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A controlled hybridization between full quantum dynamics and semiclassical approaches (mean-
field and truncated Wigner) is implemented for interacting many-boson systems. It is then demon-
strated how simulating the resulting hybrid evolution equations allows one to obtain the full quantum
dynamics for much longer times than is possible using an exact treatment directly. A collision of
sodium BECs with 1.5 x 10° atoms is simulated, in a regime that is difficult to describe semi-
classically. The uncertainty of physical quantities depends on the statistics of the full quantum
prediction. Cutoffs are minimised to a discretization of the Hamiltonian. The technique presented
is quite general and extension to other systems is considered.
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The calculation of the full quantum dynamics of a
many-body interacting system from the microscopic de-
scription is a long-standing “difficult” problem with po-
tential applications in many fields of physics — if only
one could make it numerically tractable. The difficulty
is that the size of the Hilbert space grows exponentially
with the number of particles or orbitals, while path in-
tegral Monte Carlo is foiled by the rapid appearance of
random phases. How new headway against this problem
can be made will be demonstrated below.

Outside of fully integrable systems or 1D, where
MPS/DMRG-based methods are successful, simplified
descriptions are used, e.g. mean-field theory, Bogoli-
ubov diagonalization, long-wavelength or strong interac-
tion expansions, and Wigner-distribution based “c-field”
methods@, E, B] However, some interesting problems
fall outside the regimes of validity of these, typically
where several competing effects are important or there
is a transition between regimes that require different ap-
proximations. In quantum gases this occurs with rising
density when interactions between the coherent compo-
nent and incoherent particles already become of essence
during the evolution, but the gas is not yet dense enough
for the c-field descriptions to describe it with only highly
occupied modes. (See B] for a comprehensive review of c-
field methods and their validity). This may occur e.g. in
quenches of the gas|4], colliding BECS[B ﬁﬁ], dynamics
of the cooling and trapping, shock waves and the effects
of obstaclesﬁ or disorderﬁ]

This kind of dynamics is often amenable to phase-
space approaches that randomly sample the full
quantum dynamics, such as positive- Pm stochastic
wavefunctlonsm and stochastic gauges They are
successful when collective behaviour is important, but
interactions between individual particles are not too
strong. The density matrix p of the system is re- descrlbed
in terms of a probablhty distribution p = [ P(¥ ( 0)dv

of basis operators A that is subsequently randomly sam-

pled. These samples ¢ are then evolved according to
stochastic evolution equations that are chosen to keep
the entire quantum dynamics of the microscopic descrip-
tion. A serious limitation is the “noise catastrophe™ Af-
ter some finite time, an exponential (or faster) growth
of the noise variance occurs, imposing a maximum fea-
sible simulation time tg,[1 ] While some phenomena
can be simulatedm . ] an extension of tg, is much
sought-after, and will be demonstrated here.

The underlying reasons why phase-space methods can
overcome the Hilbert space complexity, are that quanti-
ties of physical interest usually involve contributions from
many particles, and that limited precision is sufficient if
it is well controlled. As in Monte-Carlo methods, there
is no need to follow the amplitudes of all possible con-
figurations as long as one can predict physical quantities
with a well-controlled uncertainty. However — and now
we come to the central idea to be demonstrated here —
this can be taken further: There is also no true need to
actually follow the troublesome exact quantum evolution
equations provided that one can still predict what they
would give with a well-controlled uncertainty.

How can such a roundabout prediction be achieved? If
one has at one’s disposal two, or more, independent ap-
proximate methods that produce evolution equations “.A”
and “B” without a noise catastrophe, but which bear suf-
ficient resemblance to the full quantum dynamics equa-
tions “Q”, then hybrid equations can be constructed (pos-
sibly ad-hoc) with a continuous blending parameter \ in
a scheme resembling

Ha=(1-NA+XQ ; Hz=(1-NB+AQ.

whose details will be non-universal. Here A = 1 gives full
quantum dynamics, and A = 0 the original approximate
methods. The hybrids will still contain a noise catastro-
phe, but at a later time than the full quantum treatment
Q. Therefore, long times ¢ >t that are not accessible
by Q will be accessible by some range of A € [0, Apax(t) ]
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If a physical quantity varies smoothly, preferably
monotonically, as a function of A for hybrid H 4()), then
an extrapolation can be made to A = 1, based on sev-
eral calculations in the accessible range [0, Amax(t) < 1].
One extrapolation is not yet very convincing, however,
it can be checked using the other independent hybrids
Hp(N),.... When they all agree, one has an “interpo-
lation between extrapolations” that is robust and much
more reliable. Conceptually this step is similar to com-
paring results obtained using different summation tech-
niques in diagrammatic Monte-Carlo calculationsm].

The remainder of this letter will demonstrate this pro-
cedure on a system of colliding BECs (schematic shown
in [18]). The parameters are chosen to be close to
an early experiment at MITﬂ], but deliberately with
fewer atoms, to put the system in the dilute yet Bose-
stimulated regime where truncated Wigner and simple
quasiparticle methods fail: An N = 1.5 x 10° atom BEC
of 22Na is prepared in an elongated magnetic trap with
frequencies 20 x 80 x 80 Hz, at a temperature low enough
to discount the thermal component (not unusual in ex-
periments). A brief Bragg laser pulse coherently imparts
a velocity kick of 2vg = 19.64mm/s to half the atoms
along the long (x) condensate axis. The speed of the
kicked atoms is supersonic (sound velocity in the cloud
is < 3.1 mm/s). The trap is simultaneously turned off so
that the wave-packets collide freely, producing a halo of
scattered atom pairs moving at speeds ~ vg relative to
the overall centre of mass. This scattered halo exhibits
a rich behaviour, which has been the repeated focus of
experimentsﬂa, , E] and theorym, @, E, @, lﬂ, @, @]

The high-density regime of a similar system has been
treated in detail with c-field methods in [23]. Bogoliubov
expansions and /or a pair-creation simplification treat the
spontaneous regime, or special cases when BEC evolu-
tion is negligible or speed is highly supersonicm, |ﬂ]
(A stochastic Bogoliubov treatment gives promising re-
sults in broader cases|24]). However, major discrepan-
cies between predictions for halo density and correla-
tions arise when BEC evolution or Bose stimulation is
appreciable. Correlations depend on the sizes of phase
grains@], which develop a complicated and poorly un-
derstood shapem, ] and dynamicsm, 19, E] in this
case. Parallels to unresolved questions in other fields of
physics have been noted, such as the “HBT puzzle” in
heavy ion collisions@]. Trustworthy calculations that
reach the end of the collision (observed in experimentsE]
but not reached by positive-P[13, [16]) could shed light
on all these issues.

Fig.Dlincludes predictions from Gross-Pitaevskii (GP)
mean field, truncated Wigner, and Positive-P calcula-
tions. The time reachable by positive-P (t2, ) is less than
a half of the collision time ¢, ~ 1400us, and both GP
and Wigner give an error. The first does not treat scat-
tering, while for a lattice fine enough to encompass all
physics the second becomes valid only for N > 105 atoms
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FIG. 1: Wigner (purple), positive-P (red), GP (dashed) and
hybrid H 4 calculations at various blending parameters A. (a):
Total number of scattered atoms, from integration of k-space
density (excluding the narrow BEC region). (b): Peak density
of the halo (at v, = v, = 0, v, = 9.37Tmm/s in velocity space).
Triple lines show 1o uncertainty.

(one needs > O(1) atoms per lattice site[l]). N.b. the
k-dependent difference between g and its effective lattice
value[l] is < 3% here, so it has not been corrected for.

Now let us turn to obtaining the full quantum dynam-
ics for times longer than with the positive-P. The dynam-
ics equations in the truncated Wigner, GP, and positive-
P treatments share the GP kernel with certain additions,
and turn out similar enough to play the role of the A, B,
and Q.

The dynamical GP equation for the complex field
1 (x,t) corresponding to the cold atom Hamiltonian H =
Jd3x [\/I\JT(X)HSP(X)\/I\’(X) + %@T(x)%ﬁ(x)ﬂ is ihi(x) =
[Hep(x) + glt(x)]?] 1(x). An initial condensate wave-
function ¢gp(x) normalised to [ d*x|gpcp(x)|* = N
leads to initial conditions 1(x,0) = ¢gp(x). Expecta-
tion values of observables (O) are calculated by making
the replacements ¥ — v and UT — ¢* in O. For exam-
ple, the density is M(x) = [¢(x)|%.

In the truncated Wigner method, the dynamics is ob-
tained by standard methods (e.g.[26]) based on the basis
operator identities (x dependence implied)

@x:[

whose importance for us will be seen below. The equa-
tion of motion is as for GP but with the replacement
|¥|> — (][> —1) on the RHS. However, in the initial con-
ditions the condensate field is admixed with half a virtual
particle per mode as ¥(x,0) = ¢ap(x) +n1(x)/v/?2, where
7(x) is a local complex Gaussian noise with the ensemble
averages (1(x)) = (n(x)n(x')) = 0 and (n(x)n(x)*) =
§3(x — x’). To calculate observables one ensemble av-
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erages a modified expression f[O] that is obtained via

(O) = Tr [52)\} = [doP(¥) Tr {57\} and subsequent re-
placements (), which give [dvP(7)f(v). E.g. n(x) =
([vE)* - 3).

The positive-P method uses two independent fields



P1(x,t) and P2 (x,t) and the identities
VA=A

BTR=[us + 55|
AUT=g58 .

A\Tl:[w1+ an A.

The 1; obey the Ito stochastic equations

il (x) = [Hep(x) + gp(x) — Vigé(x,t) | ¢i(x) (3)
ilpa(x) = [Hyp(x) +gp(x)* — iv/ig &2(x, )] ¥2(x)

with “complex density” p(x) = 11(x)2(x)*. Here the
&; are delta-correlated real Gaussian noise fields with the
ensemble averages (§;(x,t)) =0 and (&;(x,t)§;(x/,t')) =
8;j0(t — )63 (x — x’). Initial conditions are 1,;(x,0) =
dcp(x ) and observables are obtained with the replace-
ments U — 11 and Tt — V3.

The next step will be to hybridize the truncated
Wigner with the positive-P into treatment H 4. It is
most straightforward to proceed from hybrid operator
identities for an off-diagonal expansion

o~ o~

\IJA:[gbl—% f’;}fx;@ﬁx:[ ;+ﬂi}fx
qﬁ—[%——Ai}?\; /A\\T/:[w1+ﬁ 3*}A

One obtains: Ti(x) = (11 (x)th2(x)* — 252) and initial

¥(x,0) = dap(x) + n(x)y/ 15
Wigner-like discarding of high-order derivatives in the
relevant Fokker-Planck equations, gives dynamics

The usual truncated-

il (%) = [Hyp(x) + 90/ (x) — Vighéi(x.t)] i (x)
il (x) = [Hyp(x) + gp' ()" = iv/igh€a(x,1)] 2 (x)
with p/(x) = p(x)+A—1. As an aside, this corresponds to

a representation based on an off-diagonal operator basis
using s- orderedm coherent-like states with s = A (See
[18] for details). Fig. 0 shows the performance of this
hybrid for several values of A for two halo quantities of
interest. As desired, A < 1 calculations last for longer
than the full quantum dynamics. Here the simulation
time scales as tgm ~oc 1/A, but this is not universal.

Hybridization of the GP and positive-P methods into
treatment Hp simply entails replacing v/ig by v/igX in
the equations (@) and following the positive-P prescrip-
tion from then on. Here tg, o 1/)\2.

With hybrids in hand, extrapolations of the total num-
ber of scattered atoms to the full QD limit A = 1 are
shown in Fig. B for several times > ¢< . Halo peak den-
sity is inf18].

An issue here is deciding upon a fitting function — lin-
ear, quadratic, otherwise? Firstly, an acceptable fit must
not have any statistically significant mismatch with the
data. Secondly, to exclude spurious ill-conditioned pa-
rameters, one should choose a fit that minimises the un-
certainty in the extrapolated value at A = 1 (see below).
One must also beware of possible stiffness in the unseen
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FIG. 2: \-dependent predictions for several times > t<
(symbols) and corresponding quadratic fits (dashed line). Fit-
ting is via minimisation of rms deviation in units of 1o data

uncertainty. Data points use ~ 300 — 1000 trajectories.

A, and sensitivity to this is the primary reason why sev-
eral independent hybrids are needed. Details of Fig.[2 are
consistent with a lack of stiffness in the unsimulated large
A region: Firstly, for ¢ at which the whole A sequence is
seen, there are no inflections. Secondly, the two hybrids
approach the A = 1 value from different sides but agree.
Also, extrapolations from only a low-A portion of the
available data should agree with ones that use the whole
sequence. This is confirmed in m]

Agreement between the H 4 and Hp extrapolations in
Fig. 2 is rather good at long times, but it remains to
provide a well-defined uncertainty for the final predic-
tion. Methods to obtain the statistical uncertainty of
the A = 1 extrapolation are known@]. In this endeav-
our it is very helpful to know the underlying distribution
of the data points v()), which are ensemble averaged
observables. Conveniently, it is known to be Gaussian
by the central limit theorem, and the shown lo uncer-
tainty Av()) is its standard deviation. One rather sim-
ple way to proceed is to generate a number Ng > 1
of “synthetic” data sets, where in the jth set one gener-
ates v;(A) = v(A\) + & (N)Av(A), with &; being Gaussian
random variables of variance 1, mean zero. The syn-
thetic data v; are distributed with the same mean as the
original v but double the variance. Now one calculates
an extrapolated QD prediction v;(1) for A = 1 for each
synthetic set 7, and uses the distribution of these v;(1)
to obtain the final uncertainty Av(1). Predictions from
‘H 4 and Hp that match within statistical uncertainty are
trustworthy to this accuracy. The final predictions from
both hybrid methods for the number of scattered atoms
are shown in Fig.[B] and for halo density in @]

One sees that the useful simulation time has been ex-
tended several-fold, allows one to reach the end of the
collision here, and determine the total scattered atoms
to be 8800 + 400 (at t=1.7ms). The much worse preci-
sion of the H 4 result stems from the inherent vacuum
noise in Wigner calculations and shorter segment of A
values. However, for halo density, it is Hp that is more
noisy.

Regarding limits of applicability, at very long times the
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FIG. 3: Predictions of from hybrids H4 and Hp compared
with short-time full quantum dynamics and approximate
methods. Triple lines, where visible, are 1o uncertainty. Uses
~ 10 — 20 values of )\, as per Fig.

uncertainty becomes excessive for all hybrids since the
short A intervals give badly conditioned extrapolations.
Hence the bare simulation time in the O treatment must
not be too small to ensure a sufficiently long A interval.
It is also crucial that the blending A enter the dynam-
ics in a global way: Artificial boundaries[d, 29] could
make observables depend stiffly on the boundary posi-
tion. For cold gases low densities can be treated pertur-
batively, while at high enough densities c-field treatments
are valid, so that one expects that the blending method
will be most useful at intermediate densities that “fall
through the cracks” between these two methods. The
relative simplicity of not requiring a projection onto low-
energy modes may also make blending appealing in other
regimes.

Finally, while the emphasis has been on cold bo-
son dynamics, the general equation-blending approach
should be broadly applicable. For hard-core boson or
fermion systems other approximations would have to be
hybridised with a different complete phase-space descrip-
tion Q. One can also hybridise “imaginary-time” evolu-
tion for thermal equilibrium states, or Monte-Carlo path-
integrals with the aim of predicting the ab-initio result for
longer 8 = 1/T than is normally allowed by the fermion
sign problem.

Concluding, it has been demonstrated how the full
quantum dynamics of a macroscopic interacting 3D sys-
tem can be calculated for much longer times than was
possible with the previously most effective method, the
positive-P representation. Quantitative predictions for
BEC collisions in the dilute stimulated regime were ob-
tained. The hybrid dynamical equations used, while not
actually simulating complete quantum dynamics per se,
can be used to confidently predict the full quantum dy-
namics (within a given accuracy) when several families
of hybrids are available.
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Supplementary material

The BEC collision
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The system simulated. (a): Schematic of the BEC collision
in real space in the lab frame. (b): Slice of the velocity
distribution p in the center-of-mass frame at v, = 0 and
t = 670us calculated using the positive-P method. This is
about a third of the collision time, and the maximum time
achievable with that method. The condensates are located
around v, = tvg = £9.82mm/s. The halo of scattered atoms
is clearly seen, as are the coherent frequency doubling peaks
at £3vg ~ 30mm/s. The collision is along the = axis.



The relationship of the hybrid H4 to s-ordered
operators

First, a brief exposition of the standard formalism used
in deriving phase-space quantum dynamics will be neces-
sary. Writing the state of the system as a density matrix
P, it can also be expressed as a distribution

/ 5P (@)K (D). (5)

over a family of basis operators A(%) parameterised by
variables in the set ¢. If the distribution P(?) is real and
non-negative, this corresponds, in turn, to an ensemble
of S sets of random variables ¥ (“configurations”) chosen
according to the distribution P, in the limit when & —
oo. In practice one computes a finite but large ensemble
(8 > 1) and knows properties of p to within a statistical
uncertainty that can be confidently estimated from the
properties of the finite ensemble.

The dynamics of the system is described by the master
equation

L 0p ~
in2 = .7, (6)
while expectation values of observables are

(0) = Tr [Oﬁ] . (7)

These are most readily related to the computational en-
semble of random variables through the use of the “oper-
ator identities”, that are specific to each formulation.

For example, in the positive-P method one chooses A
to be an off-diagonal coherent-state operator. Letting
x label discrete points in the computational lattice with
AV volume per point, defining

aj(x) = ;(x)/ VAV,

one has

C o en(edas ()l
Aer® =105, Gt G ®

where ¥ = {1, as},
|a>x _ e"“|2/26‘“a;|0)x

is a coherent state on the x lattice point with the complex
amplitude « and anihilation operator ax = ¥(x)VAV.
Then, one finds (omitting ubiquitous local x dependence)
the operator identities:

SN 9 1~

UiApp = |93+ —| A
PP [¢2+8¢J PP

0

o3

UApp = p1hpp

AppUt =3hpp  ;  Appl = [¢1 + ] App,

which are the source of the positive-P identities in the
main text. Combined with (&) and (6) these allow one
to obtain a partial differential equation for P(¥,t) that is
equivalent to the full quantum evolution of p(t¢). For the
positive-P representation, this is a Fokker-Planck equa-
tion, and it corresponds exactly to the Langevin equa-
tions given in (5) of the main text Combining the iden-

tities with (@) and Tr |:Kppi| =1 one finds

(0) = / P(9) fo (@)

with a function fo that is obtained from O via the oper-
ator identities, so that in the calculation it corresponds
to an ensemble average of fo. For example, for O =
UT(x)W¥(x), the function is' fo = ¥3(x)11(x). The ini-
tial coherent state corresponds to P =[], . 5B (i (x) —
bor(x)).

It has been shown? that the Glauber-Sudarshan P dis-
tribution described by a coherent state operator basis

(@) = [T la())x ()l

(similar to the positive-P but diagonal) can be described
as the limit of a representation over s-ordered basis states

Agsp

KGSP = lim KS

s—1—
where s can take on continuous values from -1 to 1, and

3 D(a)x (
Ay [f)

~

oD M)
T(0, —s)x D~ 1(04),(}

Here

ATA
~ 2 s — 1) %=
T(0,—s)x =
(0,=5) 1+s (1 + s)
is a kernel operator that becomes the vacuum |0)(0| in
the limit of s — 1~ and the local displacement operator
is

B(Q)x _ ea(x)?ilfa(x)*?ix )

so that coherent states are |a) = D(a)|0). It was also
shown there that the Wigner distribution corresponds to
s = 0, hence a variation of s from 0 to 1 looks like a good
candidate to create the H 4 hybrid formulation between
truncated Wigner and positive-P. The “truncation” refers

L fo =¥} (x)12(x) can also be obtained, but gives the same value
of (O) in the § — oo limit.

2 K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969);
ibid. 177, 1882 (1969)



to ad-hoc removal of third order® partial derivatives of
the Wigner distribution P in its evolution equation to
make it interpretable as Langevin stochastic equations of
the samples. This removal is the reason why truncated
Wigner treatments do not reproduce the full quantum
dynamics.

First, though, one must take into account the off-
diagonality that is responsible for the difference between
the Glauber-Sudarshan P and positive-P: App # Agsp.
Notably one of the bases* that reproduces the positive-P
is

App(@) =[]

:ng

where the “displacement-like” operator

~

A1), = e 002"

is obtained by the replacement o — a1, a* — a3 in ﬁ(a),
and the second line follows because the trace in the de-
nominator evaluates to one. The reason for this partic-
ular replacement is that for the positive-P distribution
one requires A to depend analytically on two separate
complex variables, hence their complex conjugates must
be removed. Here these analytic variables are oy and os.

The extension of this A onto a family of s-ordered bases
is

This then interpolates towards the Wigner representa-
tion. Note that since the truncated Wigner evolution is
deterministic, then if one takes the formally off-diagonal
basis set with s = 0 but imposes §(¢)1 — 12) in the ini-
tial conditions, it will remain exactly equivalent to the
normal truncated Wigner formulation of (@) with s = 0.

3 And higher order terms if necessary, although for the cold atom
Hamiltonian considered in this letter, only partial derivatives up
to third order are present in the Wigner representation.

4 Though not the only one. Other ways of writing A such as e.g.
D(a1)T(0, —1)D(a2)/ Tr[D(a1)T(0, —1)D(a2)] can also repro-
duce the positive-P formulation but are not useful for general-
isation to s < 1, and do not reproduce the same itermediate
operator identities.

One obtains the identities®

R = |- A2
BR = Jug+ | B
RAT = g - 50| B
R0 = [+ 15 o | 2

which are exactly the same as was obtained by a naive
blending of the operator identities in the main text pro-
vided we identify A = s.

Regarding initial conditions, the diagonal s-ordered
representation (@) for a coherent state |¢cp) was found
by Cahill and Glauber to be Gaussian

P(’Q/J) _ H % exp (_2|¢(X) — ¢GP(X)| ) ) (12)

AV (1 —s)
When one additionally imposes {1 = ¥ = 1 as is done
in the main text, this is equivalent to (IIl), justifying
the initial conditions given in the main text that contain
complex Gaussian noise of variance (1 — s)/2.

5 For example, by comparison of expressions for LHS and RHS
when T'(0, —s) is expanded in number states.



Halo density calculations
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A-dependent predictions of halo density (at v, = v. = 0,
vy = 9.37Tmm/s in velocity space) for several times (circles)
with uncertainty shown as vertical bars at the same location.
The corresponding fits (dashed) are quadratic for the Hz hy-
brid, and constant-value for H 4. Fitting is via minimisation
of rms deviation in units of 1o data uncertainty. Linear or
quadratic fits to the H4 hybrid data are not more statisti-
cally significant than the constant-value fit, and hence would
be poorly conditioned.
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Predictions of halo density (at v, = v, = 0, v, = 9.37Tmm/s
in velocity space) from hybrids H4 and Hz compared with
short-time full quantum dynamics and approximate methods.
Triple lines, where visible, are 1o uncertainty. Prediction data
based on ~ 10 — 20 values of A\, each with ~ 300 — 1000
trajectories, and quadratic / constant-value fitting for H4 /
‘Hp hybrids, respectively. Note the agreement with truncated
Wigner to within statistical uncertainty. Times detailed in
the previous figure (above) are highlighted.

Extrapolation from partial A segment
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Predictions of the number of scattered atoms at several times,
as a function of the \ segment A € [0, Amax] used for extrapo-
lation from a quadratic fit to H 4 results. Triple lines, where
visible, are 1o uncertainty. Dashed lines indicate the final pre-
dictions using all the available A values. Data used was from
the same simulations as in Fig. 2 of the main text. There is
no statistically significant trend with Amax visible, suggesting
that the fitting function that is a quadratic polynomial in A
is appropriate within statistical precision.



