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Simulation of omplete many-body quantum dynamis using ontrolledquantum�semilassial hybridsP. Deuar1, ∗1Laboratoire de Physique Théorique et Modèles Statistiques,Université Paris-Sud, CNRS, 91405 Orsay, Frane†(Dated: 2 September 2009)A ontrolled hybridization between full quantum dynamis and semilassial approahes (mean-�eld and trunated Wigner) is implemented for interating many-boson systems. It is then demon-strated how simulating the resulting hybrid evolution equations allows one to obtain the full quantumdynamis for muh longer times than is possible using an exat treatment diretly. A ollision ofsodium BECs with 1.5 × 105 atoms is simulated, in a regime that is di�ult to desribe semi-lassially. The unertainty of physial quantities depends on the statistis of the full quantumpredition. Cuto�s are minimised to a disretization of the Hamiltonian. The tehnique presentedis quite general and extension to other systems is onsidered.PACS numbers: 03.75.Kk, 05.30.-d, 05.10.Gg, 67.85.DeThe alulation of the full quantum dynamis of amany-body interating system from the mirosopi de-sription is a long-standing �di�ult� problem with po-tential appliations in many �elds of physis � if onlyone ould make it numerially tratable. The di�ultyis that the size of the Hilbert spae grows exponentiallywith the number of partiles or orbitals, while path in-tegral Monte Carlo is foiled by the rapid appearane ofrandom phases. How new headway against this probleman be made will be demonstrated below.Outside of fully integrable systems or 1D, whereMPS/DMRG-based methods are suessful, simpli�eddesriptions are used, e.g. mean-�eld theory, Bogoli-ubov diagonalization, long-wavelength or strong intera-tion expansions, and Wigner-distribution based �-�eld�methods[1, 2, 3℄. However, some interesting problemsfall outside the regimes of validity of these, typiallywhere several ompeting e�ets are important or thereis a transition between regimes that require di�erent ap-proximations. In quantum gases this ours with risingdensity when interations between the oherent ompo-nent and inoherent partiles already beome of esseneduring the evolution, but the gas is not yet dense enoughfor the -�eld desriptions to desribe it with only highlyoupied modes. (See [3℄ for a omprehensive review of -�eld methods and their validity). This may our e.g. inquenhes of the gas[4℄, olliding BECs[5, 6, 7℄, dynamisof the ooling and trapping, shok waves and the e�etsof obstales[8℄ or disorder[9℄.This kind of dynamis is often amenable to phase-spae approahes that randomly sample the fullquantum dynamis, suh as positive-P[10℄, stohastiwavefuntions[11℄, and stohasti gauges[12℄. They aresuessful when olletive behaviour is important, butinterations between individual partiles are not toostrong. The density matrix ρ̂ of the system is re-desribedin terms of a probability distribution ρ̂ =
∫
P (~v)Λ̂(~v)d~vof basis operators Λ̂ that is subsequently randomly sam-

pled. These samples ~v are then evolved aording tostohasti evolution equations that are hosen to keepthe entire quantum dynamis of the mirosopi desrip-tion. A serious limitation is the �noise atastrophe�: Af-ter some �nite time, an exponential (or faster) growthof the noise variane ours, imposing a maximum fea-sible simulation time tsim[13℄. While some phenomenaan be simulated[14, 15, 16℄, an extension of tsim is muhsought-after, and will be demonstrated here.The underlying reasons why phase-spae methods anoverome the Hilbert spae omplexity, are that quanti-ties of physial interest usually involve ontributions frommany partiles, and that limited preision is su�ient ifit is well ontrolled. As in Monte-Carlo methods, thereis no need to follow the amplitudes of all possible on-�gurations as long as one an predit physial quantitieswith a well-ontrolled unertainty. However � and nowwe ome to the entral idea to be demonstrated here �this an be taken further: There is also no true need toatually follow the troublesome exat quantum evolutionequations provided that one an still predit what theywould give with a well-ontrolled unertainty.How an suh a roundabout predition be ahieved? Ifone has at one's disposal two, or more, independent ap-proximate methods that produe evolution equations �A�and �B� without a noise atastrophe, but whih bear suf-�ient resemblane to the full quantum dynamis equa-tions �Q�, then hybrid equations an be onstruted (pos-sibly ad-ho) with a ontinuous blending parameter λ ina sheme resembling
HA = (1 − λ)A + λQ ; HB = (1 − λ)B + λQ.whose details will be non-universal. Here λ = 1 gives fullquantum dynamis, and λ = 0 the original approximatemethods. The hybrids will still ontain a noise atastro-phe, but at a later time than the full quantum treatment

Q. Therefore, long times t > tQsim that are not aessibleby Q will be aessible by some range of λ ∈ [0, λmax(t) ].

http://fr.arxiv.org/abs/0903.1309v2


2If a physial quantity varies smoothly, preferablymonotonially, as a funtion of λ for hybrid HA(λ), thenan extrapolation an be made to λ = 1, based on sev-eral alulations in the aessible range [0, λmax(t) < 1 ].One extrapolation is not yet very onvining, however,it an be heked using the other independent hybrids
HB(λ), . . . . When they all agree, one has an �interpo-lation between extrapolations� that is robust and muhmore reliable. Coneptually this step is similar to om-paring results obtained using di�erent summation teh-niques in diagrammati Monte-Carlo alulations[17℄.The remainder of this letter will demonstrate this pro-edure on a system of olliding BECs (shemati shownin [18℄). The parameters are hosen to be lose toan early experiment at MIT[7℄, but deliberately withfewer atoms, to put the system in the dilute yet Bose-stimulated regime where trunated Wigner and simplequasipartile methods fail: An N = 1.5× 105 atom BECof 23Na is prepared in an elongated magneti trap withfrequenies 20×80×80 Hz, at a temperature low enoughto disount the thermal omponent (not unusual in ex-periments). A brief Bragg laser pulse oherently impartsa veloity kik of 2vQ = 19.64mm/s to half the atomsalong the long (x) ondensate axis. The speed of thekiked atoms is supersoni (sound veloity in the loudis ≤ 3.1 mm/s). The trap is simultaneously turned o� sothat the wave-pakets ollide freely, produing a halo ofsattered atom pairs moving at speeds ≈ vQ relative tothe overall entre of mass. This sattered halo exhibitsa rih behaviour, whih has been the repeated fous ofexperiments[5, 6, 7℄ and theory[15, 16, 19, 20, 21, 22, 23℄.The high-density regime of a similar system has beentreated in detail with -�eld methods in [23℄. Bogoliubovexpansions and/or a pair-reation simpli�ation treat thespontaneous regime, or speial ases when BEC evolu-tion is negligible or speed is highly supersoni[20, 21℄(A stohasti Bogoliubov treatment gives promising re-sults in broader ases[24℄). However, major disrepan-ies between preditions for halo density and orrela-tions arise when BEC evolution or Bose stimulation isappreiable. Correlations depend on the sizes of phasegrains[23℄, whih develop a ompliated and poorly un-derstood shape[16, 22℄ and dynamis[15, 19, 23℄ in thisase. Parallels to unresolved questions in other �elds ofphysis have been noted, suh as the �HBT puzzle� inheavy ion ollisions[25℄. Trustworthy alulations thatreah the end of the ollision (observed in experiments[6℄but not reahed by positive-P[15, 16℄) ould shed lighton all these issues.Fig. 1 inludes preditions from Gross-Pitaevskii (GP)mean �eld, trunated Wigner, and Positive-P alula-tions. The time reahable by positive-P (tQsim) is less thana half of the ollision time tcoll ≈ 1400µs, and both GPand Wigner give an error. The �rst does not treat sat-tering, while for a lattie �ne enough to enompass allphysis the seond beomes valid only for N & 106 atoms
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FIG. 1: Wigner (purple), positive-P (red), GP (dashed) andhybridHA alulations at various blending parameters λ. (a):Total number of sattered atoms, from integration of k-spaedensity (exluding the narrow BEC region). (b): Peak densityof the halo (at vx = vz = 0, vy = 9.37mm/s in veloity spae).Triple lines show 1σ unertainty.(one needs & O(1) atoms per lattie site[1℄). N.b. the
k-dependent di�erene between g and its e�etive lattievalue[1℄ is . 3% here, so it has not been orreted for.Now let us turn to obtaining the full quantum dynam-is for times longer than with the positive-P. The dynam-is equations in the trunated Wigner, GP, and positive-P treatments share the GP kernel with ertain additions,and turn out similar enough to play the role of the A, B,and Q.The dynamial GP equation for the omplex �eld
ψ(x, t) orresponding to the old atom Hamiltonian Ĥ =
∫
d3

x

[
Ψ̂†(x)Hsp(x)Ψ̂(x) + g

2 Ψ̂†(x)2Ψ̂(x)2
] is i~ ψ̇(x) =

[
Hsp(x) + g|ψ(x)|2

]
ψ(x). An initial ondensate wave-funtion φGP (x) normalised to ∫

d3
x|φGP (x)|2 = Nleads to initial onditions ψ(x, 0) = φGP (x). Expeta-tion values of observables 〈Ô〉 are alulated by makingthe replaements Ψ̂ → ψ and Ψ̂† → ψ∗ in Ô. For exam-ple, the density is n(x) = |ψ(x)|2.In the trunated Wigner method, the dynamis is ob-tained by standard methods (e.g.[26℄) based on the basisoperator identities (x dependene implied)

Ψ̂Λ̂ =

[
ψ − 1

2

∂

∂ψ∗

]
Λ̂ ; Ψ̂†Λ̂ =

[
ψ∗ +

1

2

∂

∂ψ

]
Λ̂ (1)whose importane for us will be seen below. The equa-tion of motion is as for GP but with the replaement

|ψ|2 → (|ψ|2−1) on the RHS. However, in the initial on-ditions the ondensate �eld is admixed with half a virtualpartile per mode as ψ(x, 0) = φGP (x)+η(x)/
√

2, where
η(x) is a loal omplex Gaussian noise with the ensembleaverages 〈η(x)〉 = 〈η(x)η(x′)〉 = 0 and 〈η(x)η(x′)∗〉 =
δ3(x − x

′). To alulate observables one ensemble av-erages a modi�ed expression f [Ô] that is obtained via
〈Ô〉 = Tr

[
Ôρ̂

]
=

∫
d~vP (~v)Tr

[
ÔΛ̂

] and subsequent re-plaements (1), whih give ∫
d~vP (~v)f(~v). E.g. n(x) =

〈|ψ(x)|2 − 1
2 〉.The positive-P method uses two independent �elds



3
ψ1(x, t) and ψ2(x, t) and the identities

Ψ̂Λ̂=ψ1Λ̂ ; Ψ̂†Λ̂=
[
ψ∗

2 + ∂
∂ψ1

]
Λ̂,

Λ̂Ψ̂†=ψ∗
2 Λ̂ ; Λ̂Ψ̂=

[
ψ1 + ∂

∂ψ∗
2

]
Λ̂.

(2)The ψj obey the Ito stohasti equations
i~ψ̇1(x) =

[
Hsp(x) + gρ(x) − √

ig ξ1(x, t)
]
ψ1(x)

i~ψ̇2(x) =
[
Hsp(x) + gρ(x)∗ − i

√
ig ξ2(x, t)

]
ψ2(x)

(3)with �omplex density� ρ(x) = ψ1(x)ψ2(x)∗. Here the
ξj are delta-orrelated real Gaussian noise �elds with theensemble averages 〈ξj(x, t)〉 = 0 and 〈ξi(x, t)ξj(x′, t′)〉 =
δijδ(t − t′)δ3(x − x

′). Initial onditions are ψj(x, 0) =
φGP (x) and observables are obtained with the replae-ments Ψ̂ → ψ1 and Ψ̂† → ψ∗

2 .The next step will be to hybridize the trunatedWigner with the positive-P into treatment HA. It ismost straightforward to proeed from hybrid operatoridentities for an o�-diagonal expansion
Ψ̂Λ̂=

[
ψ1 − 1−λ

2
∂
∂ψ∗

2

]
Λ̂ ; Ψ̂†Λ̂=

[
ψ∗

2 + 1+λ
2

∂
∂ψ1

]
Λ̂

Λ̂Ψ̂†=
[
ψ∗

2 − 1−λ
2

∂
∂ψ1

]
Λ̂ ; Λ̂Ψ̂=

[
ψ1 + 1+λ

2
∂
∂ψ∗

2

]
Λ̂

(4)One obtains: n(x) = 〈ψ1(x)ψ2(x)∗ − 1−λ
2 〉 and initial

ψj(x, 0) = φGP (x) + η(x)
√

1−λ
2 . The usual trunated-Wigner-like disarding of high-order derivatives in therelevant Fokker-Plank equations, gives dynamis

i~ψ̇1(x) =
[
Hsp(x) + gρ′(x) − √

igλ ξ1(x, t)
]
ψ1(x)

i~ψ̇2(x) =
[
Hsp(x) + gρ′(x)∗ − i

√
igλ ξ2(x, t)

]
ψ2(x)with ρ′(x) = ρ(x)+λ−1. As an aside, this orresponds toa representation based on an o�-diagonal operator basisusing s-ordered[27℄ oherent-like states with s = λ (See[18℄ for details). Fig. 1 shows the performane of thishybrid for several values of λ for two halo quantities ofinterest. As desired, λ < 1 alulations last for longerthan the full quantum dynamis. Here the simulationtime sales as tsim ≈∝ 1/λ, but this is not universal.Hybridization of the GP and positive-P methods intotreatment HB simply entails replaing √

ig by √
igλ inthe equations (3) and following the positive-P presrip-tion from then on. Here tsim ∝ 1/λ2.With hybrids in hand, extrapolations of the total num-ber of sattered atoms to the full QD limit λ = 1 areshown in Fig. 2 for several times ≥ tQsim. Halo peak den-sity is in[18℄.An issue here is deiding upon a �tting funtion � lin-ear, quadrati, otherwise? Firstly, an aeptable �t mustnot have any statistially signi�ant mismath with thedata. Seondly, to exlude spurious ill-onditioned pa-rameters, one should hoose a �t that minimises the un-ertainty in the extrapolated value at λ = 1 (see below).One must also beware of possible sti�ness in the unseen
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λ, and sensitivity to this is the primary reason why sev-eral independent hybrids are needed. Details of Fig. 2 areonsistent with a lak of sti�ness in the unsimulated large
λ region: Firstly, for t at whih the whole λ sequene isseen, there are no in�etions. Seondly, the two hybridsapproah the λ = 1 value from di�erent sides but agree.Also, extrapolations from only a low-λ portion of theavailable data should agree with ones that use the wholesequene. This is on�rmed in [18℄.Agreement between the HA and HB extrapolations inFig. 2 is rather good at long times, but it remains toprovide a well-de�ned unertainty for the �nal predi-tion. Methods to obtain the statistial unertainty ofthe λ = 1 extrapolation are known[28℄. In this endeav-our it is very helpful to know the underlying distributionof the data points v(λ), whih are ensemble averagedobservables. Conveniently, it is known to be Gaussianby the entral limit theorem, and the shown 1σ uner-tainty ∆v(λ) is its standard deviation. One rather sim-ple way to proeed is to generate a number NS ≫ 1of �syntheti� data sets, where in the jth set one gener-ates vj(λ) = v(λ) + ξj(λ)∆v(λ), with ξj being Gaussianrandom variables of variane 1, mean zero. The syn-theti data vj are distributed with the same mean as theoriginal v but double the variane. Now one alulatesan extrapolated QD predition vj(1) for λ = 1 for eahsyntheti set j, and uses the distribution of these vj(1)to obtain the �nal unertainty ∆v(1). Preditions from
HA and HB that math within statistial unertainty aretrustworthy to this auray. The �nal preditions fromboth hybrid methods for the number of sattered atomsare shown in Fig. 3, and for halo density in [18℄.One sees that the useful simulation time has been ex-tended several-fold, allows one to reah the end of theollision here, and determine the total sattered atomsto be 8800 ± 400 (at t=1.7ms). The muh worse prei-sion of the HA result stems from the inherent vauumnoise in Wigner alulations and shorter segment of λvalues. However, for halo density, it is HB that is morenoisy.Regarding limits of appliability, at very long times the
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5Supplementary materialThe BEC ollision
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(a)

(b)
The system simulated. (a): Shemati of the BEC ollisionin real spae in the lab frame. (b): Slie of the veloitydistribution ρ in the enter-of-mass frame at vz = 0 and
t = 670µs alulated using the positive-P method. This isabout a third of the ollision time, and the maximum timeahievable with that method. The ondensates are loatedaround vx = ±vQ = ±9.82mm/s. The halo of sattered atomsis learly seen, as are the oherent frequeny doubling peaksat ±3vQ ≈ 30mm/s. The ollision is along the x axis.



6The relationship of the hybrid HA to s-orderedoperatorsFirst, a brief exposition of the standard formalism usedin deriving phase-spae quantum dynamis will be nees-sary. Writing the state of the system as a density matrix
ρ̂, it an also be expressed as a distribution

ρ̂ =

∫
d~vP (~v)Λ̂(~v). (5)over a family of basis operators Λ̂(~v) parameterised byvariables in the set ~v. If the distribution P (~v) is real andnon-negative, this orresponds, in turn, to an ensembleof S sets of random variables ~v (�on�gurations�) hosenaording to the distribution P , in the limit when S →

∞. In pratie one omputes a �nite but large ensemble(S ≫ 1) and knows properties of ρ̂ to within a statistialunertainty that an be on�dently estimated from theproperties of the �nite ensemble.The dynamis of the system is desribed by the masterequation
i~
∂ρ̂

∂t
=

[
Ĥ, ρ̂

]
, (6)while expetation values of observables are

〈Ô〉 = Tr
[
Ôρ̂

]
. (7)These are most readily related to the omputational en-semble of random variables through the use of the �oper-ator identities�, that are spei� to eah formulation.For example, in the positive-P method one hooses Λ̂to be an o�-diagonal oherent-state operator. Letting

x label disrete points in the omputational lattie with
∆V volume per point, de�ning

αj(x) = ψj(x)/
√

∆V ,one has
Λ̂PP (~v) =

∏

x

|α1(x)〉x〈α2(x)|x
〈α2(x)|x|α1(x)〉x

, (8)where ~v = {α1, α2},
|α〉x = e−|α|2/2eαba†

x |0〉xis a oherent state on the x lattie point with the omplexamplitude α and anihilation operator âx = Ψ̂(x)
√

∆V .Then, one �nds (omitting ubiquitous loal x dependene)the operator identities:
Ψ̂Λ̂PP = ψ1Λ̂PP ; Ψ̂†Λ̂PP =

[
ψ∗

2 +
∂

∂ψ1

]
Λ̂PP

Λ̂PP Ψ̂† = ψ∗
2Λ̂PP ; Λ̂PP Ψ̂ =

[
ψ1 +

∂

∂ψ∗
2

]
Λ̂PP ,

whih are the soure of the positive-P identities in themain text. Combined with (5) and (6) these allow oneto obtain a partial di�erential equation for P (~v, t) that isequivalent to the full quantum evolution of ρ̂(t). For thepositive-P representation, this is a Fokker-Plank equa-tion, and it orresponds exatly to the Langevin equa-tions given in (5) of the main text Combining the iden-tities with (7) and Tr
[
Λ̂PP

]
= 1 one �nds

〈Ô〉 =

∫
P (~v)fO(~v)d~vwith a funtion fO that is obtained from Ô via the oper-ator identities, so that in the alulation it orrespondsto an ensemble average of fO. For example, for Ô =

Ψ̂†(x)Ψ̂(x), the funtion is1 fO = ψ∗
2(x)ψ1(x). The ini-tial oherent state orresponds to P =

∏
x,j δ

(3)(ψj(x)−
φGP (x)).It has been shown2 that the Glauber-Sudarshan P dis-tribution desribed by a oherent state operator basis

Λ̂GSP (ψ) =
∏

x

|α(x)〉x〈α(x)|x(similar to the positive-P but diagonal) an be desribedas the limit of a representation over s-ordered basis states
Λ̂GSP = lim

s→1−
Λ̂swhere s an take on ontinuous values from -1 to 1, and

Λ̂s(ψ) =
∏

x

D̂(α)xT̂ (0,−s)xD̂−1(α)x

Tr
[
D̂(α)xT̂ (0,−s)xD̂−1(α)x

] . (9)Here
T̂ (0,−s)x =

2

1 + s

(
s− 1

1 + s

)ba†
x

baxis a kernel operator that beomes the vauum |0〉〈0| inthe limit of s → 1− and the loal displaement operatoris
D̂(α)x = eα(x)ba†

x
−α(x)∗bax .so that oherent states are |α〉 = D̂(α)|0〉. It was alsoshown there that the Wigner distribution orresponds to

s = 0, hene a variation of s from 0 to 1 looks like a goodandidate to reate the HA hybrid formulation betweentrunated Wigner and positive-P. The �trunation� refers1 fO = ψ∗
1
(x)ψ2(x) an also be obtained, but gives the same valueof 〈 bO〉 in the S → ∞ limit.2 K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969);ibid. 177, 1882 (1969)



7to ad-ho removal of third order3 partial derivatives ofthe Wigner distribution P in its evolution equation tomake it interpretable as Langevin stohasti equations ofthe samples. This removal is the reason why trunatedWigner treatments do not reprodue the full quantumdynamis.First, though, one must take into aount the o�-diagonality that is responsible for the di�erene betweenthe Glauber-Sudarshan P and positive-P: Λ̂PP 6= Λ̂GSP .Notably one of the bases4 that reprodues the positive-Pis
Λ̂PP (~v) =

∏

x

d̂(~v)xT̂ (0,−1)xd̂
−1(~v)x

Tr
[
d̂(~v)xT̂ (0,−1)xd̂−1(~v)x

]

=
∏

x

d̂(~v)xT̂ (0,−1)xd̂
−1(~v)x (10)where the �displaement-like� operator

d̂(~v)x = eα1(x)ba†
x
−α2(x)∗bax .is obtained by the replaement α→ α1, α

∗ → α∗
2 in D̂(α),and the seond line follows beause the trae in the de-nominator evaluates to one. The reason for this parti-ular replaement is that for the positive-P distributionone requires Λ̂ to depend analytially on two separateomplex variables, hene their omplex onjugates mustbe removed. Here these analyti variables are α1 and α∗

2.The extension of this Λ̂ onto a family of s-ordered basesis
Λ̂A
s (~v) =

∏

x

d̂(~v)xT̂ (0,−s)xd̂−1(~v)x

Tr
[
d̂(~v)xT̂ (0,−s)xd̂−1(~v)x

]

=
∏

x

d̂(~v)xT̂ (0,−s)xd̂−1(~v)x. (11)This then interpolates towards the Wigner representa-tion. Note that sine the trunated Wigner evolution isdeterministi, then if one takes the formally o�-diagonalbasis set with s = 0 but imposes δ(ψ1 − ψ2) in the ini-tial onditions, it will remain exatly equivalent to thenormal trunated Wigner formulation of (9) with s = 0.3 And higher order terms if neessary, although for the old atomHamiltonian onsidered in this letter, only partial derivatives upto third order are present in the Wigner representation.4 Though not the only one. Other ways of writing Λ suh as e.g.
bD(α1) bT (0,−1) bD(α∗

2
)/Tr[ bD(α1) bT (0,−1) bD(α∗

2
)] an also repro-due the positive-P formulation but are not useful for general-isation to s < 1, and do not reprodue the same itermediateoperator identities.

One obtains the identities5
Ψ̂Λ̂A

s =

[
ψ1 −

1 − s

2

∂

∂ψ∗
2

]
Λ̂A
s

Ψ̂†Λ̂A
s =

[
ψ∗

2 +
1 + s

2

∂

∂ψ1

]
Λ̂A
s

Λ̂A
s Ψ̂† =

[
ψ∗

2 − 1 − s

2

∂

∂ψ1

]
Λ̂A
s

Λ̂A
s Ψ̂ =

[
ψ1 +

1 + s

2

∂

∂ψ∗
2

]
Λ̂A
swhih are exatly the same as was obtained by a naiveblending of the operator identities in the main text pro-vided we identify λ = s.Regarding initial onditions, the diagonal s-orderedrepresentation (9) for a oherent state |φGP 〉 was foundby Cahill and Glauber to be Gaussian

P (ψ) =
∏

x

2

1 − s
exp

(
−2|ψ(x) − φGP (x)|2

∆V (1 − s)

)
. (12)When one additionally imposes ψ1 = ψ2 = ψ as is donein the main text, this is equivalent to (11), justifyingthe initial onditions given in the main text that ontainomplex Gaussian noise of variane (1 − s)/2.

5 For example, by omparison of expressions for LHS and RHSwhen bT (0,−s) is expanded in number states.
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