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Non-lo
al pair 
orrelations in the 1D Bose gas at �nite temperatureP. Deuar,1, ∗ A. G. Sykes,2 D. M. Gangardt,3 M. J. Davis,2 P. D. Drummond,4 and K. V. Kheruntsyan21Laboratoire Physique Théorique et Modèles Statistique,Université Paris-Sud, CNRS, 91405 Orsay, Fran
e2ARC Centre of Ex
ellen
e for Quantum-Atom Opti
s, S
hool of Physi
al S
ien
es,University of Queensland, Brisbane, QLD 4072, Australia3S
hool of Physi
s and Astronomy, University of Birmingham,Edgbaston, Birmingham B15 2TT, United Kingdom4ARC Centre of Ex
ellen
e for Quantum-Atom Opti
s,Centre for Atom Opti
s and Ultra-fast Spe
tros
opy,Swinburne University of Te
hnology, Melbourne, VIC 3122, Australia(Dated: De
ember 24, 2008)The behavior of the spatial two-parti
le 
orrelation fun
tion is surveyed in detail for a uniform 1DBose gas with repulsive 
onta
t intera
tions at �nite temperatures. Both long-, medium-, and short-range e�e
ts are investigated. The results span the entire range of physi
al regimes, from ideal gas,to strongly intera
ting, and from zero temperature to high temperature. We present perturbativeanalyti
 methods, available at strong and weak 
oupling, and �rst-prin
iple numeri
al results usingimaginary time simulations with the gauge-P representation in regimes where perturbative methodsare invalid. Nontrivial e�e
ts are observed from the interplay of thermally indu
ed bun
hing behaviorversus intera
tion indu
ed antibun
hing.PACS numbers: 67.85.B
, 03.75.Hh, 05.10.Gg, 68.65.-kI. INTRODUCTIONThe study of two-body 
orrelations has a long historydating ba
k to the 1956 experiment of Hanbury Brownand Twiss (HBT) [1℄. The HBT experiment set out tomeasure the intensity of light 
oming from a distant star,at two nearby points in spa
e. The �u
tuations in the in-tensities were shown to be strongly 
orrelated in spite ofthe thermal nature of the sour
e. In more re
ent times,experimental progress in the �eld of ultra-
old atomi
gases has provided the opportunity to examine similar
orrelations in systems of 
old atoms (as opposed to pho-toni
 systems). The large thermal de Broglie wavelengthin a 
old gas means the 
orrelations o

ur on length s
aleslarge enough to be resolved using 
urrent dete
tors. A pi-oneering experiment of this kind involving a 
loud of 
oldNeon atoms, was 
arried out by Yasuda and Shimizu [2℄as early as 1996. A more 
omprehensive study was un-dertaken during 2005 − 2007 in Refs. [3, 4℄, where thetwo parti
le bun
hing phenomena asso
iated with Boseenhan
ement (when metastable 4He∗ atoms were used)was juxtaposed with the antibun
hing behavior presentin a system of fermions (when 3He∗ atoms were used).In all of the above 
ases the measured 
orrelations were
ompletely des
ribed by the statisti
al ex
hange intera
-tion between parti
les in an ideal gas.The behavior of strongly intera
ting systems posessome of the most di�
ult questions 
onfronting 
urrenttheoreti
al studies in many-body physi
s. In this paperwe dis
uss how our simple understanding of two-body
∗Ele
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orrelations in an ideal gas 
an be radi
ally altered inthe presen
e of intera
tions. To demonstrate this we 
al-
ulate the normalized pair 
orrelation fun
tion
g(2)(r) = 〈Ψ̂†(0)Ψ̂†(r)Ψ̂(r)Ψ̂(0)〉/n2 (1)in a homogeneous repulsive one-dimensional (1D) Bosegas [5, 6℄ at �nite temperature over a wide range of in-tera
tion strengths. In Eq. (1), Ψ̂(x) is the �eld operator,and n = 〈Ψ̂†(x)Ψ̂(x)〉 is the linear 1D density. Physi
ally,

g(2)(r) quanti�es the 
onditional probability of dete
tinga parti
le at position r, given that a parti
le has beendete
ted at the origin. Theoreti
ally the 1D Bose gasmodel with δ-fun
tion intera
tion is one of the simplestparadigms we have of a strongly intera
ting quantum�uid, owing to its exa
t integrability [5, 6, 7, 8, 9, 10℄. Inthe limit of an in�nitely strong intera
tion it 
orrespondsto a gas of impenetrable (hard-
ore) Bosons treated �rstin Ref. [11℄. It also holds relevan
e as an experimen-tally a

essible system [12, 13, 14, 15, 16, 17, 18, 19, 20,21, 22, 23, 24, 25, 26℄. Opposite from 2D and 3D, thestrongly intera
ting limit of a 1D system is a
hieved inthe low density regime. In this regime the wave fun
tionof the parti
les is strongly 
orrelated and prevents themfrom being 
lose to ea
h other, whi
h results in dramati
suppression of 3-body losses. This allows for the stable
reation of strongly intera
ting 1D Bose gases.There has been a substantial amount of previous the-ory on 
orrelations of the 1D Bose gas model. The Lut-tinger liquid approa
h provides a method of 
al
ulatingthe long-range asymptoti
 behavior in the de
ay of non-lo
al 
orrelations [9, 10℄. Lo
al se
ond- and third-order
orrelations in the homogeneous system have been 
al
u-lated in Refs. [27, 28, 29, 30, 31℄; extensions to inhomo-geneous systems using the lo
al density approximation
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2(LDA) are given in Ref. [32℄. Numeri
al 
al
ulations atspe
i�
 values of intera
tion strength have been 
arriedout at T = 0 [33℄ and at �nite temperature [34℄. Similarnonlo
al quantities have been 
al
ulated for the T = 0ground state [33, 35, 36, 37, 38, 39℄, and for �nite temper-ature both numeri
ally [34℄ and in the strong intera
tionlimit [40℄. Refs. [8, 9, 10, 41, 42, 43℄ 
ontain re
ent re-views of the physi
s of the 1D Bose gas problem.The fo
us of the present paper is the nonlo
al 
orre-lation fun
tion at arbitrary interparti
le separations r;we give the details of analyti
 derivations of the resultsdis
ussed in a re
ent Letter [44℄ and 
omplement themwith exa
t numeri
al 
al
ulations using the sto
hasti
gauge-P method of Ref. [34, 45, 46, 47, 48℄. Experi-mental proposals to measure nonlo
al spatial 
orrelationsbetween the atoms in a 1D Bose gas have been dis
ussedin Ref. [44, 49℄.The stru
ture of this paper is as follows. In se
tion IIwe give a brief review of the physi
s of a 1D Bose gas, em-phasizing the important parameters whi
h determine thephase diagram. In se
tion III we outline the details in-volved in the appli
ation of the (imaginary time) gauge-Pphase spa
e method to the 1D Bose gas. The more te
h-ni
al details are pla
ed in appendix A. This method is
apable of obtaining numeri
al results in the 
ross-overregions of the phase diagram, where analyti
 results arenot available. In se
tions IV, V and VI we present theresults of 
al
ulating g(2)(r) in the nearly ideal gas limit,the weakly intera
ting limit, and the strongly intera
tinglimit respe
tively. The results are obtained from numer-i
al 
al
ulations and analyti
 perturbation expansions.We des
ribe the details of our perturbation expansionin ea
h respe
tive se
tion. In se
tion VII we analyze,in detail, the nature of the 
rossover into the fermion-ized Tonks gas regime. Se
tion VIII dis
usses the limita-tions of the numeri
al method. In se
tion IX we give anoverview and draw 
on
lusions.II. THE INTERACTING BOSE GAS IN 1DWe are 
onsidering a homogeneous system of N identi-
al bosons in a 1D box of length L with periodi
 bound-ary 
onditions [5, 6℄. We in
lude two-body intera
tionsin the form of a repulsive delta-fun
tion potential. These
ond-quantized Hamiltonian of the system is given by
Ĥ =

~
2

2m

∫
dx ∂xΨ̂†∂xΨ̂ +

g

2

∫
dx Ψ̂†Ψ̂†Ψ̂Ψ̂, (2)where m is the mass and g > 0 is the 
oupling 
on-stant that 
an be expressed via the 3D s-wave s
atteringlength a as g ≃ 2~

2a/(ml2⊥) = 2~ω⊥a [50℄. Here, wehave assumed that the atoms are transversely 
on�nedby a tight harmoni
 trap with frequen
y ω⊥ and that
a is mu
h smaller than the transverse harmoni
 os
il-lator length l⊥ =

√
~/mω⊥. The 1D regime is realizedwhen the transverse ex
itation energy ~ω⊥ is mu
h largerthan both the thermal energy T (with kB = 1) and the


hemi
al potential µ [32, 51℄. A uniform system in thethermodynami
 limit (N,L −→ ∞, while the 1D density
n = N/L remains 
onstant) is 
ompletely 
hara
terized[5, 7℄ by two parameters: the dimensionless intera
tionstrength

γ =
mg

~2n
(3)and the redu
ed temperature

τ = T/Td, (4)where Td = ~
2n2/(2m) is the temperature of quantumdegenera
y in units of energy [30℄.The interplay between these two parameters di
-tates the dominating behavior in six physi
ally di�erentregimes. Brie�y, these regimes are:

• Nearly ideal gas regime, where the temperaturealways dominates over the intera
tion strength.This regime splits into two subregimes de�ned by
τ ≪ 1 or τ ≫ 1. In both 
ases one must have
γ ≪ min

{
τ2,

√
τ
}.

• Weakly intera
ting regime, where both the intera
-tion strength and the temperature are small, but
τ2 ≪ γ ≪ 1. This regime realizes the well knownquasi-
ondensate phase. Flu
tuations o

ur due toeither va
uum or thermal �u
tuations, whi
h de-�nes two further subregimes, with τ ≪ γ or τ ≫ γ,respe
tively.

• Strongly intera
ting regime, where the intera
tionstrength is large and dominates over temperatureindu
ed e�e
ts. This 
an o

ur at high and lowtemperatures, again de�ning two subregimes with
τ ≪ 1 or τ ≫ 1.The basi
 understanding of the 
ompetition between in-tera
tion indu
ed e�e
ts and thermally indu
ed e�e
tswas outlined in Ref. [44℄.Although the model is integrable via the Bethe ansatz,the 
umbersome nature of the eigenstates [52℄ inhibitsthe dire
t 
al
ulation of the nonlo
al two-body 
orrela-tion fun
tion. We therefore use numeri
al integrationin a phase-spa
e representation, together with perturba-tion theory in ea
h of the six regimes. The standardBogoliubov pro
edure, applied to Eq. (2) is appropriatein the 
ase of the weakly intera
ting regime (see se
tionV). Perturbation theory in the strongly intera
ting andnearly ideal gas regimes is done using the path integralformalism (see se
tions IVA and VI respe
tively).III. NUMERICAL STOCHASTIC GAUGECALCULATIONSA. Gauge-P distributionTo evaluate 
orrelations away from the regimes of ap-pli
ability of the analyti
 approximations, we use the



3gauge-P phase-spa
e method to generate a sto
hasti
evolution from the simple T → ∞ limit (where inter-a
tions are negligible) down to lower temperatures. Thismethod gives results that 
orrespond exa
tly to the fullquantum me
hani
s using the Hamiltonian (2) as thenumber of averaged realizations (S) goes to in�nity. Thegauge-P method has been des
ribed in [45, 46, 47℄, andis 
overed in greatest detail in [48℄, while an initial ap-pli
ation to the 1D Bose gas was presented in [34℄. Be-low we give a summary of the derivation for this system,and present the basi
 
al
ulation pro
edure. Some of themore te
hni
al details are given in Appendix A.We 
onsider a grand 
anoni
al ensemble with meandensity n, Hamiltonian (2) and inverse temperature givenby β = 1/kBT . When the Hamiltonian 
ommutes withthe number operator N̂ =
∫
dxΨ̂†(x)Ψ̂(x), as is the 
asehere, the unnormalized density matrix at temperature Tis given by

ρ̂u = e[µ(β) bN− bH]β , (5)where µ(β) is the 
hemi
al potential. In this formulation,
µ 
an in prin
iple be 
hosen at will as any desired fun
tionof temperature, thus indire
tly determining the density
n(T ). In the S
hrödinger pi
ture the density matrix isequivalently de�ned by an �imaginary time� master-likeequation

∂ρ̂u(β)

∂β
=
[
µe(β)N̂ − Ĥ

]
ρ̂u(β)

=
1

2

[
µe(β)N̂ − Ĥ , ρ̂u(β)

]

+
(6)and a simple initial (i.e. T → ∞) 
ondition

ρ̂u(0) = e−λ bN , (7)with λ = − limβ→0 [βµ(β)] and β playing a similar roleto time in the S
hrodinger equation for time evolution,apart from a fa
tor of i (hen
e the name). The se
-ond line of (6) follows from the restri
ted set of densitymatri
es des
ribed by the grand 
anoni
al ensemble (5),where log ρ̂u 
ommutes with ρ̂u. Note that µe(β) is atemperature-dependent �e�e
tive� 
hemi
al potential
µe =

∂[βµ(β)]

∂β
, (8)that is not ne
essarily equal to µ. The initial 
ondition(7) 
an then be evolved a

ording to Eq. (6) to obtainthe equilibrium state at lower temperatures β > 0. How-ever, in the density matrix form, this naturally be
omesintra
table for more than a few parti
les.Phase-spa
e methods su
h as the gauge-P distributionused here redu
e the 
omputational resour
es needed to amanageable number. This is done by deriving a Fokker-Plan
k equation for a distribution of phase-spa
e vari-ables that is equivalent to the full quantum me
hani
s

(6), and then in a se
ond step, sampling this distribu-tion sto
hasti
ally and evolving the samples with a di�u-sive random walk that is equivalent to the Fokker-Plan
kequation. The general approa
h is des
ribed in [53, 54℄.The pri
e that is paid for tra
table 
al
ulations is a lossof pre
ision that 
omes about due to the �nite samplesize S. Fortunately this un
ertainty 
an be readily es-timated using the Central Limit theorem and s
ales as√
S.We utilize the normalized o�-diagonal 
oherent stateexpansion of the positive-P distribution [53℄ be
ause thenumber of variables required to des
ribe a sample is linearin the number of spatial points (tra
tability) and be
auseit des
ribes all quantum states with a non-negative realdistribution. However, for this investigation two addi-tional elements are needed. Firstly, the evolution (6) doesnot preserve the tra
e, so an additional weight variable inthe expansion is needed to keep tra
k of this. Se
ondly,the evolution equations for the samples given by a bareweighted positive-P treatment are unstable and 
an leadto systemati
ally bad sampling [55℄. The 
omplex part ofthe weight variable allows us to remove these instabilitiesusing a sto
hasti
 gauge as des
ribed in [34, 45℄.In pra
ti
e, the �rst step is to dis
retize spa
e into

M equally spa
ed points in a box of length L with peri-odi
 boundary 
onditions, on whi
h the �elds are de�ned.There is a latti
e spa
ing of ∆x = L/M per point. Onemust make sure that the latti
e is �ne enough and longenough to en
ompass all relevant detail. In pra
ti
e we
he
k this by in
reasing L and, separately, M until nofurther 
hange in the results is seen. Having this equiv-alent latti
e, one 
an expand the density matrix ρ̂u as
ρ̂u =

∫
G(~v)Λ̂(~v) d4M+2~v, (9)with a positive [45℄ distribution G(~v) of the set of 2M+1
omplex phase-spa
e variables,

~v =
{
α1, . . . , αM , α+

1 , . . . , α
+
M ,Ω

}
, (10)that des
ribe an operator basis

Λ̂(~v) = Ω ⊗M
j=1 ||αj〉〈(α+

j )∗|| e−
PM

j=1
α+

j
αj (11)
omposed of unnormalized (Bargmann) 
oherent states

||αj〉 = exp
[
αj

√
∆x Ψ̂†(xj)

]
|0〉 at the j-th point at lo-
ation xj = (j − 1)∆x and a global weight Ω.The initial 
ondition (7) 
orresponds to the distribu-tion

G0(~v) = δ2(Ω − 1)

M∏

j=1

δ2
(
αj − (α+

j )∗
) exp(−|αj |2/nx)

πnx
,(12)where nx = 1/(eλ − 1) = N/M is the mean number ofatoms (N = 〈N̂〉) per spatial point in the initial β =

0 state. We see that, at least initially, α+ = (α)∗ are
omplex 
onjugates.



4B. Fokker-Plan
k EquationTo generate the Fokker-Plan
k equation (FPE) for
G(~v) 
orresponding to the master equation (6) we usethe following di�erential identities for the basis opera-tors

√
∆x Ψ̂(xj)Λ̂ = αj Λ̂, (13a)

√
∆x Ψ̂†(xj)Λ̂ =

(
α+

j +
∂

∂αj

)
Λ̂, (13b)

√
∆x Λ̂Ψ̂(xj) = α+

j Λ̂, (13
)
√

∆x Λ̂Ψ̂†(xj) =

(
αj +

∂

∂α+
j

)
Λ̂. (13d)These 
onvert quantities involving the operators Ψ̂, Ψ̂†and ρ̂u to ones involving only Λ̂ and their derivatives.In what follows it will be 
onvenient to label the α and

α+ variables as
α

(ν)
j =

{
αj , if ν = 1,
α+

j , if ν = 2.Using (13) on (6) one obtains
∫
∂G(~v)

∂β
Λ̂ d4M+2~v = −

∫
G(~v) (14)

×





g

4∆x

∑

j,ν

(α
(ν)
j )2

∂2

∂(α
(ν)
j )2

+K(~v)

+
1

2

∑

j

[(
∂K(~v)

∂α+
j

)
∂

∂αj
+

(
∂K(~v)

∂αj

)
∂

∂α+
j

]
 Λ̂ d4M+2~v,with

Nj = α+
j αj , (15)

whi
h is initially the number of parti
les at the j-th site,and an e�e
tive 
omplex-variable Gibbs fa
tor K 
orre-sponding to Tr
[
(Ĥ − µeN̂)Λ̂

]
/Tr

[
Λ̂
]:

K(~v) =
∑

j

{
~

2
(
∇α+

j

)
(∇αj)

2m
− µeNj +

gN2
j

2∆x

}
. (16)Here ∇αj is the dis
retized analogue of the gradient of a
omplex �eld α(x) that satis�es α(xj) = αj .To obtain a FPE equation for G(~v) we pro
eed as fol-lows. Firstly, we 
an make use of the additional �gauge�identity that follows trivially from Eq. (11),

(
Ω
∂

∂Ω
− 1

)
Λ̂ = 0, (17)to 
onvert K(~v)Λ̂ = K(~v)Ω ∂

∂Ω Λ̂ on the �rst line of Eq.(14). This step is ne
essary in order to obtain an equa-tion of a form that 
an later be sampled with a di�usivepro
ess. Se
ondly, we integrate by parts to obtain di�er-entials of G rather than Λ̂. Thirdly, if the distribution
G is well bounded as |αj |, |α+

j |, |Ω| → ∞, we 
an dis
ardthe boundary terms. As it turns out (see appendix A 1),this is not fully justi�ed for the equation (14), and theboundary behavior will need to be improved with thehelp of a sto
hasti
 gauge as des
ribed originally in [45℄.However, for demonstrative purposes let us pro
eed onfor now, and return to remedy the problem below inSe
. III D. Lastly, having now an equation of the form∫
Λ̂ × [Di�erential operator]G(~v) d~v = 0, one solution is
ertainly [Di�erential operator]G(~v) = 0, whi
h is thefollowing FPE:

0 =





∂

∂Ω
ΩK(~v) − ∂

∂β
−
∑

j,ν

[
g

4∆x

∂2

∂(α
(ν)
j )2

(α
(ν)
j )2 +

1

2

∂

∂α
(ν)
j

(
~

2(∇2α
(ν)
j )

2m
+ µeα

(ν)
j −

gα
(ν)
j Nj

∆x

)]

G(~v). (18)C. Equivalent di�usionA di�usive random walk that 
orresponds to theFokker-Plan
k equation (18) is found by repla
ing theanalyti
 derivatives with appropriate derivatives of thereal and imaginary parts of α(ν)
j [53, 54℄. This results ina di�usion matrix in the phase-spa
e variables ~v with nonegative eigenvalues. In the Ito 
al
ulus this is equivalent

to the following set of sto
hasti
 di�erential equations
dα

(ν)
j

dβ
=

1

2

(
µe +

~
2∇2

2m
− gNj

∆x

)
α

(ν)
j

+iα
(ν)
j

√
g

2∆x
ζ
(ν)
j (β), (19)

dΩ

dβ
= −ΩK(~v).



5We do not use di�usion gauges [47℄ here and de
omposethe di�usion matrix in the most straightforward fashion.Here, the ζ(ν)
j (β) are real, delta-
orrelated, independentwhite Gaussian noise �elds that satisfy the sto
hasti
 av-erages

〈ζ(ν)
j (β)〉S = 0, (20a)

〈ζ(ν)
i (β)ζ

(ν′)
j (β′)〉S = δijδνν′δ(β − β′). (20b)In pra
ti
e, at ea
h time step separated from the subse-quent by an interval ∆β, one generates M independentreal Gaussian random variables of varian
e 1/∆β for ea
h

ζ
(ν)
j .Equations (19) 
an be intuitively interpreted by notingthat the equation for the amplitudes α(ν)

j at ea
h point isa Gross-Pitaevskii equation in imaginary time, with someextra noises that emulate the wandering of traje
tories ina path integral formulation around the mean �eld solu-tion given by the deterministi
 part. A di�erent wanderfor di�erent ν. The weight evolution of Ω generates theGibbs fa
tors of the grand 
anoni
al ensemble.D. Final equationsA straightforward appli
ation of the di�usion equa-tions (19) is foiled by the presen
e of an instability inthe dα(ν)
j /dβ equations. We use a sto
hasti
 gauge toremove this instability, in a manner des
ribed in [47, 48℄,with the details given in Appendix A 1. The �nal Itosto
hasti
 equations of the samples are

dα
(ν)
j

dβ
=

1

2

[
µe +

~
2∇2

2m
−
( g

∆x

)
(|Nj | − i ImNj)

+iζ
(ν)
j (β)

√
2g

∆x

]
α

(ν)
j , (21)

dΩ

dβ
= Ω


−K(~v) − i

√
g

2∆x

∑

j,ν

ζ
(ν)
j (β) (|Nj| − ReNj)


 .Some te
hni
al details regarding integration pro
edure,importan
e sampling, and 
hoi
e of µe(β) are given inAppendix A. Attention to these issues 
an speed up the
al
ulations and redu
e sampling errors by orders of mag-nitude. E. Evaluating observablesGiven S realizations of the variable sets ~v, using freshinitial samples and noises ζ(ν)

j (β) ea
h time, one gener-ates an estimate of the expe
tation value of an observable

Ô as follows:
E
[
Ô
]

=
Tr
[
Ôρ̂u

]

Tr [ρ̂u]
=

∫
G(~v)Tr

[
ÔΛ̂(~v)

]
d~v

∫
G(~v)Tr

[
Λ̂(~v)

]
d~v

=

〈
Tr
[
ÔΛ̂(~v)

]〉

S〈
Tr
[
Λ̂(~v)

]〉

S

=
Re〈F [Ô, ~v]〉

SRe 〈Ω〉S
, (22)where 〈· · · 〉S denotes a sto
hasti
 average over the sam-ples, and F is an appropriate fun
tion of the phase-spa
evariables ~v. The last line follows from properties of theoperator basis Λ̂, and be
ause the tra
e of ρ̂u and of ex-pe
tation values are real.The identities (13) 
an be used to readily evaluate Fsin
e Tr

[
Λ̂
]

= Ω. In parti
ular,
〈
Ψ̂†(xj)Ψ̂(xj)

〉
=

Re 〈(NjΩ)〉S
∆x Re 〈Ω〉S

, (23)
〈
Ψ̂†(xi)Ψ̂

†(xj)Ψ̂(xj)Ψ̂(xi)
〉

=
Re 〈(NiNjΩ)〉S
(∆x)2Re 〈Ω〉S

, (24)whi
h explains the relationship between Nj and the par-ti
le number at the j-th site. For the uniform system
onsidered here, it is e�
ient to average the quantitiesover the entire latti
e, so that e.g.
g(2)(r) =

L
〈∫

Ψ̂†(x)Ψ̂†(x+ r)Ψ̂(x+ r)Ψ̂(x) dx
〉

〈∫
Ψ̂†(x)Ψ̂(x) dx

〉2 . (25)Un
ertainty is estimated as follows: We separate the Srealizations into B bins, su
h that B ≫ 1 and S/B ≫ 1.One 
al
ulates an estimate for the expe
tation value ofan observable in ea
h bin independently (let us denote
Oi as the estimate obtained from the ith bin). The bestestimate for the expe
tation value of the observable isobviously 〈Oi〉B. The one-sigma un
ertainty in this es-timate is obtained from the Central Limit theorem andis

∆O =

√
〈O2〉B − 〈O〉2B

B . (26)IV. NEARLY IDEAL GAS REGIME[γ ≪ min{τ 2,
√

τ}℄We now present the perturbation theory results for thede
oherent regime of a 1D Bose gas [30℄, where both thedensity and phase �u
tuations are large and the lo
al pair
orrelation g(2)(0) is always 
lose to the result for non-intera
ting bosons, g(2)(0) = 2. Depending on the valueof the temperature parameter τ , we further distinguishtwo sub-regimes: de
oherent 
lassi
al (DC) regime for
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τ ≫ 1 and de
oherent quantum (DQ) regime for temper-atures well below quantum degenera
y, τ ≪ 1. Both 
anbe treated using perturbation theory with respe
t to the
oupling 
onstant g around the ideal Bose gas, for whi
hthe nonlo
al pair 
orrelation fun
tion has been studiedin Ref. [24℄. Here, we extend these results to a

ount forthe �rst-order perturbative terms.A. Perturbation theory in γThe 
orrelations of a 1D Bose gas are governed by thea
tion

S [Ψ∗Ψ] =

∫ β

0

dσ

∫
dr [Ψ∗∂σΨ −H(Ψ∗,Ψ)] , (27)written in terms of a spa
e and imaginary time dependent
-number �elds Ψ(x, σ) in the Feynman path integral for-malism. Here σ is the imaginary time and β = 1/kBTis the maximum, 
orresponding to the inverse tempera-ture. The Hamiltonian density H is obtained from (2) byrepla
ing the operators with the c-number �elds. Usinga
tion (27), the pair 
orrelation fun
tion is given by

g(2)(r) =
1

n2Z

∫
DΨ∗Ψ e−S[Ψ∗Ψ]Ψ∗(0)Ψ∗(r)Ψ(r)Ψ(0).(28)where Z =

∫
DΨ∗Ψ e−S[Ψ∗Ψ] is the partition fun
tion.In Eq. (28) and below, we use the notation that �eldswith imaginary time dependen
e omitted a
t at σ = 0,i.e. Ψ(r) ≡ Ψ(r, 0). Expanding the a
tion (27) in powersof g, we obtain up to the �rst order

g(2)(r) =g
(2)
ideal(r) −

g

2n2

∫ β

0

dσ

∫
dr′ 〈Ψ∗(r′, σ)Ψ∗(r′, σ)

× Ψ(r′, σ)Ψ(r′, σ)Ψ∗(0)Ψ∗(r)Ψ(r)Ψ(0)〉, (29)where g(2)
ideal(r) = 1 + G(r, 0−)G(−r, 0−)/n2 is the idealBose gas result following fromWi
k's theorem. Note thatsin
e the expansion above is formally in powers of g, the�nal result 
an always be expressed in powers of γ as

γ ∝ g. The average in Eq. (29) is evaluated using Wi
k'stheorem [56℄
∆g(2)(r) = g(2)(r) − g

(2)
ideal(r) = −2g

n2

∫ β

0

dσ

∫
dr′ (30)

×G(r′, σ)G(r − r′,−σ)G(r′ − r, σ)G(−r′,−σ),with the Green's fun
tion
G(r, σ) = −〈Ψ(0, 0)Ψ∗(r, σ)〉

=
1

βL

∑

k,n

eikr−i~ωnσ

i~ωn − ~2k2/2m+ µ
. (31)The ωn(β) are the Matsubara frequen
ies and the imagi-nary time σ runs between 0 and β. The Green's fun
tionis periodi
 in the 
ase of bosons and anti-periodi
 in the


ase of fermions. Thus it 
an be Fourier transformed with
ωn = 2πn/β (bosons) or ωn = π(2n + 1)/β (fermions).The dis
rete sum over k be
omes an integral in thermo-dynami
 limit.In terms of a Green's fun
tion Gk(σ) that is Fouriertransformed with respe
t to the spatial 
oordinates,
∆g(2)(r) 
an be brought to the form

∆g(2)(r) = −2g

n2

∫ β

0

dσ

∫
dk

2π
eikrΓ(k, σ)Γ(k,−σ), (32)where

Γ(k, σ) =
1

2π

∫
dp Gp+k(σ)Gp(−σ), (33)and

Gk(σ) =

{
−nk(β)e−σ(~2k2/2m−µ), σ < 0,

−[1 + nk(β)]e−σ(~2k2/2m−µ), σ > 0,
(34)with

nk(β) =
1

e(~2k2/2m−µ)β − 1
(35)being the standard bosoni
 o

upation numbers.B. De
oherent 
lassi
al regimeFor temperatures above quantum degenera
y, τ ≫ 1,the 
hemi
al potential is large and negative, so thebosoni
 o

upation numbers are small, nk(β) ≪ 1,and 
an be approximated by the Boltzmann distribu-tion, nk(β) ≃ e−(~2k2/2m−µ)β . A

ordingly, the fun
tion

Gk(σ) in Eq. (34) be
omes a Gaussian
Gk(σ) =

{
− exp[−(~2k2/2m− µ)(σ + β)], σ < 0,

− exp[−(~2k2/2m− µ)σ], σ > 0,(36)and Eq. (33) is integrated to yield
Γ(k, σ) = Γ(k,−σ) = ne−σ(β−σ)~2k2/2mβ . (37)Here the mean density at a given temperature and 
hem-i
al potential is determined from n = 1

2π

∫
dk Gk(0−) =√

m/(2π~2β) eβµ. Using Eq. (37), the 
orre
tion (32) tothe pair 
orrelation fun
tion is found as (see AppendixB)
∆g(2)(r) = −γ

√
2π

τ
erfc

(√
τn2r2

2

)
, (38)where erfc(x) is the 
omplimentary error fun
tion.Together with g(2)

ideal(r) = 1 + exp[−τn2r2/2] (τ ≫ 1),this gives the following result for the pair 
orrelationfun
tion in the DC regime (τ ≫ max{1, γ2}):
g(2)(r) = 1 + e−(r

√
2π/ΛT )2 −

√
2πγ2

τ
erfc

(
r
√

2π

ΛT

)
,(39)
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FIG. 1: Nonlo
al pair 
orrelation g(2)(r) in the nearly idealgas regime: (a) de
oherent 
lassi
al regime, τ ≫ max{1, γ2},Eq. (39), with r in units of the thermal de Broglie wavelength
ΛT =

p

4π/(τn2); (b) de
oherent quantum regime, √
γ ≪

τ ≪ 1, Eq. (45), with r in units of the phase 
oheren
elength lφ = 2/nτ .This is written in terms of the thermal de Broglie wave-length
ΛT =

√
2π~2

2mT
=

√
4π

τn2
, (40)a quantity that will appear repeatedly in what follows.At r = 0 we have g(2)(0) = 2 − γ

√
2π/τ in agreementwith Ref. [30℄. In the non-intera
ting limit (γ = 0) were
over the well-known result for the 
lassi
al ideal gas[57℄ 
hara
terized by Gaussian de
ay with a 
orrelationlength ΛT . For γ > 0 we observe [see Fig. 1(a)℄ theemergen
e of anomalous behavior, with a global maxi-mum g(2)(rmax) = g(2)(0) + 2γ2/τ at nonzero interpar-ti
le separation nrmax = 2γ/τ ≪ 1. This 
orrespondsto the emergen
e of antibun
hing, g(2)(0) < g(2)(rmax),due to repulsive intera
tions. As γ is in
reased further,there is a 
ontinuous transition from the DC regime tothe regime of high-temperature �fermionization� (see Se
.VIB), with g(2)(0) redu
ing further and the maximummoving to larger distan
es.

C. De
oherent quantum regimeFor temperatures below quantum degenera
y, with√
γ ≪ τ ≪ 1, only ωn = 0 
ontributes to the Green'sfun
tion

Gk(σ) = −T [~2k2/(2m) + |µ|]−1, (41)whi
h gives the relation between the density and the
hemi
al potential n = T
√
m/(2~2|µ|), µ = −|µ|. Per-forming the Fourier transform of Eq. (41) one obtains theone-parti
le density matrix for the ideal gas

g
(1)ideal(r) = 〈Ψ̂†(0)Ψ̂(r)〉/n = exp(−r/lφ), (42)whi
h 
hara
terizes the de
ay of phase 
oheren
e over alength s
ale given by

lφ =
~

2

2m|µ| =
2

nτ
, (43)and also determines the se
ond-order 
orrelation fun
tionfor the ideal gas

g
(2)ideal(r) = 1 + |g(1)ideal(r)|2 = 1 + e−2r/lφ . (44)The one-parti
le Greens fun
tion, Eq. (41), togetherwith Eq. (33) leads to Γ(k, σ) = 4n2lφ/(k

2l2φ+4). Insert-ing it into Eq. (32) we obtain (see Appendix B) 
orre
-tions to g(2)ideal(r), leading to the following result for thepair 
orrelation fun
tion in the DQ regime
g(2)(r) = 1 +

[
1 − 4γ

τ2

(
1 +

2r

lφ

)]
e−2r/lφ . (45)This has the maximum value g(2)(0) = 2 − 4γ/τ2, inagreement with the result of Ref. [30℄. For γ = 0 the
orrelations de
ay exponentially with the 
hara
teristi

orrelation length of half a phase 
oheren
e length de-s
ribing the long-wavelength phase �u
tuations.An interesting feature in this regime is the apparentpredi
tion of weak antibun
hing at a distan
e as seen inFig. 1 (b), with g(2)(rmin) < 1. The strongest antibun
h-ing in expression (45) o

urs at nrmin = τ/4γ ≫ 1, or

rmin = lφτ
2/4γ ≫ lφ, and dips below unity by an amount

(4γ/τ2) exp(−τ2/4γ) ≪ 1. However, there is ambiguityregarding its existen
e: One should note that the dipbelow unity is very small in the region of un
ontestedvalidity of Eq. (45) where τ/√γ ≫ 1, and only be
omesappre
iable around τ . 2
√
γ, whi
h is in the 
rossoverregion into the quasi-
ondensate (see Se
. V). Whethersu
h anomalous antibun
hing survives higher order 
or-re
tions in the small parameter√γ/τ remains to be seen.Our numeri
al 
al
ulations to date have not been able toa

ess a regime of small enough √

γ/τ to 
on�rm or denyits existen
e.The numeri
al examples shown in Fig. 2 are for√
γ/τ ≃ 0.24 and √

γ/τ ≃ 0.77, and show a thermalbun
hing peak with a typi
al Gaussian shape at theshortest range of ΛT , with ΛT ≪ lφ. At longer ranges,phase 
oheren
e dominates this and leads to exponentialde
ay on the length s
ale lφ, in agreement with Eq. (45).
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γ=0.001FIG. 2: Approa
h of the pair 
orrelation fun
tion to theideal gas solution (shown dashed) in the de
oherent quan-tum regime at τ = 0.1, with r in units of the thermal deBroglie wavelength, ΛT =
p

4π/τn2. The thi
kness of thesolid lines (numeri
al results) 
omes from the superimposed
1σ error bars whi
h are below resolution.D. Quantum/
lassi
al transitionThe transition from the quantum to the 
lassi
al de
o-herent gas was investigated using the gauge-P numeri
almethod. The behavior is shown in Figs. 2�5.With rising temperature, still below degenera
y, one�rst �nds a rounding-o� of the exponential behavior atshort ranges of a fra
tion of ΛT , as seen in Fig. 2. There isalso a global lowering of g(2)(r) with γ. It should be notedthat the parameters for the numeri
al results shown inFig. 2 are not deep in the regime where (45) applies a
-
urately, and the lowering of the tails with γ is weakerhere, than predi
ted by that limiting expression.Considering variation with T , as temperature ap-proa
hes, and then ex
eeds Td, Gaussian thermal-likebehavior appears �rst at short ranges, progressively tak-ing over an ever larger part of g(2)(r) as temperature israised. This is seen in Fig. 3. The exponential tails 
anpersist at ranges r & ΛT /

√
2π well into the high tem-perature regime when γ is small, as seen in Fig. 3(b) for

τ = 3 and even τ = 10.There are three s
enarios that 
an typi
ally be 
on-trolled in ultra
old gas experiments: (i) varying the ab-solute temperature 
hanges τ but not γ, as in Fig. 3; (ii)varying the 
oupling strength via a Feshba
h resonan
eor varying the width of the trapping potential a�e
ts γbut not τ , as 
onsidered in Se
tion VII and Fig. 2; and(iii) varying the linear density gives 
hanges in both γand τ , while keeping the quantity γ/√τ 
onstant. No-tably, this is the parameter that appears in the analyti
expressions for both de
oherent regimes, Eqs. (45) and(39).Figure 4 shows the behavior under s
enario (iii), wherein
reasing τ 
orresponds to de
reasing density of thegas. As expe
ted, g(2)(0) tends to a 
onstant value
g(2)(0) = 2− γ

√
2π/τ 6= 2 with τ → ∞ predi
ted by Eq.(39). Interestingly, the 
rossover is quite broad under

0 1 2 3 4
1

1.2

1.4

1.6

1.8

2

r [Λ
T
]

g(2
) (r

)

(a)
τ=10

τ=1

τ=0.1

γ=0.001

τ=∞

0 1 2 3 4
−6

−4

−2

0

r [Λ
T
]

f=
∂[

lo
g(

g(2
) (r

)−
1)

 ]/
∂ 

r 
[Λ

T−
1 ]

(b)

γ=0.001
τ=∞

τ=3

τ=1

τ=0.1

τ=10

FIG. 3: Exa
t behavior of g(2)(r), with r in units of ΛT , in thenearly ideal gas regime with γ = 0.001 and varying τ aroundthe quantum/
lassi
al 
rossover. In panel (b), the derivative
f = ∂[ln(g(2)(r) − 1)]/∂r shows a 
lear distin
tion betweenexponential de
ay (when f is 
onstant) and Gaussian thermal-like behavior when f is linear. The triple lines indi
ate thenumeri
al 
urves together with 1σ error bars whi
h are mostlybelow resolution.
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FIG. 4: Approa
h to the 
lassi
al de
oherent gas solution(shown dashed), Eq. (39), for �nite but small intera
tionwith γ/
√

τ = 0.03, whi
h 
orresponds to a variation of densitywhile keeping the 
oupling g and T 
onstant. Here g(2)(0) →
1.925 in the τ → ∞ or equivalently n → 0 limit. Triplesolid lines are the numeri
al results, with 1σ error bars belowresolution.
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urves for g(2)(r) des
end.
hanging density, with departures from the de
oherent
lassi
al result still visible at τ ∼ 100.Finally, in the middle of the 
rossover region at τ = 1,
γ ≪ 1, there is the smooth and quite broad transitionfrom low values of γ to γ ∼ O(1) that is shown in Fig. 5.The situation of a short-range Gaussian with standarddeviation ∼ ΛT /2

√
π and exponential tails with lengths
ale lφ/2 that was seen in Fig. 3 morphs into an anoma-lous form with a lo
al maximum that is similar to thehigh temperature fermionization behavior des
ribed be-low in Se
tions VI and VII.V. WEAKLY INTERACTINGQUASI-CONDENSATE REGIME [τ 2 ≪ γ ≪ 1℄In the regime of weak intera
tions and low tempera-ture (or Gross-Pitaevskii regime) with γ ≪ 1 we rely onthe fa
t that the equilibrium state of the gas is that of aquasi-
ondensate [58, 59℄. In this regime the density �u
-tuations are suppressed while the phase still �u
tuates.The pair 
orrelation fun
tion is 
lose to one and the de-viations 
an be 
al
ulated using the Bogoliubov theory.In this approa
h, the �eld operator Ψ̂ is represented as asum of the (c-number) ma
ros
opi
 
omponent Ψ0, 
on-taining ex
itations with momenta k . k0 ≪ ξ−1 (where

ξ = ~/
√
mgn is the healing length) and a small opera-tor 
omponent δΨ̂ des
ribing ex
itations with larger mo-menta, Ψ̂ = Ψ0 + δΨ̂. The momentum k0 is 
hosen su
hthat most of the parti
les are 
ontained in Ψ0, however,its details do not enter into the lowest order 
orre
tionsto g(2)(r), whi
h are O(δΨ̂)2. Using Wi
k's theorem, andthe property of the thermal density matrix that 〈δΨ̂〉 = 0,the pair 
orrelation fun
tion is then redu
ed to

g(2)(r) ≃ 1 +
2

n

(Re〈δΨ̂†(r)δΨ̂(0)〉 + Re〈δΨ̂(r)δΨ̂(0)〉
)
.(46)

The normal and anomalous averages 〈δψ̂†(r)δψ̂(0)〉 and
〈δψ̂(r)δψ̂(0)〉 are 
al
ulated using the Bogoliubov trans-formation

δψ̂(r) =
1

L

∑
k

(
ukâke

ikx − vkâ
†
ke

−ikx
)
, (47)where L is the length of the quantization box, âk and â†kare the annihilation and 
reation operators of elementaryex
itations, and (uk, vk) are the expansion 
oe�
ientsgiven by

uk =
ǫk + Ek

2
√
ǫkEk

, vk =
ǫk − Ek

2
√
ǫkEk

, (48)and satisfying u2
k − v2

k = 1. Here ǫk =
√
Ek(Ek + 2gn) isthe Bogoliubov ex
itation energy, Ek = ~

2k2/(2m), andwe note that the following useful relationships between
Ek and ǫk hold:

Ek =
√
ǫ2k + (gn)2 − gn, (49)

Ek

ǫk
=

[
k2

k2 + (2/ξ)2

]1/2

, (50)where ξ = ~/
√
mgn is the healing length. The equilib-rium o

upation numbers of the Bogoliubov ex
itationsare given by ñk = 〈â†kâk〉 = [eǫk/T − 1]−1.Applying the Bogoliubov transformation to the normaland anomalous averages in Eq. (46) gives

g(2)(r) = 1 +
1

πn

+∞∫

−∞

dk cos(kr)

×
[
(uk − vk)2ñk + vk(vk − uk)

]
. (51)Using next Eq. (48) for the 
oe�
ients uk and vk weobtain the following result for the pair 
orrelation fun
-tion

g(2)(r) = 1 +
1

2πn

+∞∫

−∞

dk

[
Ek

ǫk
(2ñk + 1) − 1

]
cos(kr).(52)For 
onvenien
e, we split the g(2)(r)-fun
tion into twoparts 
orresponding to the 
ontributions of thermal andva
uum �u
tuations,

g(2)(r) = 1 +G0(r) +GT (r), (53)with
G0(r) =

1

2πn

+∞∫

−∞

dk

[
Ek

ǫk
− 1

]
cos(kr), (54)and

GT (r) =
1

πn

+∞∫

−∞

dk
Ek

ǫk
ñk cos(kr). (55)



10We �rst evaluate the va
uum 
ontribution G0(r), Eq.(54). As shown in Appendix C, the integral in (54) 
anbe obtained exa
tly in terms of spe
ial fun
tions, giving
G0(r) = −√

γ [L−1(2
√
γnr) − I1(2

√
γnr)] , (56)where L−1(x) is the modi�ed Struve fun
tion and I1(x)is a Bessel fun
tion. The 
orrelation length s
ale here isset by the healing length ξ = ~/

√
mgn = 1/

√
γn.A. Quasi-
ondensate at low temperaturesAt very low temperatures when the ex
itations aredominated by va
uum �u
tuations, whereas the thermal�u
tuations are a small 
orre
tion, the GT (r)-term is 
al-
ulated as follows. First, we substitute the expli
it ex-pression for ñk into Eq. (55), giving

GT (r) =
1

πn

+∞∫

−∞

dk
Ek

ǫk

1

eǫk/T − 1
cos(kr). (57)As shown in Appendix C, for T ≪ gn (or τ ≪ γ) theintegral 
an be simpli�ed and gives

GT (r) ≃ π

2
√
γ

[
1

n2π2r2
− τ2

4γ
cosech2

(
πτnr

2
√
γ

)]
. (58)Combining Eqs. (53), (56) and (58) we obtain thefollowing �nal result for this regime (τ ≪ γ ≪ 1):

g(2)(r) = 1 −√
γ [L−1(2r/ξ) − I1(2r/ξ)]

+

√
γξ2

2πr2
− πτ2

8γ3/2
sinh−2

(
πτr

2γξ

)
. (59)In the limit of τ → 0, the terms in the se
ond lineof Eq. (59) 
an
el ea
h other and the large distan
e(r ≫ ξ) asymptoti
s of the di�eren
e of spe
ial fun
tions

L−1(x) − I1(x) ∼ 1/8πx2 ensures the expe
ted inversesquare de
ay of 
orrelations[9℄. At small but �nite tem-peratures, the same large-distan
e asymptoti
s exa
tly
an
els the inverse square behavior in the se
ond line ofEq. (59) leaving only the exponential de
ay
g(2)(r) −→

r→∞
1 − πτ2

8γ3/2
e−πτr/γξ (60)to the un
orrelated value of g(2)(r) = 1. This is again infull agreement with the Luttinger liquid theory [9℄. Wenote that even at T = 0, os
illating terms are absent, in
ontrast to the strongly intera
ting regime of Se
. VIC,Eq. (71). The limit r → 0 in Eq. (59) reprodu
es theresult of Eq. (9) of Ref. [30℄, g(2)(0) = 1 − 2

√
γ/π +

πτ2/(24γ3/2). In Fig. 6(a) we plot Eq. (59) for di�erentvalues of the intera
tion parameter γ, and we note thatthe �nite temperature 
orre
tion term is negligible here.

0 0.5 1 1.5 2 2.5
0.7

0.8

0.9

1

r [ξ=1/nγ1/2]

g(2
) (r

)

(a)

 

 

γ=10-1, τ=10-2

γ=10-2, τ=10-3

0 0.2 0.4 0.6 0.8 1
0.98

1

1.02

1.04

1.06

1.08

r [ξ=1/nγ1/2]
g(2

) (r
)

(b)

 

 

γ=10-4, τ=10-3

γ=10-5, τ=10-4

FIG. 6: Nonlo
al pair 
orrelation g(2)(r) in the weakly in-tera
ting regime, with r in units of the healing length ξ =
1/

√
γn: (a) low-temperature weekly intera
ting gas at τ ≪

γ ≪ 1, Eq. (59); (b) weakly intera
ting gas at γ ≪ τ ≪ √
γ,Eq. (62).B. Thermally ex
ited quasi-
ondensateIn the opposite limit, dominated by thermal ratherthan va
uum �u
tuations and 
orresponding to γ ≪ τ ≪√

γ, the thermal part of the pair 
orrelation fun
tion is
al
ulated as follows. We �rst note that large thermal�u
tuations 
orrespond to ñk ≫ 1, whi
h in turn re-quires ǫk/T ≪ 1. Thus, we repla
e ñk in the integral(55) by ñk = [exp(ǫk/T ) − 1]−1 ≃ T/ǫk ≫ 1. Withthis substitution, the integral for GT (r) is dominated bythe free-parti
le (quadrati
 in k) part of the Bogoliubovspe
trum and the 
al
ulations in Appendix C yield
GT (r) =

τ

2
√
γ
e−2

√
γnr. (61)This result is valid for r/ξ . 1. For r/ξ ≫ 1 the main
ontribution to the integral in Eq. (55) 
omes from thephonon (linear in k) part of the Bogoliubov spe
trum andone re
overs the behavior given by Eq. (60).Combining Eqs. (53), (56) and (61) we obtain the fol-lowing �nal result for this regime (γ ≪ τ ≪ √

γ and
r . ξ):

g(2)(r) = 1 +
τ

2
√
γ
e−2r/ξ

−√
γ [L−1(2r/ξ) − I1(2r/ξ)] . (62)



11The last two terms are due to va
uum �u
tuations andare a negligible 
orre
tion here, so the leading term givesan exponential de
ay of 
orrelations [see Fig. 6(b)℄ witha 
hara
teristi
 
orrelation length given by the healinglength ξ = 1/
√
γn. The peak value at r = 0 is g(2)(0) =

1 + τ/(2
√
γ), in agreement with Ref. [30℄.VI. STRONGLY INTERACTING REGIME[γ ≫ max{1,

√
τ}℄A. Perturbation theory in 1/γBy mapping the system onto that of a weakly attra
-tive 1D fermion gas [60℄ one 
an perform perturbationtheory in 1/γ ≪ 1. The formalism is the same as in Se
.IVA, ex
ept that Ψ is now a fermioni
 �eld and the inter-a
tion term in the Hamiltonian (2) has to be modi�ed todes
ribe e�e
tive attra
tive intera
tion between fermionswith matrix elements (in k-spa
e) Vk = −2~

2k2/(mnγ)[60℄. Then
g(2)(r) = g(2)

γ=∞(r) + ∆g(2)(r)with g(2)
γ=∞(r) = 1−e−n2τr2/2. The �rst order 
orre
tionsto g(2)(r) are given by the Hartree-Fo
k approximationas a sum of the dire
t and ex
hange 
ontributions

∆g
(2)
d (r) =

∫ β

0

dσ

∫
dk

2π
VkΓ(k, σ, r = 0)Γ(−k, σ, r = 0)eikr,(63)

∆g(2)
e (r) = −

∫ β

0

dσ

∫
dk

2π
VkΓ(k, σ, r)Γ(−k, σ,−r)eikr ,(64)where

Γ(k, σ, r) =

∫
dp Gp+k(σ)Gp(−σ)eipr/2π, (65)in terms of the Green's fun
tion Gk(σ) for free fermions.B. Regime of high-temperature �fermionization�We pro
eed with evaluation in the regime of high-temperature �fermionization� at temperatures well abovequantum degenera
y, τ ≫ 1. In this regime, we usethe Maxwell-Boltzmann distribution of quasi-momentaas the unperturbed state. In the temperature interval

1 ≪ τ ≪ γ2, the 
hara
teristi
 distan
e related to the in-tera
tion between the parti
les � the 1D s
attering length
a1D = ~

2/mg ≃ l2⊥/a ∼ 1/γn � is mu
h smaller than thethermal de Broglie wavelength ΛT , and the small pertur-bation parameter is a1D/ΛT ≪ 1 [30℄.>From the same formalism as in Se
. IVA, the freefermion Green's fun
tion is now given by
Gk(σ) =

{
exp[(β + σ)(µ − ~

2k2/2m)], −β < σ < 0,
− exp[µσ − σ~

2k2/2m], 0 < σ < β,(66)

so the integral for Γ(k, σ, r), Eq. (65), gives
Γ(k, σ, r) = −ne−σ(β−σ)~2k2/2mβe−mr2/(2~

2β)e−ikrσ/β .(67)Substituting Eq. (67) into Eqs. (63) and (64) we obtain(see Appendix D)
∆g

(2)
d (r) =

2τn|r|
γ

e−n2τr2/2 − 4

nγ
δ(r), (68)

∆g(2)
e =

4

nγ
δ(r), (69)The only e�e
t of the ex
hange 
ontribution ∆g

(2)
e is to
an
el the delta-fun
tion in the dire
t 
ontribution. Thisleaves us with the following result for the pair 
orrelationfun
tion in the regime of high-temperature fermioniza-tion (1 ≪ τ ≪ γ2):

g(2)(r) = 1 −
[
1 − 4

√
πτ

γ2

(
r

ΛT

)]
e−(r

√
2π/ΛT )2 . (70)In the limit r → 0 this leads to perfe
t antibun
h-ing, g(2)(0) = 0, while the small �nite 
orre
tions (asin Ref. [30℄, g(2)(0) = 2τ/γ2) are reprodu
ed at order

γ−2. The 
orrelation length asso
iated with the Gaus-sian de
ay of 
orrelations in Eq. (70) is given by ther-mal de Broglie wavelength ΛT =
√

4π/(τn2). For notvery large γ, the 
orrelations do not de
ay in a sim-ple way, but instead show an anomalous, non-monotoni
behavior with a global maximum at at rmax ≃ γ/2τn.This originates from the e�e
tive Pauli-like blo
king atshort range and thermal bun
hing [g(2)(r) > 1℄ at longrange. As γ is in
reased the position of the maximumdiverges and its value approa
hes 1 in a non-analyti
alway g(2)(rmax) ≃ 1 + (4τ/γ2) exp(−γ2/8τ).Figure 7(a) shows a plot of Eq. (70) for various ra-tios of γ2/τ . For a well-pronoun
ed global maximum,moderate values of γ2/τ are required (su
h as γ2/τ ≃ 5,with τ = 8, γ = 6), and these lie near the boundaryof validity (γ2/τ ≫ 1) for our perturbative result in thehigh-temperature fermionization regime. Exa
t numeri-
al 
al
ulations des
ribed in Ref. [34℄, and in more detailbelow in Se
. VII do, however, show qualitatively similarglobal maxima.C. Zero- and low-temperature (Tonks-Girardeau)regimeAt T = 0 the pro
edure is straightforward [40℄ andyields the known [8, 40℄ result
g
(2)
T=0(r) = 1 − sin2(ζ)

ζ2
− 4

γ

sin2(ζ)

ζ2
− 2π

γ

∂

∂ζ

sin2(ζ)

ζ2

+
2

γ

∂

∂ζ

[
sin(ζ)

ζ

∫ 1

−1

dt sin(ζt) ln
1 + t

1 − t

]
, (71)
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FIG. 7: Nonlo
al pair 
orrelation g(2)(r) as a fun
tion of therelative distan
e r in the strongly intera
ting regime, γ ≫ 1:(a) regime of high-temperature �fermionization�, 1 ≪ τ ≪ γ2,Eq. (70), with r in units of the thermal de Broglie wavelength
ΛT =

p

4π/(τn2); (b) low temperature Tonks-Girardeauregime, Eq. (71), for τ = 0.01, with r in units of mean in-terparti
le separation 1/nwhere ζ ≡ πnr. The last term here diverges logarithmi-
ally with ζ and 
an be regarded as a �rst order pertur-bation 
orre
tion to the fermioni
 inverse square powerlaw. A

ordingly, Eq. (71) is valid for ζ ≪ exp(γ).At temperatures well below quantum degenera
y, τ ≪
1, �nite temperature 
orre
tions to Eq. (71) are obtainedusing a Sommerfeld expansion around the zero temper-ature Fermi-Dira
 distribution for the quasi-momenta.For rn ≪ τ−1 this gives an additional 
ontribution of
τ2 sin2(πnr)/12π2 to the right hand side of Eq. (71),whi
h is negligible 
ompared to the T = 0 result as τ ≪ 1.At r = 0, Eq. (71) gives perfe
t antibun
hing g(2)(0) = 0,whi
h 
orresponds to a fully �fermionized� 1D Bose gas,where the strong inter-atomi
 repulsion mimi
s the Pauliex
lusion prin
iple for intrinsi
 fermions. By extendingthe perturbation theory to in
lude terms of order γ−2 we
an reprodu
e the known result for the lo
al pair 
orre-lation at zero temperature g(2)(0) = 4π2/3γ2 [29, 30℄.In Fig. 7(b) we plot the fun
tion g(2)(r), Eq. (71), forvarious γ. A

ording to the physi
al interpretation of thepair 
orrelation fun
tion g(2)(r), its os
illatory stru
ture,and hen
e the existen
e of lo
al maxima and minima at
ertain �nite values of r, implies that there exist moreand less likely separations between the pairs of parti
les
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τ=104

FIG. 8: Behavior on the verge of the high-T fermionizationregime for γ2/τ = 4. The dashed line is Eq. (70).in the gas. This 
an be interpreted as a quasi-
rystallineorder (with a period of ∼ 1/n) in the two-parti
le se
torof the many-body wave fun
tion even though the densityof the gas is uniform.The os
illatory behavior of the pair 
orrelation in thisstrongly intera
ting regime is similar to Friedel os
illa-tions in the density pro�le of a 1D intera
ting ele
trongas with an impurity [61℄. We also mention that ourderivation of Eq. (71) is equally valid for strong attra
tiveintera
tions, i.e., when γ < 0 and |γ| ≫ 1, and thereforeit des
ribes the pair 
orrelations in a metastable stateknown as super-Tonks gas [62℄.D. Numeri
al resultsNumeri
al 
al
ulations with the gauge-P method areable to rea
h only the low-γ (or, equivalently, high τ)edge of the high-temperature fermionization regime, how-ever a 
omparison with Eq. (70) is instru
tive. In Fig. 8we see that the length s
ale on whi
h antibun
hing o

ursis still qualitatively given by Eq. (70) while any dis
rep-an
ies are of the same size as at r = 0. This is a
tually ageneral feature in all the parameter regimes explored bythe numeri
s. Overall, the dis
repan
y between the 1/γperturbation expansions (39), (45), (70), and the exa
tbehavior of g(2)(r) at nonzero r is roughly the same as at
r = 0. Sin
e a 
al
ulation of g(2)(0) [30℄ from the exa
tsolution of the Yang-Yang integral equations [7℄ is usuallymore straightforward to evaluate than the full sto
hasti

al
ulation of g(2)(r), it 
an serve as a useful guide towhether a numeri
al 
al
ulation is warranted or not.VII. CLASSICAL/FERMIONIZATIONTRANSITION AND CORRELATION MAXIMAFigure 9 shows the behavior in the transition regionbetween the de
oherent 
lassi
al and high temperaturefermionization regimes (found with the gauge-P numeri-
al method), when one is far above the degenera
y tem-
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oherent 
lassi
al to high tempera-ture fermionization regimes at high temperature.
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FIG. 10: Situation when T > Td and the lo
al se
ond-order
oheren
e is apparently unity. All 
urves plotted 
orrespondto parameter values for whi
h g(2)(0) = 1 in the 
rossoverregion between the 
lassi
al de
oherent and high-temperaturefermionized gas. The dots (rather than triple lines here, for
larity) indi
ate 1σ error bars.perature Td. One sees the appearan
e of a maximumin the 
orrelations at �nite range as the transition is ap-proa
hed. As pointed out in Se
. VIB, this arises from aninterplay of thermal bun
hing and repulsive antibun
hingon 
omparable s
ales. A 
omparison of relevant lengths
ales indi
ates that the τ ≈ γ2 here 
orresponds to
ΛT ∼ a1D, where a1D is the �1D s
attering length� thatdes
ribes the asymptoti
 behavior of the wave fun
tionin two-body s
attering.An interesting behavior o

urs in the 
rossover regimewhen γ2/τ ≃ 0.1−0.4. Here we 
an have g(2)(0) = 1 justlike in the quasi-
ondensate or �Gross-Pitaevskii� regime,indi
ating lo
al se
ond-order 
oheren
e. However, unlikethe quasi-
ondensate regime, the non-lo
al 
orrelationson length s
ales of ∼ ΛT are not 
oherent, and in fa
t ap-pre
iably bun
hed. This is shown in Fig. 10. It is a symp-tom of the broader 
orrelation maximum phenomenon.The height of this maximum for more general parame-ters is shown in Fig. 11 as a fun
tion of both g(2)(0) and
γ2/τ . One sees that this behavior is well pronoun
ed inthe 
rossover between high temperature fermionizationand de
oherent 
lassi
al regimes, peaking when g(2)(0) ≃
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FIG. 11: Heights of the anomalous peak of g(2)(r) thato

urs at nonzero rmax, for di�erent values of τ , as fun
-tions of g(2)(0) � (a) and γ2/τ � (b). The height is takento be h ≡ g(2)(rmax) − g(2)(0) at high temperatures when
g(2)(0) > 1, and h ≡ g(2)(rmax) − 1 when g(2)(0) < 1. Thetwo regimes are separated by the dot-dashed verti
al line in(a). Analyti
 results from Eq. (39) in the de
oherent quantumregime are shown as a dashed line. Dots (rather than triplelines here, for 
larity) indi
ate 1σ error bars on the numeri
alresults.
1 (a situation shown also in Fig. 10), or, equivalently,
γ2 ∼ 0.3τ . As one rea
hes degenerate temperatures,the maximum peak height is redu
ed, and presumablydisappears 
ompletely by the time the quasi-
ondensateregime is rea
hed by going to smaller values of γ. Al-though we were unable to numeri
ally rea
h the relevantquasi-
ondensate region for τ < 1, a more re�ned numer-i
al setup that improves the importan
e sampling or the
µ(T ) traje
tory des
ribed in Appendix A may allow this.VIII. NUMERICAL LIMITATIONSFigure 12 shows the regime that was a

essible usingthe relatively straightforward numeri
al s
heme that wasemployed here, and detailed in Appendix A. (It is theregion above and to the left of the asterisks). In par-ti
ular, one sees that of the physi
al regimes des
ribedin previous se
tions, the de
oherent 
lassi
al, as well asparts of the de
oherent quantum and high-temperature
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FIG. 12: Regimes and their numeri
al a

essibility: the as-terisks indi
ate the lowest τ and highest γ rea
hable usingthe gauge-P method as des
ribed in Appendix A. The darkdashed line indi
ates the point at whi
h g(2)(0) = 1.fermionization regimes were a

essible, while the quasi-
ondensate and Tonks-Girardeau regimes were not.The prin
ipal di�
ulty that is en
ountered, generallyspeaking, is the growth of statisti
al noise with in
reasing
β, i.e. de
reasing τ , whi
h eventually prevents one fromobtaining values of g(2)(r) with a useful resolution. Thisarises in two di�erent ways depending on the region ofinterest.Firstly, in the strongly intera
ting (fermionized) re-gion, one needs a 
orrespondingly large 
oupling 
onstant
g ∝ γ whi
h leads to a relative in
rease of the impor-tan
e of the noise terms of the dα(ν)

j /dβ equations in(21). This leads to large statisti
al un
ertainty in the α(ν)
jthemselves or to the weight Ω whose evolution dependson them. The upshot is that the inverse temperature

β at whi
h the noise be
omes unmanageable be
omessmaller and smaller as γ grows. Te
hni
al improvementsare unlikely to make a large dent in the problem in thefermionized regime be
ause it ultimately stems from thefa
t that 
oherent states are no longer a good basis overwhi
h to expand the density matrix. They are not 
loseto the preferred eigenstates of the system. Instead, one
an think of 
onstru
ting a phase-spa
e distribution thatuses a non-
oherent-state basis, for example, a Gaussianbasis [63℄. This general approa
h - together with symme-try proje
tions - has been utilized in su

essfully 
al
u-lating ground state properties of the strongly 
orrelatedfermioni
 Hubbard model [64℄.Se
ondly, in the low γ and τ region, one has a di�erentunderlying sour
e of statisti
al un
ertainty. The longestrelevant length here is either the 
oheren
e length lφ orthe healing length ξ, and for 
orre
t 
al
ulations in thelarge uniform gas one must simulate a system of a totalsize appre
iably greater than these lengths. This in turn

imposes a minimal total parti
le number
N & max [O(4/τ),O(2/

√
γ)] . (72)The thermal initial 
onditions of Eq. (12) lead to varia-tion in N among traje
tories, and sin
e the Gibbs fa
tor

K (see Eq. (16) ) grows linearly or faster with N , onealso obtains a growing variation of K(~v). This enters the
dΩ of Eq. (21) and leads to a spread of the weights Ω(t)that grows rapidly (note the exponential growth of Ω)with in
reasing N . However be
ause of the long lengths
ales, via (72), largeN is needed to make a

urate 
al
u-lations when τ or γ are mu
h smaller than one. The endresult is domination of the whole 
al
ulation by one or afew traje
tories with the highest weight, for all realisti
ensemble sizes S.As a 
orollary, signi�
antly lower temperatures, evendown to the quasi-
ondensate regime, are a

essible atsmall γ if one is prepared to sa
ri�
e the assumption ofan in�nite-sized gas and 
onsider periodi
 boundary 
on-ditions on some length L that is smaller than or 
ompara-ble to the 
oheren
e/healing lengths. This approa
h wastaken, e.g., in [65℄. This stops the rise of overall parti
lenumber, hen
e one has a mu
h smaller spread of Gibbsfa
tors Ω among the traje
tories, and in the �nal analysis� redu
ed statisti
al un
ertainty. Su
h 
al
ulations areno longer as general, though, and are not 
onsidered inthis paper.We would like to point out that the limitation inthis regime may be over
ome or alleviated if the rathersimplisti
 importan
e sampling used in the numeri
almethod were to be improved. The leading 
andidate is animproved importan
e sampling algorithm, possibly usinga Metropolis sampling pro
edure, as outlined at the endof Appendix A 3.Finally, it is also possible that a more re�ned 
hoi
e of
µ(β) (
onsidered in Appendix A 5) may lead to somewhatimproved 
overage of the parameter spa
e in general.IX. OVERVIEW AND CONCLUSIONIn 
on
lusion, we have surveyed the behavior of thespatial two-parti
le 
orrelation fun
tion in a repulsiveuniform 1D Bose gas. We have analyzed numeri
ally thepair 
orrelation fun
tions for all relevant length s
ales,with the ex
eption of several low-temperature transitionregions (see Fig. 12 below the asterisks) whi
h were nota

essible by the numeri
al s
heme we employed. Ap-proximate analyti
 results and methods have been pre-sented for parameters deep within all the major physi
alregimes. The key features of this behavior in
lude:

• Thermal bun
hing with g(2)(0) ≃ 2 and Gaussiandrop-o� at ranges ΛT in the 
lassi
al de
oherentregime.
• Exponential drop-o� of 
orrelations from g(2)(0) ≃

2 at ranges lφ in the de
oherent quantum regime,



15along with Gaussian-like rounding at shorter ranges
∼ ΛT .

• Suppressed density �u
tuations with g(2)(0) ≃ 1and exponential de
ay at ranges of the healinglength ξ in the quasi-
ondensate regime.
• Antibun
hing with g(2)(0) < 1 and Gaussian de
ayat ranges ΛT in the high-temperature fermioniza-tion regime.
• Antibun
hing with g(2)(0) < 1 and os
illatory de-
ay on ranges of the mean interparti
le separation

1/n in the Tonks-Girardeau regime.
• Bun
hing at a range of ∼ 0.3ΛT in the 
rossoverbetween 
lassi
al and fermionized regimes around
γ2 ∼ 0.3τ .Let us 
onsider the regimes in turn, starting fromthe 
lassi
al de
oherent gas, then going anti-
lo
kwisein Fig. 12. The 
lassi
al de
oherent gas is well approxi-mated by Boltzmann statisti
s and is dominated by ther-mal �u
tuations. The pair 
orrelation fun
tion showstypi
al thermal bun
hing and a Gaussian de
ay, with the
orrelation length given by the thermal de Broglie wave-length ΛT .As one redu
es the temperature, the gas be
omes de-generate, the thermal de Broglie wavelength be
omeslarger than the mean interparti
le separation and losesits relevan
e. The 
orrelation length in
reases and oneenters into the de
oherent quantum regime. Here, thedominant behavior of the gas is the ideal Bose gas bun
h-ing, g(2)(0) ≃ 2, with large density �u
tuations that de-
ay exponentially on the length s
ale given by the phase
oheren
e length lφ. Notably, the exponential behaviourstarts to appear well above degenera
y �rst in the long-distan
e tails, being visible even around τ ∼ 10 as inFig. 3.Redu
ing the temperature even further, while still at

γ ≪ 1, one enters into the quasi-
ondensate regime, inwhi
h the density �u
tuations be
ome suppressed and
g(2)(0) ≃ 1. In the hotter sub-regime dominated by ther-mal �u
tuations, the pair 
orrelation shows weak bun
h-ing, g(2)(0) > 1, while in the 
older sub-regime domi-nated by quantum �u
tuations one has weak antibun
h-ing, g(2)(0) < 1. In both 
ases the pair 
orrelation de
ayson the length s
ale of the healing length ξ.We now move to the right on Fig. 12, into the regimeof strong intera
tions, while staying at temperatures wellbelow quantum degenera
y, τ ≪ 1. This is the Tonks-Girardeau regime, in whi
h the density �u
tuations getfurther suppressed due to strong interparti
le repulsion.Antibun
hing in
reases and one approa
hes g(2)(0) = 0due to fermionization. The only relevant length s
alehere is the mean interparti
le separation, 1/n, and thepair 
orrelation fun
tion de
ays on this length s
ale withsome os
illations.We next move up on Fig. 12, to higher temperatures,and enter the regime of high-temperature fermionization.

At short range, the pair 
orrelation here is still anti-bun
hed due to strong interparti
le repulsion, however,thermal e�e
ts start to show up on the length s
ale of ΛT .As a result of these 
ompeting e�e
ts, the nonlo
al pair
orrelation develops an anomalous peak, 
orrespondingto bun
hing at-a-distan
e, with g(2)(rmax) > 1, begin-ning around τ ∼ γ2/2.As we in
rease the temperature even further, the ther-mal e�e
ts start to dominate over intera
tions and theantibun
hing dip gradually disappears. At temperatures
τ ∼ γ2 we observe a 
rossover ba
k to the 
lassi
al de
o-herent regime.Our results provide new insights into the fundamentalunderstanding of the 1D Bose gas model through many-body 
orrelations. Cal
ulation of these non-lo
al 
orrela-tions is not a

essible yet through the exa
t Bethe ansatzsolutions. We expe
t that our theoreti
al predi
tions willserve as guidelines for future experiments aimed at themeasurement of nonlo
al pair 
orrelations in quasi-1DBose gases. A
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h unit No. 8626 of CNRS and Université Paris-Sud.APPENDIX A: TECHNICAL APPENDIX FORTHE GAUGE-P CALCULATIONS1. Instability of the sto
hasti
 equations and itsremoval with a sto
hasti
 gaugeA straightforward appli
ation of the ungauged di�u-sion Eqs. (19) is foiled by the presen
e of an instabil-ity in the dα(ν)

j /dβ equations. We 
an see this if we�rst 
onsider the evolution of Nj and dis
ard the noiseand kineti
-energy parts of the equation. Taking the de-terministi
 part from the Stratonovi
h 
al
ulus whi
h isused for our numeri
s (this introdu
es the 1/2 term be-low), one has
∂Nj

∂β
∼ Nj

[
µe −

g

∆x

(
Nj −

1

2

)]
. (A1)There are stationary points at the va
uum Nj = 0 andat Nj = Na = 1/2+µe∆x/g, with the more positive sta-tionary point (usually Na) being an attra
tor, and the



16more negative a repellor [see Fig. 13 (a) ℄. The determin-isti
 evolution is easily solved, and starting from a time
β0 gives later evolution as

Nj(β) =
NaNj(β0)

Nj(β0) + (Na −Nj(β0))e−µe(β−β0)
. (A2)If has a negative Nj(β0), whi
h is possible due to thea
tion of the noises ζ, then at a later time

βsing = β0 +
1

µe
ln

(
1 − Na

Nj(β0)

)
, (A3)the solution has diverged to negative in�nity. This be-havior of the deterministi
 part of the equations is knownas a �moving singularity� and is a well-known indi
atorof non-vanishing boundary terms when an integration-by-parts is performed on the operator equation (14) [48, 55℄.It implies that the FPE (18) is not fully equivalent toquantum me
hani
s.The use of a sto
hasti
 gauge to remove this kind ofinstability has been des
ribed in [47℄, and in more detailin [48℄. The gauge identity, Eq. (17), 
an be used on Eq.(14) to introdu
e an arbitrary modi�
ation to the de-terministi
 evolution (arising from �rst order derivativeterms) for the pri
e of additional di�usion in the weight

Ω. Sin
e the gauge identity is zero, we 
an add an ar-bitrary multiple of it to Eq. (14). In parti
ular, if weadd
0 =

∫
G(~v)

∑

j

{
G2

j Ω2

2

∂2

∂Ω2
(A4)

+iGj

√
g

2∆x

∑

ν

α
(ν)
j

∂

∂α
(ν)
j

(
Ω
∂

∂Ω
− 1

)}
Λ̂ d4M+2with arbitrary fun
tions Gj(~v, β), and perform the sub-sequent steps as before, then the di�usion matrix in theresulting FPE remains positive semide�nite (no negativeeigenvalues), and the resulting Ito di�usion equations ofthe samples be
ome

dα
(ν)
j

dβ
=

1

2

(
µe +

~
2∇2

2m
− gNj

∆x

)
α

(ν)
j

+iα
(ν)
j

[
ζ
(ν)
j (β) − Gj

]√ g

2∆x
, (A5)

dΩ

dβ
= Ω


−K(~v) +

∑

j

Gj

∑

ν

ζ
(ν)
j (β)


 ,instead of (19). The αj equations are modi�ed and 
om-pensating 
orrelated noises have been added to the Ωequation.We now wish to 
hoose the fun
tions Gj , 
alled sto
has-ti
 gauges, so that the instability is removed, keepingalso in mind the goal of keeping the (now unbiased) sta-tisti
al un
ertainty manageable. Heuristi
 guidelines for
hoosing gauges have been investigated in detail in [48℄.
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FIG. 13: Deterministi
 phase spa
e for Stratonovi
h for of the
dNj equation, when µe = 0. (a): ungauged, (b): using thegauge (A6). The moving singularity in (a) is shown with alarge arrow, the attra
tor in (b) at |Nj | = Na with a thi
kdashed line.Several 
hoi
es for a single-mode system were also inves-tigated there in Se
. 9.2 in terms of resulting statisti
alun
ertainties. The aim is to remove the real part of Njfrom the αj equation when it is negative, so as to neutral-ize the moving singularity. While for a single mode the�radial� gauge was found to give the best performan
e,later tests that we have performed on the full multimode(M ≫ 1) 1D gas show that the �minimal� drift gauge

Gj = i (ReNj − |Nj |)
√

g

2∆x
(A6)gives better performan
e for this system. This is be
auseit introdu
es the smallest modi�
ations needed to removethe moving singularity, and hen
e the smallest noise 
on-tributions to the weight Ω. The weight be
omes mu
hmore important for multimode systems be
ause ea
h ofthe M modes adds its own 
ontribution to it, the totalof whi
h 
an be
ome large. The phase-spa
e modi�
a-tion for a single mode for the ungauged Eq. (A1) andgauged equations is shown in Fig. 13. One sees that inthe �
lassi
al� Re[Nj ] ≫ Im[Nj ] region the traje
toriesare pra
ti
ally un
hanged. The �nal Ito equations to beintegrated are (21). Comparisons to known exa
t resultssu
h as energy and density [7℄, and g(2)(0) [30℄ indi
ateno deviations beyond what is predi
ted by the unbiasedstatisti
al un
ertainties, Eq. (26), with the new gaugedequations. Su
h a 
omparison 
an be seen in Fig. 2 ofRef. [34℄. 2. Integration pro
edureThe a
tual integration is performed using a split-stepsemi-impli
it method des
ribed in [66℄, whi
h requiresthe use of the Stratonovi
h sto
hasti
 
al
ulus. There, itwas shown to be highly superior to other low-order meth-ods in terms of stability. Although a low order Newton-like method, with the right 
hoi
e of variables its per-forman
e is remarkably good. High-order methods su
has Runge-Kutta or others su�er from serious 
ompli
a-tions when noise is present. In parti
ular, one has to be



17very meti
ulous in tra
king down and 
ompensating forall the non-zero 
orrelations within a single time-step �these are mu
h more 
ompli
ated than the simplest 
or-re
tion terms appearing in the Stratonovi
h semi-impli
itmethod used here.Due to the multipli
ative form of the equations (21),it is highly advantageous to use logarithmi
 variables,whi
h is made possible if one uses a split-step method.Here, a ∆β timestep 
onsists of the following four stages:First the intera
tion part (
ontaining g) is integrated inreal spa
e over a time-step ∆β. Se
ond, the �elds areFourier-transformed to k-spa
e, giving α̃(ν)(k). Thirdlythe kineti
-energy 
ontributions are integrated over ∆β,and �nally one Fourier-transforms ba
k into real spa
e,ready to start the next timestep. The Stratonovi
hgauged evolution equations for the real spa
e stage are
d lnα

(ν)
j

dβ
= − g

2∆x

(
|Nj | + i ImNj −

1

2

)

+iζ
(ν)
j (β)

√
g

2∆x
,

d ln Ω

dβ
= i

√
g

2∆x

∑

j,ν

(ReNj − |Nj|) ζ(ν)
j (β) (A7a)

+
g

2∆x

∑

j

{
(ReNj − |Nj |)2 −N2

j + iImNj

}
,while for the k-spa
e stage they are

d ln α̃(ν)(k)

dβ
=

1

2

[
µe −

~
2k2

2m

]
, (A7b)

d ln Ω

dβ
=
∑

k

(
µe −

~
2k2

2m

)
α̃+(k)α̃(k).3. Importan
e samplingThe simulated equations (21) in
lude evolution of boththe amplitudes α(ν)

j and weight Ω. This 
ombination 
an
ause sampling problems for observable estimations, Eq.(22), when maximum weights o

ur for very rare traje
-tories. As it turns out, this was a serious issue for themajority of 
al
ulations reported here be
ause while theinitial distribution (12) samples the β = 0 system well,this is not ne
essarily the 
ase during the later evolutioninto β ≫ 0 that is of most interest. Fortunately, fairlyrudimentary importan
e sampling was able to deal withthis for a wide range of parameters.The essen
e of this approa
h is to pre-weight traje
-tories in su
h a way that the part of the distributionwith maximum weight Ω 
oin
ides with the majority ofsamples at the target time of interest βt, rather than at
β = 0. The pri
e paid is that the β = 0 distribution isthen poorly sampled, but this is not important to us aswe are interested rather in the target βt.Pre-weighting is made possible be
ause in all observ-able 
al
ulations (22), the 
ombination [G(~v)Ω] o

urs as

a universal 
ommon fa
tor in the ∫ d~v integral. Hen
e, ifwe manually s
ale the weight Ω by some fa
tor F (~v) ofour 
hoi
e: Ω → Ω′F (~v), and simultaneously res
ale thedistribution a

ording to G(~v) → G′(~v)/F (~v), then with
Ω′ and G′ one obtains exa
tly the same results in thein�nite-number-of-samples limit as with GΩ. However,the a
tual samples are di�erently distributed, whi
h isadvantageous for �nite sample numbers. To redu
e theweight sampling problem, one wants to make su
h a mod-i�
ation F (~v) that both G′(~v) and Ω′G′(~v) peak in thesame region of the phase spa
e of ~v.To pro
eed, it is 
onvenient to 
onsider Fourier-transformed variables in k-spa
e, where the non-intera
ting evolution 
an be easily exa
tly solved. De�netheñ
α

(ν)
k =

1√
M

∑

j

e−ikxjα
(ν)
j =

{
α̃k, if ν = 1,
α̃+

k , if ν = 2,
(A8)where k takes on dis
rete values from −π/∆x to π/∆x.The �naive� initial distribution (12) then be
omes

G0(~v) = δ2(ln Ω)
∏

k

δ2(α̃k − (α̃+
k )∗ )

e−|eαk|2/nx

π nx
. (A9)This is a thermal distribution whi
h is uniform over all

k. The ideal gas (i.e. g = 0) evolution of equations (21)then leads to
α̃

(ν)
k (β) = α̃k(0) exp

[(
µ(β) − ~

2k2

2m

)
β

2

]
, (A10)

ln Ω(β) =
∑

k

(
|α̃k(β)|2 − |α̃k(0)|2

)
,where

α̃k(0) =
√
nx ηk, (A11)with ηk being independent 
omplex Gaussian noises withvarian
e unity, 〈η∗kηk′ 〉S = δkk′ . One 
an see that (A10)is not ne
essarily anywhere near a well-sampled idealgas Bose-Einstein distribution at temperature β, whi
hwould have

α̃
(ν)
k (β) =

√
nid

k (β) ηk,

ln Ω(β) = 0, (A12)with
nid

k (β) =
{
exp

[
−µ(β)β + ~

2k2β/2m
]
− 1
}−1being the usual Bose-Einstein distribution.For the purpose of the simulations presented here,a fairly 
rude yet e�e
tive importan
e sampling wasapplied as follows. For relatively weak 
oupling g, avery rough but useful estimate of the thermal state at
oarse resolution is that the Fourier modes are de
oupledand thermally distributed with some mean o

upations

nk(βt) at the target time βt that we are interested in. In



18pra
ti
e we will 
hoose some estimate of the guiding den-sity nk(βt). The desired equal weight sampling at time
βt would then 
orrespond to the distribution

Gest(~v, βt) = δ2(ln Ω)
∏

k

δ2
(
α̃k − (α̃+

k )∗
)

×exp[−|α̃k|2/nk(βt)]

π nk(βt)
, (A13)whi
h leads to samples given by α̃(ν)

k =
√
nk(β) ηk and

Ω = 1. What we are interested in is the 
orrespond-ing distribution of samples at β = 0. An estimate ofthe initial distribution that leads to Gest(~v, βt) 
an beobtained by evolving (A13) ba
k in imaginary time us-ing only kineti
 intera
tions. This is again rather rough,sin
e deterministi
 intera
tion terms ∝ g are omitted,not to mention noise, but it is simple to 
arry out andproved su�
ient for our purposes here. One obtains thenan estimated sampling distribution for samples at β = 0:
Gsamp(~v, 0) = δ2(ln Ω − ln Ω0)

∏

k

δ2
(
α̃k − (α̃+

k )∗
)

×exp(−|α̃k|2/nsamp
k )

π nsamp
k

, (A14)where
nsamp

k = nk(βt) exp

[
−λ− µ(βt)βt +

~
2k2βt

2m

]
, (A15)and the pre-weight Ω0 ≡ Ω(0) now depends on the setof parti
ular values of α̃k at β = 0 obtained for a givensample, a

ording to

ln Ω0 =
∑

k

|α̃k|2
(

1

nsamp
k

− 1

nx

)
. (A16)For most of the simulations reported here, taking

nk(βt) to be just the ideal gas Bose-Einstein distribu-tion nid
k (βt) was su�
ient. However, on
e the 
hemi
alpotential µ(βt) approa
hes or ex
eeds zero, this estimateis no longer useful. A better 
hoi
e for nk(βt) is the den-sity of states fun
tion ρk of the exa
t Yang and Yangsolution [7℄, although it should be noted that this is notthe density of a
tual parti
les that we seek. In pra
ti
e,our approa
h was to �rst run a 
al
ulation based on thisestimate nk(βt) = ρk(βt), obtain a better estimate of thereal density from this full sto
hasti
 
al
ulation by evalu-ating the expe
tation value of Ψ̂†

kΨ̂k using Eq. (22), then�nally use this expe
tation value to 
hoose an improvedpreweighting fun
tion nk(βt) for a �se
ond-generation�
al
ulation.One important point to make regarding the 
hoi
e of
nk(βt) is that one should endeavor always to 
hoose thepreweighting guide density nk(βt) equal or greater thanthe real density, never smaller. The reasoning behindthis is as follows: Suppose �rst one 
hooses a nk(βt)guiding fun
tion that is mu
h smaller than the true k-spa
e density ntrue

k (βt). This means that the varian
e of

the α̃k samples will be too small to re
over the physi
alvalue of the density upon averaging 〈|α̃k|2Ω〉S withoutresorting to very large weights for the largest |α̃k| sam-ples. In pra
ti
e, if the ratio nk/n
true
k is small, then thetypi
al trade-o� that o

urs is that the largest 
ontri-bution to Ω|α̃k|2 
omes from those |α̃k| that are manystandard deviations from the mean. Their rarity is 
om-pensated for by a very large Ω. However, this is fatal forpra
ti
al numbers of samples be
ause in fa
t not evenone of the samples one obtains ends up in this highest-
ontribution region at many standard deviations fromthe mean. For nk/n

true
k . 1/2, the number of sampleswith |α̃k|2 & nk will be ∝ S

∏
k exp

[
−(ntrue

k /nk)2/2
),i.e. vanishing, leading to a systemati
 error.In 
ontrast, the opposite situation when nk(βt) is 
ho-sen too large is mu
h more benign. Following the abovereasoning, one gets a distribution of α̃k samples that istoo broad, with the result that a majority of samples aretoo far away from physi
al values of |α̃k|2 and their ex
es-sive abundan
e must be 
ompensated for by giving thema 
orrespondingly small weight. However, for reasonablylarge numbers of traje
tories, there always remains a 
oreof the smallest samples that are in the region of most im-portant 
ontributions. The number of these samples isof the order of S∏k n

true
k /nk(βt), whi
h is reasonable inpra
ti
e as long as the estimate nk(βt) is not extremelypoor.Finally, it should be mentioned that superior impor-tan
e sampling s
hemes to the 
rude one we have em-ployed here 
ould be implemented and may allow oneto rea
h mu
h lower temperatures than presented here.A �rst step would be to keep the β = βt distributionestimate, Eq. (A13), but estimate the resulting initialsamples at β = 0 in a more a

urate manner. To dothis, one 
ould 
hoose the β = βt samples a

ording to

α̃
(ν)
k (βt) =

√
nk(βt) ηk and ln Ω(βt) = 0 as usual, butthen evolve them ba
k in time to β = 0 numeri
ally,using the deterministi
 part of the full equations (21).This would give a superior estimate of the initial distri-bution as it takes into a

ount g 6= 0 mean �eld e�e
tsas well as kineti
 evolution. Having these β = 0 sam-ples, one would then pro
eed forward in time with thefull sto
hasti
 evolution.A further re�nement would be to 
hoose initial β = 0samples via the Metropolis algorithm, so that the ini-tial samples ~v are distributed a

ording to F [~v], where

F = |Ω(βt)| when Ω(βt) is 
al
ulated a

ording to thedeterministi
 part of the evolution, Eq. (21), startingfrom Ω(0) = 0. This avoids the arbitrariness of the
rude Gaussian 
hoi
e, Eq. (A13). A �nal, but numer-i
ally intensive approa
h would be to sample the phase-spa
e variables αj(βt) and Im[ln Ω](βt) dire
tly via aMonte Carlo Metropolis algorithm whose free parame-ters to be varied in
lude both the initial noises ηk and allthe time-dependent noises ζ(ν)
j (β) for a given time latti
e

β ∈ (0, βt).



194. Trust indi
ators for samplingOne should mention two heuristi
 trust indi
ators thatwe use extensively to ex
lude bad sampling of the under-lying phase-spa
e distribution.Firstly, let us point out that the behavior of the evolu-tion equations (A7) is su
h that one builds up an approxi-mately Gaussian distribution of the logarithmi
 variables(leaving aside the evolution of Nj itself, whi
h is initiallysmall). This means that the sto
hasti
 averages to beevaluated, e.g., in Eq. (25), involve means of exponen-tials of approximately Gaussian random variables (as per
m = 〈ev〉 with v Gaussian). A feature of su
h means isthat if the varian
e of the logarithm Re[v] ex
eeds a valueof around 10 the mean m begins to have systemati
 errorwhen 
al
ulated with any pra
ti
al sample sizes. Thisis dis
ussed in detail in [48, 67℄. As a result, when 
al-
ulating observables with some expression 〈F (~v)〉S , onemust also 
he
k that the varian
e of its logarithm is smallenough, i.e. that

VF = 〈(ln |F (~v)|)2〉S − 〈ln |F (~v)|〉2S . 10. (A17)If this is not satis�ed, the results for 〈F (~v)〉S must be
onsidered suspe
t.Se
ondly, sampling problems of this sort usually makethemselves visible if one 
ompares two 
al
ulations withwidely di�erent sample sizes. In pra
ti
e one 
an evalu-ate an average and its un
ertainty with S samples, andwith S/10 samples (where, of 
ourse, S/10 ≫ 1). If thedi�eren
e is statisti
ally signi�
ant the result of the Ssample average again should be 
onsidered suspe
t.5. Choi
e of intermediate µ(β)If one is primarily interested in the behavior of thesystem around some target temperature βt and 
hemi
alpotential µ(βt) (alternatively � density), then the valuesof µ(β) at intermediate times β < βt 
an in prin
iple be
hosen at will.In pra
ti
e, however, some 
hoi
es lead to smaller sta-tisti
al un
ertainty than others be
ause the intermedi-ate values of density a�e
t the amount of noise gener-ated during the evolution. A preliminary investigation of
µ 
hoi
e in [48℄ indi
ated some heuristi
 guidelines thatwere also followed in the present work:(i) It is advantageous to not vary µe(β) too mu
h overthe 
ourse of the simulation. Ex
essive variation leads toin
reased noise.(ii) A 
onstant or pie
ewise-
onstant value of µe is alsoadvantageous be
ause the ideal-gas part of the evolution
an then be 
al
ulated exa
tly in logarithmi
 variables(A7b), and step-size is only important for the intera
tionpart of the evolution.(iii) It is advantageous to 
hoose an initial density thatis mu
h smaller than the �nal one at βt both for sta-tisti
al sampling reasons and be
ause this puts the ini-tial gas mu
h further into the 
lassi
al de
oherent regime

(τ ≫ γ2), where the initial 
ondition (12) applies, thanthe �nal regime.In pra
ti
e, our simulations used the following form
µe(β) =

1

∆β
ln
z(β + ∆β)

z(β)
, (A18)whi
h is pie
ewise 
onstant over a time step ∆β, withthe fuga
ity

z(β) = eµβ =

{
zi, when β ≤ βi,

zt exp
[
− βt−β

βt−βi
ln zt

zi

]
, when β > βi.

.(A19)Here, βt and zt = eµtβt are the target inverse temperatureand fuga
ity, and βi and zi are numeri
al 
onstants forthe initial high temperature state that we 
hose to be
z2

i = z2
t /1000 and βi = βt/1000.Given the di�
ulty of pre
isely analyzing the statisti-
al behavior, it is un
lear whether a wiser 
hoi
e of µ(β)may lead to signi�
ant improvements over the results pre-sented here. However, this is the most su

essful 
hoi
eof those we tried.APPENDIX B: INTEGRALS IN PERTURBATIONTHEORY IN γWe begin with Eq. (32) and substitute the expressionfor Γ(k, σ) in Eq. (37) to give

∆g(2)(r) = −g
~

√
mβ

π

∫ β

0

dσ
exp

{
− r2mβ

4~2[β2/4−(σ−β/2)2]

}

√
β2/4 − (σ − β/2)2

.(B1)Next we make the substitution t = (2/β)(σ − β/2) and
y = r

√
m/(~2β) to give

∆g(2)(r) = −g
~

√
mβ

π

∫ 1

−1

dt
e−y2/(1−t2)

√
1 − t2

(B2)
= −g

~

√
mβ

π
e−y2

∫ ∞

−∞
dx
e−y2x2

1 + x2
, (B3)where the last equality follows from the substitution t =

x/
√

1 + x2. The exponent in the integrand of Eq. (B3)
an be represented as a Gaussian integral
e−y2x2

=
1√
π

∫ ∞

−∞
dke−k2+2ikyx. (B4)Then, 
hanging the order of integration in Eq. (B3) wearrive at

∆g(2)(r) = − g

~π

√
mβe−y2

∫ ∞

−∞
e−k2

∫ ∞

−∞

ei2kyx

1 + x2
dxdk

= −2g
√
mβ

~

∫ ∞

0

e−(k+|y|)2dk. (B5)



20The �nal result shown in Eq. (38) follows trivially froma shift in the integration variable k → k − |y|, and thede�nition of the 
omplimentary error fun
tion,
erfc(|y|) ≡ 2√

π

∫ ∞

|y|
dke−k2

. (B6)APPENDIX C: INTEGRALS IN THEBOGOLIUBOV TREATMENTWe �rst evaluate the va
uum 
ontribution G0(r), Eq.(54). Writing down the integral expli
itly, in terms of k,and transforming to a new variable x = kξ/2, we have
G0(r) =

2

πξn

∞∫

0

dk

[
x√

1 + x2
− 1

]
cos(2rx/ξ). (C1)Integrating by parts, gives

G0(r) = − 1

πnr

∞∫

0

dx
sin(2

√
γnrx)

(1 + x2)3/2
. (C2)The integral in (C2) 
an be expressed in terms of spe-
ial fun
tions [68℄, giving

G0(r) = −√
γ [L−1(2

√
γnr) − I1(2

√
γnr)] . (C3)The �nite temperature term GT (r), Eq. (57), isevaluated by performing variable 
hanges a

ording to

E = ~
2k2/(2m), followed by ǫ =

√
E(E + gn) and then

x = ǫ/gn. In this way we transform the integral over kto an integral over x
GT (r) =

√
2mg

π2~2n

∞∫

0

dx

[√
1 + x2 − 1

1 + x2

]1/2
cos[k(x)r]

egnx/T − 1
,(C4)where k(x) = [2mgn(

√
1 + x2−1)/~2]1/2. So far we havenot made any additional assumptions or approximations.By inspe
ting the integrand in Eq. (C4) one 
an seethat for T ≪ gn the main 
ontribution to the integral
omes from x ≪ 1. Therefore for T ≪ gn (τ ≪ γ) we
an simplify the integral by treating x in the integrandas a small parameter. A

ordingly, we obtain

[√
1 + x2 − 1

1 + x2

]1/2

≃ 1√
2
x, x≪ 1, (C5)

k(x) ≃
√
mgn

~2
x, x≪ 1, (C6)and therefore

GT (r) ≃ τ2

4πγ3/2

∞∫

0

dy
y cos(τnry/2

√
γ)

ey − 1
, (C7)

where we have introdu
ed y = gnx/T = ǫ/T .Finally we make use of the following integral
∫ ∞

0

dy
y cos(ay)

ey − 1
=

1

2a
− π2

2
cosech2 (πa) , (C8)and obtain Eq. (58).In the opposite limit, dominated by thermal �u
tua-tions and 
orresponding to γ ≪ τ ≪ 1, we �rst note thatlarge thermal �u
tuations 
orrespond to ñk ≫ 1, whi
hin turn requires ǫk/T ≪ 1. Thus, we repla
e ñk in theintegral (55) by ñk = [exp(ǫk/T )− 1]−1 ≃ T/ǫk ≫ 1. Asa result, the thermal 
ontribution GT (r) be
omes

GT (r) ≃ 1

πn

∫ +∞

−∞
dk
EkT

ǫ2k
cos(kr)

=
4mT

π~2n

∫ +∞

0

dk
cos(kr)

k2 + (2/ξ)2
=
mTξ

~2n
e−2r/ξ, (C9)whi
h is valid for r/ξ . 1. Rewriting this in terms of thedimensionless parameters γ and τ we obtain Eq. (61).For r/ξ ≫ 1 the 
osine term be
omes important and thevalues of momenta in the integral Eq. (C4) are 
ut o� by

1/r ≪ ξ. In this regime one 
an use the approximationthat led to Eq. (C8).APPENDIX D: INTEGRALS IN PERTURBATIONTHEORY IN 1/γWe begin by evaluating the dire
t 
ontribution givenby Eq. (63) by substituting Eq. (67),
∆g

(2)
d =

∫ β

0

dσ

∫ ∞

−∞

dk

2π

(
−2~

2k2

mnγ

)
eikr−σ~

2k2(β−σ)/mβ

=
−1

πγ

√
τ

2

∫ 1

0

ds

∫ ∞

−∞
dq q2eiqy−sq2(1−s), (D1)where we have a�e
ted the 
hange of variables σ = βs,

q =
√
β~2/mk and y =

√
m/(β~2)r =

√
(τn2/2)r. Theintegration with respe
t to q 
an then be done using in-tegration by parts, whi
h yields

∆g
(2)
d =

−1

4γ

√
τ

2π

∫ 1

0

ds
2s(1 − s) − y2

s5/2(1 − s)5/2
e−y2/[4s(1−s)]

=
−1

γ

√
2τ

π

∫ 1

−1

dt

(
1 − 2y2

1 − t2

)
e−y2/(1−t2)

(1 − t2)3/2
,(D2)where the last equality follows from the substitution s =

(t + 1)/2. The simplest way to solve the integral in Eq.(D2) is by 
omparison with Eq. (B2) in Appendix B. Indoing so, one may observe
∫ 1

−1

dt

(
1 − 2y2

1 − t2

) exp
[
− y2

1−t2

]

(1 − t2)
3/2

(D3)
=

d2

dy2

∫ 1

−1

dt
exp

[
− y2

1−t2

]

√
1 − t2

= π
d2

dy2
erf
(|y|). (D4)



21The result shown in Eq. (68) then follows trivially fromthis.In order to 
al
ulate the ex
hange 
ontribution we be-gin with Eq. (64) and substitute Eq. (67), whi
h imme-diately yields
∆g(2)

e (r) =
1

γ

√
πτ

2
e−inτr2/2Fe(

√
τn2r2/2) (D5)where Fe(y) =

∫ 1

0
ds
∫
dq q2e−s(1−s)q2+i(1−2s)qy/π3/2,and s, q and y are de�ned the same was as for the dire
t
ontribution. The integration with respe
t to q 
an be
arried out using integration by parts, leaving an integralwith respe
t to s:

∫ 1

0

ds
exp

[
− y2(1−2s)2

4s(1−s)

]

s3/2(1 − s)3/2

[
1 − y2(1 − 2s)2

2s(1 − s)

]

= 4

∫ 1

−1

dv
exp

[
− y2v2

1−v2

]

(1 − v2)3/2

[
1 − 2v2y2

1 − v2

]

= 4

∫ ∞

−∞
dt
[
1 − 2y2t2

]
e−y2t2 (D6)

where the �rst equality 
omes from the substitution s =
(v + 1)/2 and the se
ond from v = t/

√
1 + t2. Bothterms are standard de�nite integrals it is straightforwardto show that

∆g(2)
e =

4

nγ
δ(r). (D7)
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