trivially from Eq. (11),

(
Ω
∂

∂Ω
− 1

)
Λ̂ = 0, (17)to onvert K(~v)Λ̂ = K(~v)Ω ∂

∂Ω Λ̂ on the �rst line of Eq.(14). This step is neessary in order to obtain an equa-tion of a form that an later be sampled with a di�usiveproess. Seondly, we integrate by parts to obtain di�er-entials of G rather than Λ̂. Thirdly, if the distribution
G is well bounded as |αj |, |α+

j |, |Ω| → ∞, we an disardthe boundary terms. As it turns out (see appendix A 1),this is not fully justi�ed for the equation (14), and theboundary behavior will need to be improved with thehelp of a stohasti gauge as desribed originally in [45℄.However, for demonstrative purposes let us proeed onfor now, and return to remedy the problem below inSe. III D. Lastly, having now an equation of the form∫
Λ̂ × [Di�erential operator]G(~v) d~v = 0, one solution isertainly [Di�erential operator]G(~v) = 0, whih is thefollowing FPE:

0 =





∂

∂Ω
ΩK(~v) − ∂

∂β
−
∑

j,ν

[
g

4∆x

∂2

∂(α
(ν)
j )2

(α
(ν)
j )2 +

1

2

∂

∂α
(ν)
j

(
~

2(∇2α
(ν)
j )

2m
+ µeα

(ν)
j −

gα
(ν)
j Nj

∆x

)]

G(~v). (18)C. Equivalent di�usionA di�usive random walk that orresponds to theFokker-Plank equation (18) is found by replaing theanalyti derivatives with appropriate derivatives of thereal and imaginary parts of α(ν)
j [53, 54℄. This results ina di�usion matrix in the phase-spae variables ~v with nonegative eigenvalues. In the Ito alulus this is equivalent

to the following set of stohasti di�erential equations
dα

(ν)
j

dβ
=

1

2

(
µe +

~
2∇2

2m
− gNj

∆x

)
α

(ν)
j

+iα
(ν)
j

√
g

2∆x
ζ
(ν)
j (β), (19)

dΩ

dβ
= −ΩK(~v).



5We do not use di�usion gauges [47℄ here and deomposethe di�usion matrix in the most straightforward fashion.Here, the ζ(ν)
j (β) are real, delta-orrelated, independentwhite Gaussian noise �elds that satisfy the stohasti av-erages

〈ζ(ν)
j (β)〉S = 0, (20a)

〈ζ(ν)
i (β)ζ

(ν′)
j (β′)〉S = δijδνν′δ(β − β′). (20b)In pratie, at eah time step separated from the subse-quent by an interval ∆β, one generates M independentreal Gaussian random variables of variane 1/∆β for eah

ζ
(ν)
j .Equations (19) an be intuitively interpreted by notingthat the equation for the amplitudes α(ν)

j at eah point isa Gross-Pitaevskii equation in imaginary time, with someextra noises that emulate the wandering of trajetories ina path integral formulation around the mean �eld solu-tion given by the deterministi part. A di�erent wanderfor di�erent ν. The weight evolution of Ω generates theGibbs fators of the grand anonial ensemble.D. Final equationsA straightforward appliation of the di�usion equa-tions (19) is foiled by the presene of an instability inthe dα(ν)
j /dβ equations. We use a stohasti gauge toremove this instability, in a manner desribed in [47, 48℄,with the details given in Appendix A 1. The �nal Itostohasti equations of the samples are

dα
(ν)
j

dβ
=

1

2

[
µe +

~
2∇2

2m
−
( g

∆x

)
(|Nj | − i ImNj)

+iζ
(ν)
j (β)

√
2g

∆x

]
α

(ν)
j , (21)

dΩ

dβ
= Ω


−K(~v) − i

√
g

2∆x

∑

j,ν

ζ
(ν)
j (β) (|Nj| − ReNj)


 .Some tehnial details regarding integration proedure,importane sampling, and hoie of µe(β) are given inAppendix A. Attention to these issues an speed up thealulations and redue sampling errors by orders of mag-nitude. E. Evaluating observablesGiven S realizations of the variable sets ~v, using freshinitial samples and noises ζ(ν)

j (β) eah time, one gener-ates an estimate of the expetation value of an observable

Ô as follows:
E
[
Ô
]

=
Tr
[
Ôρ̂u

]

Tr [ρ̂u]
=

∫
G(~v)Tr

[
ÔΛ̂(~v)

]
d~v

∫
G(~v)Tr

[
Λ̂(~v)

]
d~v

=

〈
Tr
[
ÔΛ̂(~v)

]〉

S〈
Tr
[
Λ̂(~v)

]〉

S

=
Re〈F [Ô, ~v]〉

SRe 〈Ω〉S
, (22)where 〈· · · 〉S denotes a stohasti average over the sam-ples, and F is an appropriate funtion of the phase-spaevariables ~v. The last line follows from properties of theoperator basis Λ̂, and beause the trae of ρ̂u and of ex-petation values are real.The identities (13) an be used to readily evaluate Fsine Tr

[
Λ̂
]

= Ω. In partiular,
〈
Ψ̂†(xj)Ψ̂(xj)

〉
=

Re 〈(NjΩ)〉S
∆x Re 〈Ω〉S

, (23)
〈
Ψ̂†(xi)Ψ̂

†(xj)Ψ̂(xj)Ψ̂(xi)
〉

=
Re 〈(NiNjΩ)〉S
(∆x)2Re 〈Ω〉S

, (24)whih explains the relationship between Nj and the par-tile number at the j-th site. For the uniform systemonsidered here, it is e�ient to average the quantitiesover the entire lattie, so that e.g.
g(2)(r) =

L
〈∫

Ψ̂†(x)Ψ̂†(x+ r)Ψ̂(x+ r)Ψ̂(x) dx
〉

〈∫
Ψ̂†(x)Ψ̂(x) dx

〉2 . (25)Unertainty is estimated as follows: We separate the Srealizations into B bins, suh that B ≫ 1 and S/B ≫ 1.One alulates an estimate for the expetation value ofan observable in eah bin independently (let us denote
Oi as the estimate obtained from the ith bin). The bestestimate for the expetation value of the observable isobviously 〈Oi〉B. The one-sigma unertainty in this es-timate is obtained from the Central Limit theorem andis

∆O =

√
〈O2〉B − 〈O〉2B

B . (26)IV. NEARLY IDEAL GAS REGIME[γ ≪ min{τ 2,
√

τ}℄We now present the perturbation theory results for thedeoherent regime of a 1D Bose gas [30℄, where both thedensity and phase �utuations are large and the loal pairorrelation g(2)(0) is always lose to the result for non-interating bosons, g(2)(0) = 2. Depending on the valueof the temperature parameter τ , we further distinguishtwo sub-regimes: deoherent lassial (DC) regime for



6
τ ≫ 1 and deoherent quantum (DQ) regime for temper-atures well below quantum degeneray, τ ≪ 1. Both anbe treated using perturbation theory with respet to theoupling onstant g around the ideal Bose gas, for whihthe nonloal pair orrelation funtion has been studiedin Ref. [24℄. Here, we extend these results to aount forthe �rst-order perturbative terms.A. Perturbation theory in γThe orrelations of a 1D Bose gas are governed by theation

S [Ψ∗Ψ] =

∫ β

0

dσ

∫
dr [Ψ∗∂σΨ −H(Ψ∗,Ψ)] , (27)written in terms of a spae and imaginary time dependent-number �elds Ψ(x, σ) in the Feynman path integral for-malism. Here σ is the imaginary time and β = 1/kBTis the maximum, orresponding to the inverse tempera-ture. The Hamiltonian density H is obtained from (2) byreplaing the operators with the c-number �elds. Usingation (27), the pair orrelation funtion is given by

g(2)(r) =
1

n2Z

∫
DΨ∗Ψ e−S[Ψ∗Ψ]Ψ∗(0)Ψ∗(r)Ψ(r)Ψ(0).(28)where Z =

∫
DΨ∗Ψ e−S[Ψ∗Ψ] is the partition funtion.In Eq. (28) and below, we use the notation that �eldswith imaginary time dependene omitted at at σ = 0,i.e. Ψ(r) ≡ Ψ(r, 0). Expanding the ation (27) in powersof g, we obtain up to the �rst order

g(2)(r) =g
(2)
ideal(r) −

g

2n2

∫ β

0

dσ

∫
dr′ 〈Ψ∗(r′, σ)Ψ∗(r′, σ)

× Ψ(r′, σ)Ψ(r′, σ)Ψ∗(0)Ψ∗(r)Ψ(r)Ψ(0)〉, (29)where g(2)
ideal(r) = 1 + G(r, 0−)G(−r, 0−)/n2 is the idealBose gas result following fromWik's theorem. Note thatsine the expansion above is formally in powers of g, the�nal result an always be expressed in powers of γ as

γ ∝ g. The average in Eq. (29) is evaluated using Wik'stheorem [56℄
∆g(2)(r) = g(2)(r) − g

(2)
ideal(r) = −2g

n2

∫ β

0

dσ

∫
dr′ (30)

×G(r′, σ)G(r − r′,−σ)G(r′ − r, σ)G(−r′,−σ),with the Green's funtion
G(r, σ) = −〈Ψ(0, 0)Ψ∗(r, σ)〉

=
1

βL

∑

k,n

eikr−i~ωnσ

i~ωn − ~2k2/2m+ µ
. (31)The ωn(β) are the Matsubara frequenies and the imagi-nary time σ runs between 0 and β. The Green's funtionis periodi in the ase of bosons and anti-periodi in the

ase of fermions. Thus it an be Fourier transformed with
ωn = 2πn/β (bosons) or ωn = π(2n + 1)/β (fermions).The disrete sum over k beomes an integral in thermo-dynami limit.In terms of a Green's funtion Gk(σ) that is Fouriertransformed with respet to the spatial oordinates,
∆g(2)(r) an be brought to the form

∆g(2)(r) = −2g

n2

∫ β

0

dσ

∫
dk

2π
eikrΓ(k, σ)Γ(k,−σ), (32)where

Γ(k, σ) =
1

2π

∫
dp Gp+k(σ)Gp(−σ), (33)and

Gk(σ) =

{
−nk(β)e−σ(~2k2/2m−µ), σ < 0,

−[1 + nk(β)]e−σ(~2k2/2m−µ), σ > 0,
(34)with

nk(β) =
1

e(~2k2/2m−µ)β − 1
(35)being the standard bosoni oupation numbers.B. Deoherent lassial regimeFor temperatures above quantum degeneray, τ ≫ 1,the hemial potential is large and negative, so thebosoni oupation numbers are small, nk(β) ≪ 1,and an be approximated by the Boltzmann distribu-tion, nk(β) ≃ e−(~2k2/2m−µ)β . Aordingly, the funtion

Gk(σ) in Eq. (34) beomes a Gaussian
Gk(σ) =

{
− exp[−(~2k2/2m− µ)(σ + β)], σ < 0,

− exp[−(~2k2/2m− µ)σ], σ > 0,(36)and Eq. (33) is integrated to yield
Γ(k, σ) = Γ(k,−σ) = ne−σ(β−σ)~2k2/2mβ . (37)Here the mean density at a given temperature and hem-ial potential is determined from n = 1

2π

∫
dk Gk(0−) =√

m/(2π~2β) eβµ. Using Eq. (37), the orretion (32) tothe pair orrelation funtion is found as (see AppendixB)
∆g(2)(r) = −γ

√
2π

τ
erfc

(√
τn2r2

2

)
, (38)where erfc(x) is the omplimentary error funtion.Together with g(2)

ideal(r) = 1 + exp[−τn2r2/2] (τ ≫ 1),this gives the following result for the pair orrelationfuntion in the DC regime (τ ≫ max{1, γ2}):
g(2)(r) = 1 + e−(r

√
2π/ΛT )2 −

√
2πγ2

τ
erfc

(
r
√

2π

ΛT

)
,(39)
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FIG. 1: Nonloal pair orrelation g(2)(r) in the nearly idealgas regime: (a) deoherent lassial regime, τ ≫ max{1, γ2},Eq. (39), with r in units of the thermal de Broglie wavelength
ΛT =

p

4π/(τn2); (b) deoherent quantum regime, √
γ ≪

τ ≪ 1, Eq. (45), with r in units of the phase oherenelength lφ = 2/nτ .This is written in terms of the thermal de Broglie wave-length
ΛT =

√
2π~2

2mT
=

√
4π

τn2
, (40)a quantity that will appear repeatedly in what follows.At r = 0 we have g(2)(0) = 2 − γ

√
2π/τ in agreementwith Ref. [30℄. In the non-interating limit (γ = 0) wereover the well-known result for the lassial ideal gas[57℄ haraterized by Gaussian deay with a orrelationlength ΛT . For γ > 0 we observe [see Fig. 1(a)℄ theemergene of anomalous behavior, with a global maxi-mum g(2)(rmax) = g(2)(0) + 2γ2/τ at nonzero interpar-tile separation nrmax = 2γ/τ ≪ 1. This orrespondsto the emergene of antibunhing, g(2)(0) < g(2)(rmax),due to repulsive interations. As γ is inreased further,there is a ontinuous transition from the DC regime tothe regime of high-temperature �fermionization� (see Se.VIB), with g(2)(0) reduing further and the maximummoving to larger distanes.

C. Deoherent quantum regimeFor temperatures below quantum degeneray, with√
γ ≪ τ ≪ 1, only ωn = 0 ontributes to the Green'sfuntion

Gk(σ) = −T [~2k2/(2m) + |µ|]−1, (41)whih gives the relation between the density and thehemial potential n = T
√
m/(2~2|µ|), µ = −|µ|. Per-forming the Fourier transform of Eq. (41) one obtains theone-partile density matrix for the ideal gas

g
(1)ideal(r) = 〈Ψ̂†(0)Ψ̂(r)〉/n = exp(−r/lφ), (42)whih haraterizes the deay of phase oherene over alength sale given by

lφ =
~

2

2m|µ| =
2

nτ
, (43)and also determines the seond-order orrelation funtionfor the ideal gas

g
(2)ideal(r) = 1 + |g(1)ideal(r)|2 = 1 + e−2r/lφ . (44)The one-partile Greens funtion, Eq. (41), togetherwith Eq. (33) leads to Γ(k, σ) = 4n2lφ/(k

2l2φ+4). Insert-ing it into Eq. (32) we obtain (see Appendix B) orre-tions to g(2)ideal(r), leading to the following result for thepair orrelation funtion in the DQ regime
g(2)(r) = 1 +

[
1 − 4γ

τ2

(
1 +

2r

lφ

)]
e−2r/lφ . (45)This has the maximum value g(2)(0) = 2 − 4γ/τ2, inagreement with the result of Ref. [30℄. For γ = 0 theorrelations deay exponentially with the harateristiorrelation length of half a phase oherene length de-sribing the long-wavelength phase �utuations.An interesting feature in this regime is the apparentpredition of weak antibunhing at a distane as seen inFig. 1 (b), with g(2)(rmin) < 1. The strongest antibunh-ing in expression (45) ours at nrmin = τ/4γ ≫ 1, or

rmin = lφτ
2/4γ ≫ lφ, and dips below unity by an amount

(4γ/τ2) exp(−τ2/4γ) ≪ 1. However, there is ambiguityregarding its existene: One should note that the dipbelow unity is very small in the region of unontestedvalidity of Eq. (45) where τ/√γ ≫ 1, and only beomesappreiable around τ . 2
√
γ, whih is in the rossoverregion into the quasi-ondensate (see Se. V). Whethersuh anomalous antibunhing survives higher order or-retions in the small parameter√γ/τ remains to be seen.Our numerial alulations to date have not been able toaess a regime of small enough √

γ/τ to on�rm or denyits existene.The numerial examples shown in Fig. 2 are for√
γ/τ ≃ 0.24 and √

γ/τ ≃ 0.77, and show a thermalbunhing peak with a typial Gaussian shape at theshortest range of ΛT , with ΛT ≪ lφ. At longer ranges,phase oherene dominates this and leads to exponentialdeay on the length sale lφ, in agreement with Eq. (45).
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√
2π well into the high tem-perature regime when γ is small, as seen in Fig. 3(b) for

τ = 3 and even τ = 10.There are three senarios that an typially be on-trolled in ultraold gas experiments: (i) varying the ab-solute temperature hanges τ but not γ, as in Fig. 3; (ii)varying the oupling strength via a Feshbah resonaneor varying the width of the trapping potential a�ets γbut not τ , as onsidered in Setion VII and Fig. 2; and(iii) varying the linear density gives hanges in both γand τ , while keeping the quantity γ/√τ onstant. No-tably, this is the parameter that appears in the analytiexpressions for both deoherent regimes, Eqs. (45) and(39).Figure 4 shows the behavior under senario (iii), whereinreasing τ orresponds to dereasing density of thegas. As expeted, g(2)(0) tends to a onstant value
g(2)(0) = 2− γ

√
2π/τ 6= 2 with τ → ∞ predited by Eq.(39). Interestingly, the rossover is quite broad under
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FIG. 3: Exat behavior of g(2)(r), with r in units of ΛT , in thenearly ideal gas regime with γ = 0.001 and varying τ aroundthe quantum/lassial rossover. In panel (b), the derivative
f = ∂[ln(g(2)(r) − 1)]/∂r shows a lear distintion betweenexponential deay (when f is onstant) and Gaussian thermal-like behavior when f is linear. The triple lines indiate thenumerial urves together with 1σ error bars whih are mostlybelow resolution.
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γ ≪ 1, there is the smooth and quite broad transitionfrom low values of γ to γ ∼ O(1) that is shown in Fig. 5.The situation of a short-range Gaussian with standarddeviation ∼ ΛT /2

√
π and exponential tails with lengthsale lφ/2 that was seen in Fig. 3 morphs into an anoma-lous form with a loal maximum that is similar to thehigh temperature fermionization behavior desribed be-low in Setions VI and VII.V. WEAKLY INTERACTINGQUASI-CONDENSATE REGIME [τ 2 ≪ γ ≪ 1℄In the regime of weak interations and low tempera-ture (or Gross-Pitaevskii regime) with γ ≪ 1 we rely onthe fat that the equilibrium state of the gas is that of aquasi-ondensate [58, 59℄. In this regime the density �u-tuations are suppressed while the phase still �utuates.The pair orrelation funtion is lose to one and the de-viations an be alulated using the Bogoliubov theory.In this approah, the �eld operator Ψ̂ is represented as asum of the (c-number) marosopi omponent Ψ0, on-taining exitations with momenta k . k0 ≪ ξ−1 (where

ξ = ~/
√
mgn is the healing length) and a small opera-tor omponent δΨ̂ desribing exitations with larger mo-menta, Ψ̂ = Ψ0 + δΨ̂. The momentum k0 is hosen suhthat most of the partiles are ontained in Ψ0, however,its details do not enter into the lowest order orretionsto g(2)(r), whih are O(δΨ̂)2. Using Wik's theorem, andthe property of the thermal density matrix that 〈δΨ̂〉 = 0,the pair orrelation funtion is then redued to

g(2)(r) ≃ 1 +
2

n

(Re〈δΨ̂†(r)δΨ̂(0)〉 + Re〈δΨ̂(r)δΨ̂(0)〉
)
.(46)

The normal and anomalous averages 〈δψ̂†(r)δψ̂(0)〉 and
〈δψ̂(r)δψ̂(0)〉 are alulated using the Bogoliubov trans-formation

δψ̂(r) =
1

L

∑
k

(
ukâke

ikx − vkâ
†
ke

−ikx
)
, (47)where L is the length of the quantization box, âk and â†kare the annihilation and reation operators of elementaryexitations, and (uk, vk) are the expansion oe�ientsgiven by

uk =
ǫk + Ek

2
√
ǫkEk

, vk =
ǫk − Ek

2
√
ǫkEk

, (48)and satisfying u2
k − v2

k = 1. Here ǫk =
√
Ek(Ek + 2gn) isthe Bogoliubov exitation energy, Ek = ~

2k2/(2m), andwe note that the following useful relationships between
Ek and ǫk hold:

Ek =
√
ǫ2k + (gn)2 − gn, (49)

Ek

ǫk
=

[
k2

k2 + (2/ξ)2

]1/2

, (50)where ξ = ~/
√
mgn is the healing length. The equilib-rium oupation numbers of the Bogoliubov exitationsare given by ñk = 〈â†kâk〉 = [eǫk/T − 1]−1.Applying the Bogoliubov transformation to the normaland anomalous averages in Eq. (46) gives

g(2)(r) = 1 +
1

πn

+∞∫

−∞

dk cos(kr)

×
[
(uk − vk)2ñk + vk(vk − uk)

]
. (51)Using next Eq. (48) for the oe�ients uk and vk weobtain the following result for the pair orrelation fun-tion

g(2)(r) = 1 +
1

2πn

+∞∫

−∞

dk

[
Ek

ǫk
(2ñk + 1) − 1

]
cos(kr).(52)For onveniene, we split the g(2)(r)-funtion into twoparts orresponding to the ontributions of thermal andvauum �utuations,

g(2)(r) = 1 +G0(r) +GT (r), (53)with
G0(r) =

1

2πn

+∞∫

−∞

dk

[
Ek

ǫk
− 1

]
cos(kr), (54)and

GT (r) =
1

πn

+∞∫

−∞

dk
Ek

ǫk
ñk cos(kr). (55)



10We �rst evaluate the vauum ontribution G0(r), Eq.(54). As shown in Appendix C, the integral in (54) anbe obtained exatly in terms of speial funtions, giving
G0(r) = −√

γ [L−1(2
√
γnr) − I1(2

√
γnr)] , (56)where L−1(x) is the modi�ed Struve funtion and I1(x)is a Bessel funtion. The orrelation length sale here isset by the healing length ξ = ~/

√
mgn = 1/

√
γn.A. Quasi-ondensate at low temperaturesAt very low temperatures when the exitations aredominated by vauum �utuations, whereas the thermal�utuations are a small orretion, the GT (r)-term is al-ulated as follows. First, we substitute the expliit ex-pression for ñk into Eq. (55), giving

GT (r) =
1

πn

+∞∫

−∞

dk
Ek

ǫk

1

eǫk/T − 1
cos(kr). (57)As shown in Appendix C, for T ≪ gn (or τ ≪ γ) theintegral an be simpli�ed and gives

GT (r) ≃ π

2
√
γ

[
1

n2π2r2
− τ2

4γ
cosech2

(
πτnr

2
√
γ

)]
. (58)Combining Eqs. (53), (56) and (58) we obtain thefollowing �nal result for this regime (τ ≪ γ ≪ 1):

g(2)(r) = 1 −√
γ [L−1(2r/ξ) − I1(2r/ξ)]

+

√
γξ2

2πr2
− πτ2

8γ3/2
sinh−2

(
πτr

2γξ

)
. (59)In the limit of τ → 0, the terms in the seond lineof Eq. (59) anel eah other and the large distane(r ≫ ξ) asymptotis of the di�erene of speial funtions

L−1(x) − I1(x) ∼ 1/8πx2 ensures the expeted inversesquare deay of orrelations[9℄. At small but �nite tem-peratures, the same large-distane asymptotis exatlyanels the inverse square behavior in the seond line ofEq. (59) leaving only the exponential deay
g(2)(r) −→

r→∞
1 − πτ2

8γ3/2
e−πτr/γξ (60)to the unorrelated value of g(2)(r) = 1. This is again infull agreement with the Luttinger liquid theory [9℄. Wenote that even at T = 0, osillating terms are absent, inontrast to the strongly interating regime of Se. VIC,Eq. (71). The limit r → 0 in Eq. (59) reprodues theresult of Eq. (9) of Ref. [30℄, g(2)(0) = 1 − 2

√
γ/π +

πτ2/(24γ3/2). In Fig. 6(a) we plot Eq. (59) for di�erentvalues of the interation parameter γ, and we note thatthe �nite temperature orretion term is negligible here.

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

r [ξ=1/nγ1/2]

g(2
) (r

)

(a)

 

 

γ=10-1, τ=10-2

γ=10-2, τ=10-3

0 0.2 0.4 0.6 0.8 1
0.98

1

1.02

1.04

1.06

1.08

r [ξ=1/nγ1/2]
g(2

) (r
)

(b)

 

 

γ=10-4, τ=10-3

γ=10-5, τ=10-4

FIG. 6: Nonloal pair orrelation g(2)(r) in the weakly in-terating regime, with r in units of the healing length ξ =
1/

√
γn: (a) low-temperature weekly interating gas at τ ≪

γ ≪ 1, Eq. (59); (b) weakly interating gas at γ ≪ τ ≪ √
γ,Eq. (62).B. Thermally exited quasi-ondensateIn the opposite limit, dominated by thermal ratherthan vauum �utuations and orresponding to γ ≪ τ ≪√

γ, the thermal part of the pair orrelation funtion isalulated as follows. We �rst note that large thermal�utuations orrespond to ñk ≫ 1, whih in turn re-quires ǫk/T ≪ 1. Thus, we replae ñk in the integral(55) by ñk = [exp(ǫk/T ) − 1]−1 ≃ T/ǫk ≫ 1. Withthis substitution, the integral for GT (r) is dominated bythe free-partile (quadrati in k) part of the Bogoliubovspetrum and the alulations in Appendix C yield
GT (r) =

τ

2
√
γ
e−2

√
γnr. (61)This result is valid for r/ξ . 1. For r/ξ ≫ 1 the mainontribution to the integral in Eq. (55) omes from thephonon (linear in k) part of the Bogoliubov spetrum andone reovers the behavior given by Eq. (60).Combining Eqs. (53), (56) and (61) we obtain the fol-lowing �nal result for this regime (γ ≪ τ ≪ √

γ and
r . ξ):

g(2)(r) = 1 +
τ

2
√
γ
e−2r/ξ

−√
γ [L−1(2r/ξ) − I1(2r/ξ)] . (62)



11The last two terms are due to vauum �utuations andare a negligible orretion here, so the leading term givesan exponential deay of orrelations [see Fig. 6(b)℄ witha harateristi orrelation length given by the healinglength ξ = 1/
√
γn. The peak value at r = 0 is g(2)(0) =

1 + τ/(2
√
γ), in agreement with Ref. [30℄.VI. STRONGLY INTERACTING REGIME[γ ≫ max{1,

√
τ}℄A. Perturbation theory in 1/γBy mapping the system onto that of a weakly attra-tive 1D fermion gas [60℄ one an perform perturbationtheory in 1/γ ≪ 1. The formalism is the same as in Se.IVA, exept that Ψ is now a fermioni �eld and the inter-ation term in the Hamiltonian (2) has to be modi�ed todesribe e�etive attrative interation between fermionswith matrix elements (in k-spae) Vk = −2~

2k2/(mnγ)[60℄. Then
g(2)(r) = g(2)

γ=∞(r) + ∆g(2)(r)with g(2)
γ=∞(r) = 1−e−n2τr2/2. The �rst order orretionsto g(2)(r) are given by the Hartree-Fok approximationas a sum of the diret and exhange ontributions

∆g
(2)
d (r) =

∫ β

0

dσ

∫
dk

2π
VkΓ(k, σ, r = 0)Γ(−k, σ, r = 0)eikr,(63)

∆g(2)
e (r) = −

∫ β

0

dσ

∫
dk

2π
VkΓ(k, σ, r)Γ(−k, σ,−r)eikr ,(64)where

Γ(k, σ, r) =

∫
dp Gp+k(σ)Gp(−σ)eipr/2π, (65)in terms of the Green's funtion Gk(σ) for free fermions.B. Regime of high-temperature �fermionization�We proeed with evaluation in the regime of high-temperature �fermionization� at temperatures well abovequantum degeneray, τ ≫ 1. In this regime, we usethe Maxwell-Boltzmann distribution of quasi-momentaas the unperturbed state. In the temperature interval

1 ≪ τ ≪ γ2, the harateristi distane related to the in-teration between the partiles � the 1D sattering length
a1D = ~

2/mg ≃ l2⊥/a ∼ 1/γn � is muh smaller than thethermal de Broglie wavelength ΛT , and the small pertur-bation parameter is a1D/ΛT ≪ 1 [30℄.>From the same formalism as in Se. IVA, the freefermion Green's funtion is now given by
Gk(σ) =

{
exp[(β + σ)(µ − ~

2k2/2m)], −β < σ < 0,
− exp[µσ − σ~

2k2/2m], 0 < σ < β,(66)

so the integral for Γ(k, σ, r), Eq. (65), gives
Γ(k, σ, r) = −ne−σ(β−σ)~2k2/2mβe−mr2/(2~

2β)e−ikrσ/β .(67)Substituting Eq. (67) into Eqs. (63) and (64) we obtain(see Appendix D)
∆g

(2)
d (r) =

2τn|r|
γ

e−n2τr2/2 − 4

nγ
δ(r), (68)

∆g(2)
e =

4

nγ
δ(r), (69)The only e�et of the exhange ontribution ∆g

(2)
e is toanel the delta-funtion in the diret ontribution. Thisleaves us with the following result for the pair orrelationfuntion in the regime of high-temperature fermioniza-tion (1 ≪ τ ≪ γ2):

g(2)(r) = 1 −
[
1 − 4

√
πτ

γ2

(
r

ΛT

)]
e−(r

√
2π/ΛT )2 . (70)In the limit r → 0 this leads to perfet antibunh-ing, g(2)(0) = 0, while the small �nite orretions (asin Ref. [30℄, g(2)(0) = 2τ/γ2) are reprodued at order

γ−2. The orrelation length assoiated with the Gaus-sian deay of orrelations in Eq. (70) is given by ther-mal de Broglie wavelength ΛT =
√

4π/(τn2). For notvery large γ, the orrelations do not deay in a sim-ple way, but instead show an anomalous, non-monotonibehavior with a global maximum at at rmax ≃ γ/2τn.This originates from the e�etive Pauli-like bloking atshort range and thermal bunhing [g(2)(r) > 1℄ at longrange. As γ is inreased the position of the maximumdiverges and its value approahes 1 in a non-analytialway g(2)(rmax) ≃ 1 + (4τ/γ2) exp(−γ2/8τ).Figure 7(a) shows a plot of Eq. (70) for various ra-tios of γ2/τ . For a well-pronouned global maximum,moderate values of γ2/τ are required (suh as γ2/τ ≃ 5,with τ = 8, γ = 6), and these lie near the boundaryof validity (γ2/τ ≫ 1) for our perturbative result in thehigh-temperature fermionization regime. Exat numeri-al alulations desribed in Ref. [34℄, and in more detailbelow in Se. VII do, however, show qualitatively similarglobal maxima.C. Zero- and low-temperature (Tonks-Girardeau)regimeAt T = 0 the proedure is straightforward [40℄ andyields the known [8, 40℄ result
g
(2)
T=0(r) = 1 − sin2(ζ)

ζ2
− 4

γ

sin2(ζ)

ζ2
− 2π

γ

∂

∂ζ

sin2(ζ)

ζ2

+
2

γ

∂

∂ζ

[
sin(ζ)

ζ

∫ 1

−1

dt sin(ζt) ln
1 + t

1 − t

]
, (71)
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FIG. 7: Nonloal pair orrelation g(2)(r) as a funtion of therelative distane r in the strongly interating regime, γ ≫ 1:(a) regime of high-temperature �fermionization�, 1 ≪ τ ≪ γ2,Eq. (70), with r in units of the thermal de Broglie wavelength
ΛT =

p

4π/(τn2); (b) low temperature Tonks-Girardeauregime, Eq. (71), for τ = 0.01, with r in units of mean in-terpartile separation 1/nwhere ζ ≡ πnr. The last term here diverges logarithmi-ally with ζ and an be regarded as a �rst order pertur-bation orretion to the fermioni inverse square powerlaw. Aordingly, Eq. (71) is valid for ζ ≪ exp(γ).At temperatures well below quantum degeneray, τ ≪
1, �nite temperature orretions to Eq. (71) are obtainedusing a Sommerfeld expansion around the zero temper-ature Fermi-Dira distribution for the quasi-momenta.For rn ≪ τ−1 this gives an additional ontribution of
τ2 sin2(πnr)/12π2 to the right hand side of Eq. (71),whih is negligible ompared to the T = 0 result as τ ≪ 1.At r = 0, Eq. (71) gives perfet antibunhing g(2)(0) = 0,whih orresponds to a fully �fermionized� 1D Bose gas,where the strong inter-atomi repulsion mimis the Pauliexlusion priniple for intrinsi fermions. By extendingthe perturbation theory to inlude terms of order γ−2 wean reprodue the known result for the loal pair orre-lation at zero temperature g(2)(0) = 4π2/3γ2 [29, 30℄.In Fig. 7(b) we plot the funtion g(2)(r), Eq. (71), forvarious γ. Aording to the physial interpretation of thepair orrelation funtion g(2)(r), its osillatory struture,and hene the existene of loal maxima and minima atertain �nite values of r, implies that there exist moreand less likely separations between the pairs of partiles
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FIG. 11: Heights of the anomalous peak of g(2)(r) thatours at nonzero rmax, for di�erent values of τ , as fun-tions of g(2)(0) � (a) and γ2/τ � (b). The height is takento be h ≡ g(2)(rmax) − g(2)(0) at high temperatures when
g(2)(0) > 1, and h ≡ g(2)(rmax) − 1 when g(2)(0) < 1. Thetwo regimes are separated by the dot-dashed vertial line in(a). Analyti results from Eq. (39) in the deoherent quantumregime are shown as a dashed line. Dots (rather than triplelines here, for larity) indiate 1σ error bars on the numerialresults.
1 (a situation shown also in Fig. 10), or, equivalently,
γ2 ∼ 0.3τ . As one reahes degenerate temperatures,the maximum peak height is redued, and presumablydisappears ompletely by the time the quasi-ondensateregime is reahed by going to smaller values of γ. Al-though we were unable to numerially reah the relevantquasi-ondensate region for τ < 1, a more re�ned numer-ial setup that improves the importane sampling or the
µ(T ) trajetory desribed in Appendix A may allow this.VIII. NUMERICAL LIMITATIONSFigure 12 shows the regime that was aessible usingthe relatively straightforward numerial sheme that wasemployed here, and detailed in Appendix A. (It is theregion above and to the left of the asterisks). In par-tiular, one sees that of the physial regimes desribedin previous setions, the deoherent lassial, as well asparts of the deoherent quantum and high-temperature
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β, i.e. dereasing τ , whih eventually prevents one fromobtaining values of g(2)(r) with a useful resolution. Thisarises in two di�erent ways depending on the region ofinterest.Firstly, in the strongly interating (fermionized) re-gion, one needs a orrespondingly large oupling onstant
g ∝ γ whih leads to a relative inrease of the impor-tane of the noise terms of the dα(ν)

j /dβ equations in(21). This leads to large statistial unertainty in the α(ν)
jthemselves or to the weight Ω whose evolution dependson them. The upshot is that the inverse temperature

β at whih the noise beomes unmanageable beomessmaller and smaller as γ grows. Tehnial improvementsare unlikely to make a large dent in the problem in thefermionized regime beause it ultimately stems from thefat that oherent states are no longer a good basis overwhih to expand the density matrix. They are not loseto the preferred eigenstates of the system. Instead, onean think of onstruting a phase-spae distribution thatuses a non-oherent-state basis, for example, a Gaussianbasis [63℄. This general approah - together with symme-try projetions - has been utilized in suessfully alu-lating ground state properties of the strongly orrelatedfermioni Hubbard model [64℄.Seondly, in the low γ and τ region, one has a di�erentunderlying soure of statistial unertainty. The longestrelevant length here is either the oherene length lφ orthe healing length ξ, and for orret alulations in thelarge uniform gas one must simulate a system of a totalsize appreiably greater than these lengths. This in turn

imposes a minimal total partile number
N & max [O(4/τ),O(2/

√
γ)] . (72)The thermal initial onditions of Eq. (12) lead to varia-tion in N among trajetories, and sine the Gibbs fator

K (see Eq. (16) ) grows linearly or faster with N , onealso obtains a growing variation of K(~v). This enters the
dΩ of Eq. (21) and leads to a spread of the weights Ω(t)that grows rapidly (note the exponential growth of Ω)with inreasing N . However beause of the long lengthsales, via (72), largeN is needed to make aurate alu-lations when τ or γ are muh smaller than one. The endresult is domination of the whole alulation by one or afew trajetories with the highest weight, for all realistiensemble sizes S.As a orollary, signi�antly lower temperatures, evendown to the quasi-ondensate regime, are aessible atsmall γ if one is prepared to sari�e the assumption ofan in�nite-sized gas and onsider periodi boundary on-ditions on some length L that is smaller than or ompara-ble to the oherene/healing lengths. This approah wastaken, e.g., in [65℄. This stops the rise of overall partilenumber, hene one has a muh smaller spread of Gibbsfators Ω among the trajetories, and in the �nal analysis� redued statistial unertainty. Suh alulations areno longer as general, though, and are not onsidered inthis paper.We would like to point out that the limitation inthis regime may be overome or alleviated if the rathersimplisti importane sampling used in the numerialmethod were to be improved. The leading andidate is animproved importane sampling algorithm, possibly usinga Metropolis sampling proedure, as outlined at the endof Appendix A 3.Finally, it is also possible that a more re�ned hoie of
µ(β) (onsidered in Appendix A 5) may lead to somewhatimproved overage of the parameter spae in general.IX. OVERVIEW AND CONCLUSIONIn onlusion, we have surveyed the behavior of thespatial two-partile orrelation funtion in a repulsiveuniform 1D Bose gas. We have analyzed numerially thepair orrelation funtions for all relevant length sales,with the exeption of several low-temperature transitionregions (see Fig. 12 below the asterisks) whih were notaessible by the numerial sheme we employed. Ap-proximate analyti results and methods have been pre-sented for parameters deep within all the major physialregimes. The key features of this behavior inlude:

• Thermal bunhing with g(2)(0) ≃ 2 and Gaussiandrop-o� at ranges ΛT in the lassial deoherentregime.
• Exponential drop-o� of orrelations from g(2)(0) ≃

2 at ranges lφ in the deoherent quantum regime,



15along with Gaussian-like rounding at shorter ranges
∼ ΛT .

• Suppressed density �utuations with g(2)(0) ≃ 1and exponential deay at ranges of the healinglength ξ in the quasi-ondensate regime.
• Antibunhing with g(2)(0) < 1 and Gaussian deayat ranges ΛT in the high-temperature fermioniza-tion regime.
• Antibunhing with g(2)(0) < 1 and osillatory de-ay on ranges of the mean interpartile separation

1/n in the Tonks-Girardeau regime.
• Bunhing at a range of ∼ 0.3ΛT in the rossoverbetween lassial and fermionized regimes around
γ2 ∼ 0.3τ .Let us onsider the regimes in turn, starting fromthe lassial deoherent gas, then going anti-lokwisein Fig. 12. The lassial deoherent gas is well approxi-mated by Boltzmann statistis and is dominated by ther-mal �utuations. The pair orrelation funtion showstypial thermal bunhing and a Gaussian deay, with theorrelation length given by the thermal de Broglie wave-length ΛT .As one redues the temperature, the gas beomes de-generate, the thermal de Broglie wavelength beomeslarger than the mean interpartile separation and losesits relevane. The orrelation length inreases and oneenters into the deoherent quantum regime. Here, thedominant behavior of the gas is the ideal Bose gas bunh-ing, g(2)(0) ≃ 2, with large density �utuations that de-ay exponentially on the length sale given by the phaseoherene length lφ. Notably, the exponential behaviourstarts to appear well above degeneray �rst in the long-distane tails, being visible even around τ ∼ 10 as inFig. 3.Reduing the temperature even further, while still at

γ ≪ 1, one enters into the quasi-ondensate regime, inwhih the density �utuations beome suppressed and
g(2)(0) ≃ 1. In the hotter sub-regime dominated by ther-mal �utuations, the pair orrelation shows weak bunh-ing, g(2)(0) > 1, while in the older sub-regime domi-nated by quantum �utuations one has weak antibunh-ing, g(2)(0) < 1. In both ases the pair orrelation deayson the length sale of the healing length ξ.We now move to the right on Fig. 12, into the regimeof strong interations, while staying at temperatures wellbelow quantum degeneray, τ ≪ 1. This is the Tonks-Girardeau regime, in whih the density �utuations getfurther suppressed due to strong interpartile repulsion.Antibunhing inreases and one approahes g(2)(0) = 0due to fermionization. The only relevant length salehere is the mean interpartile separation, 1/n, and thepair orrelation funtion deays on this length sale withsome osillations.We next move up on Fig. 12, to higher temperatures,and enter the regime of high-temperature fermionization.

At short range, the pair orrelation here is still anti-bunhed due to strong interpartile repulsion, however,thermal e�ets start to show up on the length sale of ΛT .As a result of these ompeting e�ets, the nonloal pairorrelation develops an anomalous peak, orrespondingto bunhing at-a-distane, with g(2)(rmax) > 1, begin-ning around τ ∼ γ2/2.As we inrease the temperature even further, the ther-mal e�ets start to dominate over interations and theantibunhing dip gradually disappears. At temperatures
τ ∼ γ2 we observe a rossover bak to the lassial deo-herent regime.Our results provide new insights into the fundamentalunderstanding of the 1D Bose gas model through many-body orrelations. Calulation of these non-loal orrela-tions is not aessible yet through the exat Bethe ansatzsolutions. We expet that our theoretial preditions willserve as guidelines for future experiments aimed at themeasurement of nonloal pair orrelations in quasi-1DBose gases. AknowledgmentsAGS, MJD, PDD and KVK aknowledge fruitful dis-ussions with A. Yu. Cherny and J. Brand, and the sup-port of this work by the Australian Researh Counil.DMG aknowledges support by EPSRC Advaned Fel-lowship EP/D072514/1. PD was supported by the Eu-ropean Community under the ontrat MEIF-CT-2006-041390. KVK, PD and DMG thank IFRAF and the Insti-tut Henri Poinare�Centre Emile Borel for support dur-ing the 2007 Quantum Gases workshop in Paris wherepart of this work was ompleted. LPTMS is a mixed re-searh unit No. 8626 of CNRS and Université Paris-Sud.APPENDIX A: TECHNICAL APPENDIX FORTHE GAUGE-P CALCULATIONS1. Instability of the stohasti equations and itsremoval with a stohasti gaugeA straightforward appliation of the ungauged di�u-sion Eqs. (19) is foiled by the presene of an instabil-ity in the dα(ν)

j /dβ equations. We an see this if we�rst onsider the evolution of Nj and disard the noiseand kineti-energy parts of the equation. Taking the de-terministi part from the Stratonovih alulus whih isused for our numeris (this introdues the 1/2 term be-low), one has
∂Nj

∂β
∼ Nj

[
µe −

g

∆x

(
Nj −

1

2

)]
. (A1)There are stationary points at the vauum Nj = 0 andat Nj = Na = 1/2+µe∆x/g, with the more positive sta-tionary point (usually Na) being an attrator, and the



16more negative a repellor [see Fig. 13 (a) ℄. The determin-isti evolution is easily solved, and starting from a time
β0 gives later evolution as

Nj(β) =
NaNj(β0)

Nj(β0) + (Na −Nj(β0))e−µe(β−β0)
. (A2)If has a negative Nj(β0), whih is possible due to theation of the noises ζ, then at a later time

βsing = β0 +
1

µe
ln

(
1 − Na

Nj(β0)

)
, (A3)the solution has diverged to negative in�nity. This be-havior of the deterministi part of the equations is knownas a �moving singularity� and is a well-known indiatorof non-vanishing boundary terms when an integration-by-parts is performed on the operator equation (14) [48, 55℄.It implies that the FPE (18) is not fully equivalent toquantum mehanis.The use of a stohasti gauge to remove this kind ofinstability has been desribed in [47℄, and in more detailin [48℄. The gauge identity, Eq. (17), an be used on Eq.(14) to introdue an arbitrary modi�ation to the de-terministi evolution (arising from �rst order derivativeterms) for the prie of additional di�usion in the weight

Ω. Sine the gauge identity is zero, we an add an ar-bitrary multiple of it to Eq. (14). In partiular, if weadd
0 =

∫
G(~v)

∑

j

{
G2

j Ω2

2

∂2

∂Ω2
(A4)

+iGj

√
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2∆x

∑

ν

α
(ν)
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∂

∂α
(ν)
j

(
Ω
∂

∂Ω
− 1

)}
Λ̂ d4M+2with arbitrary funtions Gj(~v, β), and perform the sub-sequent steps as before, then the di�usion matrix in theresulting FPE remains positive semide�nite (no negativeeigenvalues), and the resulting Ito di�usion equations ofthe samples beome

dα
(ν)
j

dβ
=

1
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(
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α

(ν)
j

+iα
(ν)
j

[
ζ
(ν)
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]√ g

2∆x
, (A5)

dΩ

dβ
= Ω


−K(~v) +

∑

j

Gj

∑

ν

ζ
(ν)
j (β)


 ,instead of (19). The αj equations are modi�ed and om-pensating orrelated noises have been added to the Ωequation.We now wish to hoose the funtions Gj , alled stohas-ti gauges, so that the instability is removed, keepingalso in mind the goal of keeping the (now unbiased) sta-tistial unertainty manageable. Heuristi guidelines forhoosing gauges have been investigated in detail in [48℄.
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FIG. 13: Deterministi phase spae for Stratonovih for of the
dNj equation, when µe = 0. (a): ungauged, (b): using thegauge (A6). The moving singularity in (a) is shown with alarge arrow, the attrator in (b) at |Nj | = Na with a thikdashed line.Several hoies for a single-mode system were also inves-tigated there in Se. 9.2 in terms of resulting statistialunertainties. The aim is to remove the real part of Njfrom the αj equation when it is negative, so as to neutral-ize the moving singularity. While for a single mode the�radial� gauge was found to give the best performane,later tests that we have performed on the full multimode(M ≫ 1) 1D gas show that the �minimal� drift gauge

Gj = i (ReNj − |Nj |)
√

g

2∆x
(A6)gives better performane for this system. This is beauseit introdues the smallest modi�ations needed to removethe moving singularity, and hene the smallest noise on-tributions to the weight Ω. The weight beomes muhmore important for multimode systems beause eah ofthe M modes adds its own ontribution to it, the totalof whih an beome large. The phase-spae modi�a-tion for a single mode for the ungauged Eq. (A1) andgauged equations is shown in Fig. 13. One sees that inthe �lassial� Re[Nj ] ≫ Im[Nj ] region the trajetoriesare pratially unhanged. The �nal Ito equations to beintegrated are (21). Comparisons to known exat resultssuh as energy and density [7℄, and g(2)(0) [30℄ indiateno deviations beyond what is predited by the unbiasedstatistial unertainties, Eq. (26), with the new gaugedequations. Suh a omparison an be seen in Fig. 2 ofRef. [34℄. 2. Integration proedureThe atual integration is performed using a split-stepsemi-impliit method desribed in [66℄, whih requiresthe use of the Stratonovih stohasti alulus. There, itwas shown to be highly superior to other low-order meth-ods in terms of stability. Although a low order Newton-like method, with the right hoie of variables its per-formane is remarkably good. High-order methods suhas Runge-Kutta or others su�er from serious omplia-tions when noise is present. In partiular, one has to be



17very metiulous in traking down and ompensating forall the non-zero orrelations within a single time-step �these are muh more ompliated than the simplest or-retion terms appearing in the Stratonovih semi-impliitmethod used here.Due to the multipliative form of the equations (21),it is highly advantageous to use logarithmi variables,whih is made possible if one uses a split-step method.Here, a ∆β timestep onsists of the following four stages:First the interation part (ontaining g) is integrated inreal spae over a time-step ∆β. Seond, the �elds areFourier-transformed to k-spae, giving α̃(ν)(k). Thirdlythe kineti-energy ontributions are integrated over ∆β,and �nally one Fourier-transforms bak into real spae,ready to start the next timestep. The Stratonovihgauged evolution equations for the real spae stage are
d lnα

(ν)
j

dβ
= − g

2∆x

(
|Nj | + i ImNj −

1

2

)

+iζ
(ν)
j (β)

√
g

2∆x
,

d ln Ω

dβ
= i

√
g

2∆x

∑

j,ν

(ReNj − |Nj|) ζ(ν)
j (β) (A7a)

+
g

2∆x

∑

j

{
(ReNj − |Nj |)2 −N2

j + iImNj

}
,while for the k-spae stage they are

d ln α̃(ν)(k)

dβ
=

1

2

[
µe −

~
2k2

2m

]
, (A7b)

d ln Ω

dβ
=
∑

k

(
µe −

~
2k2

2m

)
α̃+(k)α̃(k).3. Importane samplingThe simulated equations (21) inlude evolution of boththe amplitudes α(ν)

j and weight Ω. This ombination anause sampling problems for observable estimations, Eq.(22), when maximum weights our for very rare traje-tories. As it turns out, this was a serious issue for themajority of alulations reported here beause while theinitial distribution (12) samples the β = 0 system well,this is not neessarily the ase during the later evolutioninto β ≫ 0 that is of most interest. Fortunately, fairlyrudimentary importane sampling was able to deal withthis for a wide range of parameters.The essene of this approah is to pre-weight traje-tories in suh a way that the part of the distributionwith maximum weight Ω oinides with the majority ofsamples at the target time of interest βt, rather than at
β = 0. The prie paid is that the β = 0 distribution isthen poorly sampled, but this is not important to us aswe are interested rather in the target βt.Pre-weighting is made possible beause in all observ-able alulations (22), the ombination [G(~v)Ω] ours as

a universal ommon fator in the ∫ d~v integral. Hene, ifwe manually sale the weight Ω by some fator F (~v) ofour hoie: Ω → Ω′F (~v), and simultaneously resale thedistribution aording to G(~v) → G′(~v)/F (~v), then with
Ω′ and G′ one obtains exatly the same results in thein�nite-number-of-samples limit as with GΩ. However,the atual samples are di�erently distributed, whih isadvantageous for �nite sample numbers. To redue theweight sampling problem, one wants to make suh a mod-i�ation F (~v) that both G′(~v) and Ω′G′(~v) peak in thesame region of the phase spae of ~v.To proeed, it is onvenient to onsider Fourier-transformed variables in k-spae, where the non-interating evolution an be easily exatly solved. De�netheñ
α

(ν)
k =

1√
M

∑

j

e−ikxjα
(ν)
j =

{
α̃k, if ν = 1,
α̃+

k , if ν = 2,
(A8)where k takes on disrete values from −π/∆x to π/∆x.The �naive� initial distribution (12) then beomes

G0(~v) = δ2(ln Ω)
∏

k

δ2(α̃k − (α̃+
k )∗ )

e−|eαk|2/nx

π nx
. (A9)This is a thermal distribution whih is uniform over all

k. The ideal gas (i.e. g = 0) evolution of equations (21)then leads to
α̃

(ν)
k (β) = α̃k(0) exp

[(
µ(β) − ~

2k2

2m

)
β

2

]
, (A10)

ln Ω(β) =
∑

k

(
|α̃k(β)|2 − |α̃k(0)|2

)
,where

α̃k(0) =
√
nx ηk, (A11)with ηk being independent omplex Gaussian noises withvariane unity, 〈η∗kηk′ 〉S = δkk′ . One an see that (A10)is not neessarily anywhere near a well-sampled idealgas Bose-Einstein distribution at temperature β, whihwould have

α̃
(ν)
k (β) =

√
nid

k (β) ηk,

ln Ω(β) = 0, (A12)with
nid

k (β) =
{
exp

[
−µ(β)β + ~

2k2β/2m
]
− 1
}−1being the usual Bose-Einstein distribution.For the purpose of the simulations presented here,a fairly rude yet e�etive importane sampling wasapplied as follows. For relatively weak oupling g, avery rough but useful estimate of the thermal state atoarse resolution is that the Fourier modes are deoupledand thermally distributed with some mean oupations

nk(βt) at the target time βt that we are interested in. In



18pratie we will hoose some estimate of the guiding den-sity nk(βt). The desired equal weight sampling at time
βt would then orrespond to the distribution

Gest(~v, βt) = δ2(ln Ω)
∏

k

δ2
(
α̃k − (α̃+

k )∗
)

×exp[−|α̃k|2/nk(βt)]

π nk(βt)
, (A13)whih leads to samples given by α̃(ν)

k =
√
nk(β) ηk and

Ω = 1. What we are interested in is the orrespond-ing distribution of samples at β = 0. An estimate ofthe initial distribution that leads to Gest(~v, βt) an beobtained by evolving (A13) bak in imaginary time us-ing only kineti interations. This is again rather rough,sine deterministi interation terms ∝ g are omitted,not to mention noise, but it is simple to arry out andproved su�ient for our purposes here. One obtains thenan estimated sampling distribution for samples at β = 0:
Gsamp(~v, 0) = δ2(ln Ω − ln Ω0)

∏

k

δ2
(
α̃k − (α̃+

k )∗
)

×exp(−|α̃k|2/nsamp
k )

π nsamp
k

, (A14)where
nsamp

k = nk(βt) exp

[
−λ− µ(βt)βt +

~
2k2βt

2m

]
, (A15)and the pre-weight Ω0 ≡ Ω(0) now depends on the setof partiular values of α̃k at β = 0 obtained for a givensample, aording to

ln Ω0 =
∑

k

|α̃k|2
(

1

nsamp
k

− 1

nx

)
. (A16)For most of the simulations reported here, taking

nk(βt) to be just the ideal gas Bose-Einstein distribu-tion nid
k (βt) was su�ient. However, one the hemialpotential µ(βt) approahes or exeeds zero, this estimateis no longer useful. A better hoie for nk(βt) is the den-sity of states funtion ρk of the exat Yang and Yangsolution [7℄, although it should be noted that this is notthe density of atual partiles that we seek. In pratie,our approah was to �rst run a alulation based on thisestimate nk(βt) = ρk(βt), obtain a better estimate of thereal density from this full stohasti alulation by evalu-ating the expetation value of Ψ̂†

kΨ̂k using Eq. (22), then�nally use this expetation value to hoose an improvedpreweighting funtion nk(βt) for a �seond-generation�alulation.One important point to make regarding the hoie of
nk(βt) is that one should endeavor always to hoose thepreweighting guide density nk(βt) equal or greater thanthe real density, never smaller. The reasoning behindthis is as follows: Suppose �rst one hooses a nk(βt)guiding funtion that is muh smaller than the true k-spae density ntrue

k (βt). This means that the variane of

the α̃k samples will be too small to reover the physialvalue of the density upon averaging 〈|α̃k|2Ω〉S withoutresorting to very large weights for the largest |α̃k| sam-ples. In pratie, if the ratio nk/n
true
k is small, then thetypial trade-o� that ours is that the largest ontri-bution to Ω|α̃k|2 omes from those |α̃k| that are manystandard deviations from the mean. Their rarity is om-pensated for by a very large Ω. However, this is fatal forpratial numbers of samples beause in fat not evenone of the samples one obtains ends up in this highest-ontribution region at many standard deviations fromthe mean. For nk/n

true
k . 1/2, the number of sampleswith |α̃k|2 & nk will be ∝ S

∏
k exp

[
−(ntrue

k /nk)2/2
),i.e. vanishing, leading to a systemati error.In ontrast, the opposite situation when nk(βt) is ho-sen too large is muh more benign. Following the abovereasoning, one gets a distribution of α̃k samples that istoo broad, with the result that a majority of samples aretoo far away from physial values of |α̃k|2 and their exes-sive abundane must be ompensated for by giving thema orrespondingly small weight. However, for reasonablylarge numbers of trajetories, there always remains a oreof the smallest samples that are in the region of most im-portant ontributions. The number of these samples isof the order of S∏k n

true
k /nk(βt), whih is reasonable inpratie as long as the estimate nk(βt) is not extremelypoor.Finally, it should be mentioned that superior impor-tane sampling shemes to the rude one we have em-ployed here ould be implemented and may allow oneto reah muh lower temperatures than presented here.A �rst step would be to keep the β = βt distributionestimate, Eq. (A13), but estimate the resulting initialsamples at β = 0 in a more aurate manner. To dothis, one ould hoose the β = βt samples aording to

α̃
(ν)
k (βt) =

√
nk(βt) ηk and ln Ω(βt) = 0 as usual, butthen evolve them bak in time to β = 0 numerially,using the deterministi part of the full equations (21).This would give a superior estimate of the initial distri-bution as it takes into aount g 6= 0 mean �eld e�etsas well as kineti evolution. Having these β = 0 sam-ples, one would then proeed forward in time with thefull stohasti evolution.A further re�nement would be to hoose initial β = 0samples via the Metropolis algorithm, so that the ini-tial samples ~v are distributed aording to F [~v], where

F = |Ω(βt)| when Ω(βt) is alulated aording to thedeterministi part of the evolution, Eq. (21), startingfrom Ω(0) = 0. This avoids the arbitrariness of therude Gaussian hoie, Eq. (A13). A �nal, but numer-ially intensive approah would be to sample the phase-spae variables αj(βt) and Im[ln Ω](βt) diretly via aMonte Carlo Metropolis algorithm whose free parame-ters to be varied inlude both the initial noises ηk and allthe time-dependent noises ζ(ν)
j (β) for a given time lattie

β ∈ (0, βt).



194. Trust indiators for samplingOne should mention two heuristi trust indiators thatwe use extensively to exlude bad sampling of the under-lying phase-spae distribution.Firstly, let us point out that the behavior of the evolu-tion equations (A7) is suh that one builds up an approxi-mately Gaussian distribution of the logarithmi variables(leaving aside the evolution of Nj itself, whih is initiallysmall). This means that the stohasti averages to beevaluated, e.g., in Eq. (25), involve means of exponen-tials of approximately Gaussian random variables (as per
m = 〈ev〉 with v Gaussian). A feature of suh means isthat if the variane of the logarithm Re[v] exeeds a valueof around 10 the mean m begins to have systemati errorwhen alulated with any pratial sample sizes. Thisis disussed in detail in [48, 67℄. As a result, when al-ulating observables with some expression 〈F (~v)〉S , onemust also hek that the variane of its logarithm is smallenough, i.e. that

VF = 〈(ln |F (~v)|)2〉S − 〈ln |F (~v)|〉2S . 10. (A17)If this is not satis�ed, the results for 〈F (~v)〉S must beonsidered suspet.Seondly, sampling problems of this sort usually makethemselves visible if one ompares two alulations withwidely di�erent sample sizes. In pratie one an evalu-ate an average and its unertainty with S samples, andwith S/10 samples (where, of ourse, S/10 ≫ 1). If thedi�erene is statistially signi�ant the result of the Ssample average again should be onsidered suspet.5. Choie of intermediate µ(β)If one is primarily interested in the behavior of thesystem around some target temperature βt and hemialpotential µ(βt) (alternatively � density), then the valuesof µ(β) at intermediate times β < βt an in priniple behosen at will.In pratie, however, some hoies lead to smaller sta-tistial unertainty than others beause the intermedi-ate values of density a�et the amount of noise gener-ated during the evolution. A preliminary investigation of
µ hoie in [48℄ indiated some heuristi guidelines thatwere also followed in the present work:(i) It is advantageous to not vary µe(β) too muh overthe ourse of the simulation. Exessive variation leads toinreased noise.(ii) A onstant or pieewise-onstant value of µe is alsoadvantageous beause the ideal-gas part of the evolutionan then be alulated exatly in logarithmi variables(A7b), and step-size is only important for the interationpart of the evolution.(iii) It is advantageous to hoose an initial density thatis muh smaller than the �nal one at βt both for sta-tistial sampling reasons and beause this puts the ini-tial gas muh further into the lassial deoherent regime

(τ ≫ γ2), where the initial ondition (12) applies, thanthe �nal regime.In pratie, our simulations used the following form
µe(β) =

1

∆β
ln
z(β + ∆β)

z(β)
, (A18)whih is pieewise onstant over a time step ∆β, withthe fugaity

z(β) = eµβ =

{
zi, when β ≤ βi,

zt exp
[
− βt−β

βt−βi
ln zt

zi

]
, when β > βi.

.(A19)Here, βt and zt = eµtβt are the target inverse temperatureand fugaity, and βi and zi are numerial onstants forthe initial high temperature state that we hose to be
z2

i = z2
t /1000 and βi = βt/1000.Given the di�ulty of preisely analyzing the statisti-al behavior, it is unlear whether a wiser hoie of µ(β)may lead to signi�ant improvements over the results pre-sented here. However, this is the most suessful hoieof those we tried.APPENDIX B: INTEGRALS IN PERTURBATIONTHEORY IN γWe begin with Eq. (32) and substitute the expressionfor Γ(k, σ) in Eq. (37) to give

∆g(2)(r) = −g
~

√
mβ

π

∫ β

0

dσ
exp

{
− r2mβ

4~2[β2/4−(σ−β/2)2]

}

√
β2/4 − (σ − β/2)2

.(B1)Next we make the substitution t = (2/β)(σ − β/2) and
y = r

√
m/(~2β) to give

∆g(2)(r) = −g
~

√
mβ

π

∫ 1

−1

dt
e−y2/(1−t2)

√
1 − t2

(B2)
= −g

~

√
mβ

π
e−y2

∫ ∞

−∞
dx
e−y2x2

1 + x2
, (B3)where the last equality follows from the substitution t =

x/
√

1 + x2. The exponent in the integrand of Eq. (B3)an be represented as a Gaussian integral
e−y2x2

=
1√
π

∫ ∞

−∞
dke−k2+2ikyx. (B4)Then, hanging the order of integration in Eq. (B3) wearrive at

∆g(2)(r) = − g

~π

√
mβe−y2

∫ ∞

−∞
e−k2

∫ ∞

−∞

ei2kyx

1 + x2
dxdk

= −2g
√
mβ

~

∫ ∞

0

e−(k+|y|)2dk. (B5)



20The �nal result shown in Eq. (38) follows trivially froma shift in the integration variable k → k − |y|, and thede�nition of the omplimentary error funtion,
erfc(|y|) ≡ 2√

π

∫ ∞

|y|
dke−k2

. (B6)APPENDIX C: INTEGRALS IN THEBOGOLIUBOV TREATMENTWe �rst evaluate the vauum ontribution G0(r), Eq.(54). Writing down the integral expliitly, in terms of k,and transforming to a new variable x = kξ/2, we have
G0(r) =

2

πξn

∞∫

0

dk

[
x√

1 + x2
− 1

]
cos(2rx/ξ). (C1)Integrating by parts, gives

G0(r) = − 1

πnr

∞∫

0

dx
sin(2

√
γnrx)

(1 + x2)3/2
. (C2)The integral in (C2) an be expressed in terms of spe-ial funtions [68℄, giving

G0(r) = −√
γ [L−1(2

√
γnr) − I1(2

√
γnr)] . (C3)The �nite temperature term GT (r), Eq. (57), isevaluated by performing variable hanges aording to

E = ~
2k2/(2m), followed by ǫ =

√
E(E + gn) and then

x = ǫ/gn. In this way we transform the integral over kto an integral over x
GT (r) =

√
2mg

π2~2n

∞∫

0

dx

[√
1 + x2 − 1

1 + x2

]1/2
cos[k(x)r]

egnx/T − 1
,(C4)where k(x) = [2mgn(

√
1 + x2−1)/~2]1/2. So far we havenot made any additional assumptions or approximations.By inspeting the integrand in Eq. (C4) one an seethat for T ≪ gn the main ontribution to the integralomes from x ≪ 1. Therefore for T ≪ gn (τ ≪ γ) wean simplify the integral by treating x in the integrandas a small parameter. Aordingly, we obtain

[√
1 + x2 − 1

1 + x2

]1/2

≃ 1√
2
x, x≪ 1, (C5)

k(x) ≃
√
mgn

~2
x, x≪ 1, (C6)and therefore

GT (r) ≃ τ2

4πγ3/2

∞∫

0

dy
y cos(τnry/2

√
γ)

ey − 1
, (C7)

where we have introdued y = gnx/T = ǫ/T .Finally we make use of the following integral
∫ ∞

0

dy
y cos(ay)

ey − 1
=

1

2a
− π2

2
cosech2 (πa) , (C8)and obtain Eq. (58).In the opposite limit, dominated by thermal �utua-tions and orresponding to γ ≪ τ ≪ 1, we �rst note thatlarge thermal �utuations orrespond to ñk ≫ 1, whihin turn requires ǫk/T ≪ 1. Thus, we replae ñk in theintegral (55) by ñk = [exp(ǫk/T )− 1]−1 ≃ T/ǫk ≫ 1. Asa result, the thermal ontribution GT (r) beomes

GT (r) ≃ 1

πn

∫ +∞

−∞
dk
EkT

ǫ2k
cos(kr)

=
4mT

π~2n

∫ +∞

0

dk
cos(kr)

k2 + (2/ξ)2
=
mTξ

~2n
e−2r/ξ, (C9)whih is valid for r/ξ . 1. Rewriting this in terms of thedimensionless parameters γ and τ we obtain Eq. (61).For r/ξ ≫ 1 the osine term beomes important and thevalues of momenta in the integral Eq. (C4) are ut o� by

1/r ≪ ξ. In this regime one an use the approximationthat led to Eq. (C8).APPENDIX D: INTEGRALS IN PERTURBATIONTHEORY IN 1/γWe begin by evaluating the diret ontribution givenby Eq. (63) by substituting Eq. (67),
∆g

(2)
d =

∫ β

0

dσ

∫ ∞

−∞

dk

2π

(
−2~

2k2

mnγ

)
eikr−σ~

2k2(β−σ)/mβ

=
−1

πγ

√
τ

2

∫ 1

0

ds

∫ ∞

−∞
dq q2eiqy−sq2(1−s), (D1)where we have a�eted the hange of variables σ = βs,

q =
√
β~2/mk and y =

√
m/(β~2)r =

√
(τn2/2)r. Theintegration with respet to q an then be done using in-tegration by parts, whih yields
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(2)
d =

−1

4γ

√
τ

2π

∫ 1

0

ds
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−1
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2τ

π

∫ 1

−1

dt

(
1 − 2y2

1 − t2

)
e−y2/(1−t2)

(1 − t2)3/2
,(D2)where the last equality follows from the substitution s =

(t + 1)/2. The simplest way to solve the integral in Eq.(D2) is by omparison with Eq. (B2) in Appendix B. Indoing so, one may observe
∫ 1

−1

dt
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1 − 2y2

1 − t2

) exp
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− y2

1−t2
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(1 − t2)
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(D3)
=

d2

dy2

∫ 1
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− y2

1−t2

]

√
1 − t2

= π
d2

dy2
erf(|y|). (D4)



21The result shown in Eq. (68) then follows trivially fromthis.In order to alulate the exhange ontribution we be-gin with Eq. (64) and substitute Eq. (67), whih imme-diately yields
∆g(2)

e (r) =
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√
πτ

2
e−inτr2/2Fe(

√
τn2r2/2) (D5)where Fe(y) =

∫ 1

0
ds
∫
dq q2e−s(1−s)q2+i(1−2s)qy/π3/2,and s, q and y are de�ned the same was as for the diretontribution. The integration with respet to q an bearried out using integration by parts, leaving an integralwith respet to s:
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where the �rst equality omes from the substitution s =
(v + 1)/2 and the seond from v = t/

√
1 + t2. Bothterms are standard de�nite integrals it is straightforwardto show that

∆g(2)
e =

4

nγ
δ(r). (D7)
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