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Simulation of 
omplete many-body quantum dynami
s using 
ontrolledquantum�semi
lassi
al hybridsP. Deuar1, ∗1Laboratoire de Physique Théorique et Modèles Statistiques,Université Paris-Sud, CNRS, 91405 Orsay, Fran
e†(Dated: 2 September 2009)A 
ontrolled hybridization between full quantum dynami
s and semi
lassi
al approa
hes (mean-�eld and trun
ated Wigner) is implemented for intera
ting many-boson systems. It is then demon-strated how simulating the resulting hybrid evolution equations allows one to obtain the full quantumdynami
s for mu
h longer times than is possible using an exa
t treatment dire
tly. A 
ollision ofsodium BECs with 1.5 × 105 atoms is simulated, in a regime that is di�
ult to des
ribe semi-
lassi
ally. The un
ertainty of physi
al quantities depends on the statisti
s of the full quantumpredi
tion. Cuto�s are minimised to a dis
retization of the Hamiltonian. The te
hnique presentedis quite general and extension to other systems is 
onsidered.PACS numbers: 03.75.Kk, 05.30.-d, 05.10.Gg, 67.85.DeThe 
al
ulation of the full quantum dynami
s of amany-body intera
ting system from the mi
ros
opi
 de-s
ription is a long-standing �di�
ult� problem with po-tential appli
ations in many �elds of physi
s � if onlyone 
ould make it numeri
ally tra
table. The di�
ultyis that the size of the Hilbert spa
e grows exponentiallywith the number of parti
les or orbitals, while path in-tegral Monte Carlo is foiled by the rapid appearan
e ofrandom phases. How new headway against this problem
an be made will be demonstrated below.Outside of fully integrable systems or 1D, whereMPS/DMRG-based methods are su

essful, simpli�eddes
riptions are used, e.g. mean-�eld theory, Bogoli-ubov diagonalization, long-wavelength or strong intera
-tion expansions, and Wigner-distribution based �
-�eld�methods[1, 2, 3℄. However, some interesting problemsfall outside the regimes of validity of these, typi
allywhere several 
ompeting e�e
ts are important or thereis a transition between regimes that require di�erent ap-proximations. In quantum gases this o

urs with risingdensity when intera
tions between the 
oherent 
ompo-nent and in
oherent parti
les already be
ome of essen
eduring the evolution, but the gas is not yet dense enoughfor the 
-�eld des
riptions to des
ribe it with only highlyo

upied modes. (See [3℄ for a 
omprehensive review of 
-�eld methods and their validity). This may o

ur e.g. inquen
hes of the gas[4℄, 
olliding BECs[5, 6, 7℄, dynami
sof the 
ooling and trapping, sho
k waves and the e�e
tsof obsta
les[8℄ or disorder[9℄.This kind of dynami
s is often amenable to phase-spa
e approa
hes that randomly sample the fullquantum dynami
s, su
h as positive-P[10℄, sto
hasti
wavefun
tions[11℄, and sto
hasti
 gauges[12℄. They aresu

essful when 
olle
tive behaviour is important, butintera
tions between individual parti
les are not toostrong. The density matrix ρ̂ of the system is re-des
ribedin terms of a probability distribution ρ̂ =
∫
P (~v)Λ̂(~v)d~vof basis operators Λ̂ that is subsequently randomly sam-

pled. These samples ~v are then evolved a

ording tosto
hasti
 evolution equations that are 
hosen to keepthe entire quantum dynami
s of the mi
ros
opi
 des
rip-tion. A serious limitation is the �noise 
atastrophe�: Af-ter some �nite time, an exponential (or faster) growthof the noise varian
e o

urs, imposing a maximum fea-sible simulation time tsim[13℄. While some phenomena
an be simulated[14, 15, 16℄, an extension of tsim is mu
hsought-after, and will be demonstrated here.The underlying reasons why phase-spa
e methods 
anover
ome the Hilbert spa
e 
omplexity, are that quanti-ties of physi
al interest usually involve 
ontributions frommany parti
les, and that limited pre
ision is su�
ient ifit is well 
ontrolled. As in Monte-Carlo methods, thereis no need to follow the amplitudes of all possible 
on-�gurations as long as one 
an predi
t physi
al quantitieswith a well-
ontrolled un
ertainty. However � and nowwe 
ome to the 
entral idea to be demonstrated here �this 
an be taken further: There is also no true need toa
tually follow the troublesome exa
t quantum evolutionequations provided that one 
an still predi
t what theywould give with a well-
ontrolled un
ertainty.How 
an su
h a roundabout predi
tion be a
hieved? Ifone has at one's disposal two, or more, independent ap-proximate methods that produ
e evolution equations �A�and �B� without a noise 
atastrophe, but whi
h bear suf-�
ient resemblan
e to the full quantum dynami
s equa-tions �Q�, then hybrid equations 
an be 
onstru
ted (pos-sibly ad-ho
) with a 
ontinuous blending parameter λ ina s
heme resembling
HA = (1 − λ)A + λQ ; HB = (1 − λ)B + λQ.whose details will be non-universal. Here λ = 1 gives fullquantum dynami
s, and λ = 0 the original approximatemethods. The hybrids will still 
ontain a noise 
atastro-phe, but at a later time than the full quantum treatment

Q. Therefore, long times t > tQsim that are not a

essibleby Q will be a

essible by some range of λ ∈ [0, λmax(t) ].
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2If a physi
al quantity varies smoothly, preferablymonotoni
ally, as a fun
tion of λ for hybrid HA(λ), thenan extrapolation 
an be made to λ = 1, based on sev-eral 
al
ulations in the a

essible range [0, λmax(t) < 1 ].One extrapolation is not yet very 
onvin
ing, however,it 
an be 
he
ked using the other independent hybrids
HB(λ), . . . . When they all agree, one has an �interpo-lation between extrapolations� that is robust and mu
hmore reliable. Con
eptually this step is similar to 
om-paring results obtained using di�erent summation te
h-niques in diagrammati
 Monte-Carlo 
al
ulations[17℄.The remainder of this letter will demonstrate this pro-
edure on a system of 
olliding BECs (s
hemati
 shownin [18℄). The parameters are 
hosen to be 
lose toan early experiment at MIT[7℄, but deliberately withfewer atoms, to put the system in the dilute yet Bose-stimulated regime where trun
ated Wigner and simplequasiparti
le methods fail: An N = 1.5× 105 atom BECof 23Na is prepared in an elongated magneti
 trap withfrequen
ies 20×80×80 Hz, at a temperature low enoughto dis
ount the thermal 
omponent (not unusual in ex-periments). A brief Bragg laser pulse 
oherently impartsa velo
ity ki
k of 2vQ = 19.64mm/s to half the atomsalong the long (x) 
ondensate axis. The speed of theki
ked atoms is supersoni
 (sound velo
ity in the 
loudis ≤ 3.1 mm/s). The trap is simultaneously turned o� sothat the wave-pa
kets 
ollide freely, produ
ing a halo ofs
attered atom pairs moving at speeds ≈ vQ relative tothe overall 
entre of mass. This s
attered halo exhibitsa ri
h behaviour, whi
h has been the repeated fo
us ofexperiments[5, 6, 7℄ and theory[15, 16, 19, 20, 21, 22, 23℄.The high-density regime of a similar system has beentreated in detail with 
-�eld methods in [23℄. Bogoliubovexpansions and/or a pair-
reation simpli�
ation treat thespontaneous regime, or spe
ial 
ases when BEC evolu-tion is negligible or speed is highly supersoni
[20, 21℄(A sto
hasti
 Bogoliubov treatment gives promising re-sults in broader 
ases[24℄). However, major dis
repan-
ies between predi
tions for halo density and 
orrela-tions arise when BEC evolution or Bose stimulation isappre
iable. Correlations depend on the sizes of phasegrains[23℄, whi
h develop a 
ompli
ated and poorly un-derstood shape[16, 22℄ and dynami
s[15, 19, 23℄ in this
ase. Parallels to unresolved questions in other �elds ofphysi
s have been noted, su
h as the �HBT puzzle� inheavy ion 
ollisions[25℄. Trustworthy 
al
ulations thatrea
h the end of the 
ollision (observed in experiments[6℄but not rea
hed by positive-P[15, 16℄) 
ould shed lighton all these issues.Fig. 1 in
ludes predi
tions from Gross-Pitaevskii (GP)mean �eld, trun
ated Wigner, and Positive-P 
al
ula-tions. The time rea
hable by positive-P (tQsim) is less thana half of the 
ollision time tcoll ≈ 1400µs, and both GPand Wigner give an error. The �rst does not treat s
at-tering, while for a latti
e �ne enough to en
ompass allphysi
s the se
ond be
omes valid only for N & 106 atoms
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FIG. 1: Wigner (purple), positive-P (red), GP (dashed) andhybridHA 
al
ulations at various blending parameters λ. (a):Total number of s
attered atoms, from integration of k-spa
edensity (ex
luding the narrow BEC region). (b): Peak densityof the halo (at vx = vz = 0, vy = 9.37mm/s in velo
ity spa
e).Triple lines show 1σ un
ertainty.(one needs & O(1) atoms per latti
e site[1℄). N.b. the
k-dependent di�eren
e between g and its e�e
tive latti
evalue[1℄ is . 3% here, so it has not been 
orre
ted for.Now let us turn to obtaining the full quantum dynam-i
s for times longer than with the positive-P. The dynam-i
s equations in the trun
ated Wigner, GP, and positive-P treatments share the GP kernel with 
ertain additions,and turn out similar enough to play the role of the A, B,and Q.The dynami
al GP equation for the 
omplex �eld
ψ(x, t) 
orresponding to the 
old atom Hamiltonian Ĥ =
∫
d3

x

[
Ψ̂†(x)Hsp(x)Ψ̂(x) + g

2 Ψ̂†(x)2Ψ̂(x)2
] is i~ ψ̇(x) =

[
Hsp(x) + g|ψ(x)|2

]
ψ(x). An initial 
ondensate wave-fun
tion φGP (x) normalised to ∫

d3
x|φGP (x)|2 = Nleads to initial 
onditions ψ(x, 0) = φGP (x). Expe
ta-tion values of observables 〈Ô〉 are 
al
ulated by makingthe repla
ements Ψ̂ → ψ and Ψ̂† → ψ∗ in Ô. For exam-ple, the density is n(x) = |ψ(x)|2.In the trun
ated Wigner method, the dynami
s is ob-tained by standard methods (e.g.[26℄) based on the basisoperator identities (x dependen
e implied)

Ψ̂Λ̂ =

[
ψ − 1

2

∂

∂ψ∗

]
Λ̂ ; Ψ̂†Λ̂ =

[
ψ∗ +

1

2

∂

∂ψ

]
Λ̂ (1)whose importan
e for us will be seen below. The equa-tion of motion is as for GP but with the repla
ement

|ψ|2 → (|ψ|2−1) on the RHS. However, in the initial 
on-ditions the 
ondensate �eld is admixed with half a virtualparti
le per mode as ψ(x, 0) = φGP (x)+η(x)/
√

2, where
η(x) is a lo
al 
omplex Gaussian noise with the ensembleaverages 〈η(x)〉 = 〈η(x)η(x′)〉 = 0 and 〈η(x)η(x′)∗〉 =
δ3(x − x

′). To 
al
ulate observables one ensemble av-erages a modi�ed expression f [Ô] that is obtained via
〈Ô〉 = Tr

[
Ôρ̂

]
=

∫
d~vP (~v)Tr

[
ÔΛ̂

] and subsequent re-pla
ements (1), whi
h give ∫
d~vP (~v)f(~v). E.g. n(x) =

〈|ψ(x)|2 − 1
2 〉.The positive-P method uses two independent �elds



3
ψ1(x, t) and ψ2(x, t) and the identities

Ψ̂Λ̂=ψ1Λ̂ ; Ψ̂†Λ̂=
[
ψ∗

2 + ∂
∂ψ1

]
Λ̂,

Λ̂Ψ̂†=ψ∗
2 Λ̂ ; Λ̂Ψ̂=

[
ψ1 + ∂

∂ψ∗
2

]
Λ̂.

(2)The ψj obey the Ito sto
hasti
 equations
i~ψ̇1(x) =

[
Hsp(x) + gρ(x) − √

ig ξ1(x, t)
]
ψ1(x)

i~ψ̇2(x) =
[
Hsp(x) + gρ(x)∗ − i

√
ig ξ2(x, t)

]
ψ2(x)

(3)with �
omplex density� ρ(x) = ψ1(x)ψ2(x)∗. Here the
ξj are delta-
orrelated real Gaussian noise �elds with theensemble averages 〈ξj(x, t)〉 = 0 and 〈ξi(x, t)ξj(x′, t′)〉 =
δijδ(t − t′)δ3(x − x

′). Initial 
onditions are ψj(x, 0) =
φGP (x) and observables are obtained with the repla
e-ments Ψ̂ → ψ1 and Ψ̂† → ψ∗

2 .The next step will be to hybridize the trun
atedWigner with the positive-P into treatment HA. It ismost straightforward to pro
eed from hybrid operatoridentities for an o�-diagonal expansion
Ψ̂Λ̂=

[
ψ1 − 1−λ

2
∂
∂ψ∗

2

]
Λ̂ ; Ψ̂†Λ̂=

[
ψ∗

2 + 1+λ
2

∂
∂ψ1

]
Λ̂

Λ̂Ψ̂†=
[
ψ∗

2 − 1−λ
2

∂
∂ψ1

]
Λ̂ ; Λ̂Ψ̂=

[
ψ1 + 1+λ

2
∂
∂ψ∗

2

]
Λ̂

(4)One obtains: n(x) = 〈ψ1(x)ψ2(x)∗ − 1−λ
2 〉 and initial

ψj(x, 0) = φGP (x) + η(x)
√

1−λ
2 . The usual trun
ated-Wigner-like dis
arding of high-order derivatives in therelevant Fokker-Plan
k equations, gives dynami
s

i~ψ̇1(x) =
[
Hsp(x) + gρ′(x) − √

igλ ξ1(x, t)
]
ψ1(x)

i~ψ̇2(x) =
[
Hsp(x) + gρ′(x)∗ − i

√
igλ ξ2(x, t)

]
ψ2(x)with ρ′(x) = ρ(x)+λ−1. As an aside, this 
orresponds toa representation based on an o�-diagonal operator basisusing s-ordered[27℄ 
oherent-like states with s = λ (See[18℄ for details). Fig. 1 shows the performan
e of thishybrid for several values of λ for two halo quantities ofinterest. As desired, λ < 1 
al
ulations last for longerthan the full quantum dynami
s. Here the simulationtime s
ales as tsim ≈∝ 1/λ, but this is not universal.Hybridization of the GP and positive-P methods intotreatment HB simply entails repla
ing √

ig by √
igλ inthe equations (3) and following the positive-P pres
rip-tion from then on. Here tsim ∝ 1/λ2.With hybrids in hand, extrapolations of the total num-ber of s
attered atoms to the full QD limit λ = 1 areshown in Fig. 2 for several times ≥ tQsim. Halo peak den-sity is in[18℄.An issue here is de
iding upon a �tting fun
tion � lin-ear, quadrati
, otherwise? Firstly, an a

eptable �t mustnot have any statisti
ally signi�
ant mismat
h with thedata. Se
ondly, to ex
lude spurious ill-
onditioned pa-rameters, one should 
hoose a �t that minimises the un-
ertainty in the extrapolated value at λ = 1 (see below).One must also beware of possible sti�ness in the unseen
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full QDFIG. 2: λ-dependent predi
tions for several times ≥ tQ
sim(symbols) and 
orresponding quadrati
 �ts (dashed line). Fit-ting is via minimisation of rms deviation in units of 1σ dataun
ertainty. Data points use ≈ 300 − 1000 traje
tories.

λ, and sensitivity to this is the primary reason why sev-eral independent hybrids are needed. Details of Fig. 2 are
onsistent with a la
k of sti�ness in the unsimulated large
λ region: Firstly, for t at whi
h the whole λ sequen
e isseen, there are no in�e
tions. Se
ondly, the two hybridsapproa
h the λ = 1 value from di�erent sides but agree.Also, extrapolations from only a low-λ portion of theavailable data should agree with ones that use the wholesequen
e. This is 
on�rmed in [18℄.Agreement between the HA and HB extrapolations inFig. 2 is rather good at long times, but it remains toprovide a well-de�ned un
ertainty for the �nal predi
-tion. Methods to obtain the statisti
al un
ertainty ofthe λ = 1 extrapolation are known[28℄. In this endeav-our it is very helpful to know the underlying distributionof the data points v(λ), whi
h are ensemble averagedobservables. Conveniently, it is known to be Gaussianby the 
entral limit theorem, and the shown 1σ un
er-tainty ∆v(λ) is its standard deviation. One rather sim-ple way to pro
eed is to generate a number NS ≫ 1of �syntheti
� data sets, where in the jth set one gener-ates vj(λ) = v(λ) + ξj(λ)∆v(λ), with ξj being Gaussianrandom variables of varian
e 1, mean zero. The syn-theti
 data vj are distributed with the same mean as theoriginal v but double the varian
e. Now one 
al
ulatesan extrapolated QD predi
tion vj(1) for λ = 1 for ea
hsyntheti
 set j, and uses the distribution of these vj(1)to obtain the �nal un
ertainty ∆v(1). Predi
tions from
HA and HB that mat
h within statisti
al un
ertainty aretrustworthy to this a

ura
y. The �nal predi
tions fromboth hybrid methods for the number of s
attered atomsare shown in Fig. 3, and for halo density in [18℄.One sees that the useful simulation time has been ex-tended several-fold, allows one to rea
h the end of the
ollision here, and determine the total s
attered atomsto be 8800 ± 400 (at t=1.7ms). The mu
h worse pre
i-sion of the HA result stems from the inherent va
uumnoise in Wigner 
al
ulations and shorter segment of λvalues. However, for halo density, it is HB that is morenoisy.Regarding limits of appli
ability, at very long times the
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tions of from hybrids HA and HB 
omparedwith short-time full quantum dynami
s and approximatemethods. Triple lines, where visible, are 1σ un
ertainty. Uses
≈ 10 − 20 values of λ, as per Fig. 2.un
ertainty be
omes ex
essive for all hybrids sin
e theshort λ intervals give badly 
onditioned extrapolations.Hen
e the bare simulation time in the Q treatment mustnot be too small to ensure a su�
iently long λ interval.It is also 
ru
ial that the blending λ enter the dynam-i
s in a global way: Arti�
ial boundaries[2, 29℄ 
ouldmake observables depend sti�y on the boundary posi-tion. For 
old gases low densities 
an be treated pertur-batively, while at high enough densities 
-�eld treatmentsare valid, so that one expe
ts that the blending methodwill be most useful at intermediate densities that �fallthrough the 
ra
ks� between these two methods. Therelative simpli
ity of not requiring a proje
tion onto low-energy modes may also make blending appealing in otherregimes.Finally, while the emphasis has been on 
old bo-son dynami
s, the general equation-blending approa
hshould be broadly appli
able. For hard-
ore boson orfermion systems other approximations would have to behybridised with a di�erent 
omplete phase-spa
e des
rip-tion Q. One 
an also hybridise �imaginary-time� evolu-tion for thermal equilibrium states, or Monte-Carlo path-integrals with the aim of predi
ting the ab-initio result forlonger β = 1/T than is normally allowed by the fermionsign problem.Con
luding, it has been demonstrated how the fullquantum dynami
s of a ma
ros
opi
 intera
ting 3D sys-tem 
an be 
al
ulated for mu
h longer times than waspossible with the previously most e�e
tive method, thepositive-P representation. Quantitative predi
tions forBEC 
ollisions in the dilute stimulated regime were ob-tained. The hybrid dynami
al equations used, while nota
tually simulating 
omplete quantum dynami
s per se,
an be used to 
on�dently predi
t the full quantum dy-nami
s (within a given a

ura
y) when several familiesof hybrids are available.I am grateful to S
ott Ho�mann, Peter Drummond,Georgy Shlyapnikov, Boris Svistunov, Joel Corney, Ana-toli Polkovnikov, and Evgeny Burovskiy for stimulatingdis
ussions. This resear
h was supported by the Eu-ropean Community under the 
ontra
t MEIF-CT-2006-041390. LPTMS is a mixed resear
h unit No. 8626 ofCNRS and Université Paris-Sud.
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5Supplementary materialThe BEC 
ollision
original   
condensate 

atoms scattered into      
an ≈ spherical shell

second condensate  
produced by Bragg  
optical transition 

2v
Q

 

(a)

(b)
The system simulated. (a): S
hemati
 of the BEC 
ollisionin real spa
e in the lab frame. (b): Sli
e of the velo
itydistribution ρ in the 
enter-of-mass frame at vz = 0 and
t = 670µs 
al
ulated using the positive-P method. This isabout a third of the 
ollision time, and the maximum timea
hievable with that method. The 
ondensates are lo
atedaround vx = ±vQ = ±9.82mm/s. The halo of s
attered atomsis 
learly seen, as are the 
oherent frequen
y doubling peaksat ±3vQ ≈ 30mm/s. The 
ollision is along the x axis.



6The relationship of the hybrid HA to s-orderedoperatorsFirst, a brief exposition of the standard formalism usedin deriving phase-spa
e quantum dynami
s will be ne
es-sary. Writing the state of the system as a density matrix
ρ̂, it 
an also be expressed as a distribution

ρ̂ =

∫
d~vP (~v)Λ̂(~v). (5)over a family of basis operators Λ̂(~v) parameterised byvariables in the set ~v. If the distribution P (~v) is real andnon-negative, this 
orresponds, in turn, to an ensembleof S sets of random variables ~v (�
on�gurations�) 
hosena

ording to the distribution P , in the limit when S →

∞. In pra
ti
e one 
omputes a �nite but large ensemble(S ≫ 1) and knows properties of ρ̂ to within a statisti
alun
ertainty that 
an be 
on�dently estimated from theproperties of the �nite ensemble.The dynami
s of the system is des
ribed by the masterequation
i~
∂ρ̂

∂t
=

[
Ĥ, ρ̂

]
, (6)while expe
tation values of observables are

〈Ô〉 = Tr
[
Ôρ̂

]
. (7)These are most readily related to the 
omputational en-semble of random variables through the use of the �oper-ator identities�, that are spe
i�
 to ea
h formulation.For example, in the positive-P method one 
hooses Λ̂to be an o�-diagonal 
oherent-state operator. Letting

x label dis
rete points in the 
omputational latti
e with
∆V volume per point, de�ning

αj(x) = ψj(x)/
√

∆V ,one has
Λ̂PP (~v) =

∏

x

|α1(x)〉x〈α2(x)|x
〈α2(x)|x|α1(x)〉x

, (8)where ~v = {α1, α2},
|α〉x = e−|α|2/2eαba†

x |0〉xis a 
oherent state on the x latti
e point with the 
omplexamplitude α and anihilation operator âx = Ψ̂(x)
√

∆V .Then, one �nds (omitting ubiquitous lo
al x dependen
e)the operator identities:
Ψ̂Λ̂PP = ψ1Λ̂PP ; Ψ̂†Λ̂PP =

[
ψ∗

2 +
∂

∂ψ1

]
Λ̂PP

Λ̂PP Ψ̂† = ψ∗
2Λ̂PP ; Λ̂PP Ψ̂ =

[
ψ1 +

∂

∂ψ∗
2

]
Λ̂PP ,

whi
h are the sour
e of the positive-P identities in themain text. Combined with (5) and (6) these allow oneto obtain a partial di�erential equation for P (~v, t) that isequivalent to the full quantum evolution of ρ̂(t). For thepositive-P representation, this is a Fokker-Plan
k equa-tion, and it 
orresponds exa
tly to the Langevin equa-tions given in (5) of the main text Combining the iden-tities with (7) and Tr
[
Λ̂PP

]
= 1 one �nds

〈Ô〉 =

∫
P (~v)fO(~v)d~vwith a fun
tion fO that is obtained from Ô via the oper-ator identities, so that in the 
al
ulation it 
orrespondsto an ensemble average of fO. For example, for Ô =

Ψ̂†(x)Ψ̂(x), the fun
tion is1 fO = ψ∗
2(x)ψ1(x). The ini-tial 
oherent state 
orresponds to P =

∏
x,j δ

(3)(ψj(x)−
φGP (x)).It has been shown2 that the Glauber-Sudarshan P dis-tribution des
ribed by a 
oherent state operator basis

Λ̂GSP (ψ) =
∏

x

|α(x)〉x〈α(x)|x(similar to the positive-P but diagonal) 
an be des
ribedas the limit of a representation over s-ordered basis states
Λ̂GSP = lim

s→1−
Λ̂swhere s 
an take on 
ontinuous values from -1 to 1, and

Λ̂s(ψ) =
∏

x

D̂(α)xT̂ (0,−s)xD̂−1(α)x

Tr
[
D̂(α)xT̂ (0,−s)xD̂−1(α)x

] . (9)Here
T̂ (0,−s)x =

2

1 + s

(
s− 1

1 + s

)ba†
x

baxis a kernel operator that be
omes the va
uum |0〉〈0| inthe limit of s → 1− and the lo
al displa
ement operatoris
D̂(α)x = eα(x)ba†

x
−α(x)∗bax .so that 
oherent states are |α〉 = D̂(α)|0〉. It was alsoshown there that the Wigner distribution 
orresponds to

s = 0, hen
e a variation of s from 0 to 1 looks like a good
andidate to 
reate the HA hybrid formulation betweentrun
ated Wigner and positive-P. The �trun
ation� refers1 fO = ψ∗
1
(x)ψ2(x) 
an also be obtained, but gives the same valueof 〈 bO〉 in the S → ∞ limit.2 K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969);ibid. 177, 1882 (1969)



7to ad-ho
 removal of third order3 partial derivatives ofthe Wigner distribution P in its evolution equation tomake it interpretable as Langevin sto
hasti
 equations ofthe samples. This removal is the reason why trun
atedWigner treatments do not reprodu
e the full quantumdynami
s.First, though, one must take into a

ount the o�-diagonality that is responsible for the di�eren
e betweenthe Glauber-Sudarshan P and positive-P: Λ̂PP 6= Λ̂GSP .Notably one of the bases4 that reprodu
es the positive-Pis
Λ̂PP (~v) =

∏

x

d̂(~v)xT̂ (0,−1)xd̂
−1(~v)x

Tr
[
d̂(~v)xT̂ (0,−1)xd̂−1(~v)x

]

=
∏

x

d̂(~v)xT̂ (0,−1)xd̂
−1(~v)x (10)where the �displa
ement-like� operator

d̂(~v)x = eα1(x)ba†
x
−α2(x)∗bax .is obtained by the repla
ement α→ α1, α

∗ → α∗
2 in D̂(α),and the se
ond line follows be
ause the tra
e in the de-nominator evaluates to one. The reason for this parti
-ular repla
ement is that for the positive-P distributionone requires Λ̂ to depend analyti
ally on two separate
omplex variables, hen
e their 
omplex 
onjugates mustbe removed. Here these analyti
 variables are α1 and α∗

2.The extension of this Λ̂ onto a family of s-ordered basesis
Λ̂A
s (~v) =

∏

x

d̂(~v)xT̂ (0,−s)xd̂−1(~v)x

Tr
[
d̂(~v)xT̂ (0,−s)xd̂−1(~v)x

]

=
∏

x

d̂(~v)xT̂ (0,−s)xd̂−1(~v)x. (11)This then interpolates towards the Wigner representa-tion. Note that sin
e the trun
ated Wigner evolution isdeterministi
, then if one takes the formally o�-diagonalbasis set with s = 0 but imposes δ(ψ1 − ψ2) in the ini-tial 
onditions, it will remain exa
tly equivalent to thenormal trun
ated Wigner formulation of (9) with s = 0.3 And higher order terms if ne
essary, although for the 
old atomHamiltonian 
onsidered in this letter, only partial derivatives upto third order are present in the Wigner representation.4 Though not the only one. Other ways of writing Λ su
h as e.g.
bD(α1) bT (0,−1) bD(α∗

2
)/Tr[ bD(α1) bT (0,−1) bD(α∗

2
)] 
an also repro-du
e the positive-P formulation but are not useful for general-isation to s < 1, and do not reprodu
e the same itermediateoperator identities.

One obtains the identities5
Ψ̂Λ̂A

s =

[
ψ1 −

1 − s

2

∂

∂ψ∗
2

]
Λ̂A
s

Ψ̂†Λ̂A
s =

[
ψ∗

2 +
1 + s

2

∂

∂ψ1

]
Λ̂A
s

Λ̂A
s Ψ̂† =

[
ψ∗

2 − 1 − s

2

∂

∂ψ1

]
Λ̂A
s

Λ̂A
s Ψ̂ =

[
ψ1 +

1 + s

2

∂

∂ψ∗
2

]
Λ̂A
swhi
h are exa
tly the same as was obtained by a naiveblending of the operator identities in the main text pro-vided we identify λ = s.Regarding initial 
onditions, the diagonal s-orderedrepresentation (9) for a 
oherent state |φGP 〉 was foundby Cahill and Glauber to be Gaussian

P (ψ) =
∏

x

2

1 − s
exp

(
−2|ψ(x) − φGP (x)|2

∆V (1 − s)

)
. (12)When one additionally imposes ψ1 = ψ2 = ψ as is donein the main text, this is equivalent to (11), justifyingthe initial 
onditions given in the main text that 
ontain
omplex Gaussian noise of varian
e (1 − s)/2.

5 For example, by 
omparison of expressions for LHS and RHSwhen bT (0,−s) is expanded in number states.
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