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The Hierarchical Random Energy Model
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We introduce a Random Energy Model on a hierarchical lattice where the interaction strength
between variables is a decreasing function of their mutual hierarchical distance, making it a non-
mean field model. Through small coupling series expansion and a direct numerical solution of the
model, we provide evidence for a spin glass condensation transition similar to the one occurring in
the usual mean field Random Energy Model. At variance with mean field, the high temperature
branch of the free-energy is non-analytic at the transition point.
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Clarifying the nature of glassy states is a fun-
damental goal of modern statistical physics. Both
for spin glasses [1] and for structural glasses [2],
the mean field theory of disordered systems pro-
vides a suggestive picture of laboratory glassy phe-
nomena as the reflection of an ideal thermodynamic
phase transition. Unfortunately, the development of
a first principles theory of glassy systems going be-
yond mean field, has resisted decades of intense re-
search [3–5]. One of the main obstacles towards this
goal, lies in the lack of reliable real space renormal-
ization group (RG) schemes allowing to reduce the
effective number of degrees of freedom and identify
the relevant fixed points describing glassy phases. In
ferromagnetic systems an important role in the un-
derstanding of the real space RG transformation has
been played by spin systems with power law interac-
tions on hierarchical lattices [6, 7]. In these models
the RG equations take the simple form of non-linear
integral equations for an unknown function (as op-
posed to the functional of statistical field theory),
that can be solved with high precision. In this per-
spective it is natural to generalize these models to
spin glasses [8]. [9]

In this letter, we introduce the simplest such spin
glass model, a random energy model (REM) [13, 14].
As we shall see, the hierarchical REM is such that the
interaction energy between subsystems scales subex-
tensively in the system size. It thus qualifies as a
non-mean-field model. We report in what follows the
results of a small coupling expansion and of an algo-
rithmic solution of the RG equations for the entropy
that, exploring complementary regions of parameter
space, provide the first analytic evidence in favor of
an ideal glass transition in a non mean-field model.
Interestingly, this transition turns out to have -as in
the case of the standard REM- the character of an
entropy catastrophe analogous to the one hypothe-

sized long ago for the structural glasses [15, 16].

The hierarchical REM can be defined as a sys-
tem of N = 2k Ising spins with an energy function
defined recursively. The recursion is started at the
level of a single spin k = 0, with the definition of
H0[S] = ǫ0(S), where the single spin energies are
independent identically distributed (i.i.d.) random
variables extracted from a distribution µ0(ǫ). At
the level k + 1, we consider then two independent
systems of 2k spins S1 = {S1i}, i = 1, . . . , 2k and
S2 = {S2i}, i = 1, . . . , 2k with Hamiltonians H1k [S1]
and H2k [S2] respectively and put them in interac-
tion to form a composite system of 2k+1 spins and
Hamiltonian

Hk+1 [S1, S2] = H1k [S1] +H2k [S2] + ǫk [S1, S2] ,

where the ǫk are i.i.d. random variables extracted
from a distribution µk+1(ǫ), chosen to have zero

mean and variance
〈

ǫk [S1, S2]
2
〉

∽ 2(k+1)(1−σ). The

interaction term ǫk [S1, S2] is physically analogous to
a surface interaction energy between the two subsys-
tems. For σ ∈ (0, 1) this model qualifies as a non
mean-field system, where the interaction energy be-
tween different parts of the system scales with vol-
ume to a power smaller than unity. On the contrary,
when σ ≤ 0 the interaction energy grows faster than
the volume. A rescaling of the energy is then neces-
sary to get a well defined thermodynamic limit. The
system behaves in this case as a mean-field model.
Finally, for σ > 1 the interaction energy decreases
with distance and asymptotically the model behaves
as a free system. In the following we focus on the
most interesting region 0 < σ < 1.

We have studied this model with two different
methods. The first one is a replica study of the
quenched free-energy, performed through a small
coupling perturbative expansion. The second one is
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a numerical estimate of the microcanonical entropy
as a function of the energy. Both methods suggest
that a REM-like finite-temperature phase transition
occurs for all σ ∈ (0, 1).

Perturbative computation of the free-energy- In or-
der to make the calculations as simple as possible, we
have chosen a Gaussian distribution for the energies
ǫk.
We then considered the perturbative expansion in
g ≡ 21−σ of the free-energy f(T ) = f (m)(T ) +
O(gm+1). Notice that the expansion of f to the m-
th order takes into account just the interactions with
range less or equal to 2m, i. e. the first m hierarchi-
cal levels.

The computation of the free-energy has been done
with the replica method. In this context it is just a
mathematical tool to organize the terms of the se-
ries. We considered then the expansion of the av-
erage partition function of the system replicated n
times

Zn =
∑

S1···Sn

exp





β2

4

k
∑

j=0

gj
2k−j

∑

i=1

n
∑

a,b=1

δ
S

(j,i)
a S

(j,i)
b





(1)
where β ≡ 1/T , and S(j,i) is the configuration of the
i-th group of spins at the j-th level of the hierarchy.
This representation allowed an automated computa-
tion of f (m) up to the value of m = 10.

A useful check of the method is obtained consid-
ering σ < 0. Since in this case high values of j dom-
inate the energy in (1), correlations between the en-
ergy levels can be neglected. After rescaling the ener-
gies by ǫj → 2kσ/2ǫj the free-energy of the model be-
comes equal to the one of the standard REM [13, 14]

with critical temperature Tc =
√

∑

j 2
−σj/ log 2. We

found that, when increasing m, f (m) converges to
the REM free-energy with exponential speed in the
whole high temperature regime β < βc.

We now consider f(T ) for 0 < σ < 1. The direct
inspection of the curves shows that, for m ≥ 1, the
m-th order entropy s(m)(T ) ≡ −df (m)(T )/dT while
positive at high temperature, becomes negative at

some temperature T
(m)
c . As can be seen in fig. 1,

the sequence T
(m)
c exhibits a good exponential con-

vergence to a finite limit Tc for σ ≤ 0.15. The sta-
bility of these data for large m clearly suggests that
an entropy crisis transition is present in the model
at Tc. The inset in fig. (1) shows that Tc is a de-
creasing function of σ, consistently with the fact that
the larger σ, the weaker the interaction strength. At
high temperature also the free-energy series has a
good exponential convergence in g (see fig. 2).

This small g expansion gives some evidence for
an entropy crisis taking place at temperature Tc. It
is important to realize that this Tc cannot be sim-
ply computed from the sum of the variances of the
ǫk: the energy correlations cannot be neglected. An
entropy crisis implies the existence of a phase tran-
sition at a temperature ≥ Tc. In a REM scenario,
the phase transition would take place exactly at Tc,
when the entropy vanishes. An argument in favour
of such a result can be found with a one-step replica
symmetry breaking Ansatz. Consider the partition
function (1) and suppose that the n replicas are
grouped into n/x groups, so that, for any two repli-

cas a, b in the same group, S
(j,i)
a = S

(j,i)
b for all i, j.

Then perform again the small g expansion, within
this Ansatz. To each order m, this procedure gives

a free-energy f
(m)
x (T ) = f (m)(T/x). The maximiza-

tion over x then gives x = 1 for T > T
(m)
c , and

x = T/T
(m)
c for T < T

(m)
c . This result is in com-

plete analogy with the one found in the REM, so the
above replica symmetry breaking Ansatz predicts a
REM-like transition at T = Tc. In order to get a dis-
tinct evidence for this scenario, we have done some
numerical study.
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FIG. 1: The temperatures T
(m)
c vs m for σ = .1. Here

Tc = 1.861 ± .021. Inset: Tc vs σ.

Numerical computation of the entropy- We exploit
the hierarchical structure of the model to compute
the microcanonical entropy Sk(E). In order to make
the computations as simple as possible, we have
chosen for µk(ǫ) the Binomial distribution [17, 18];

µk(ǫ) = 1
2Mk

(

Mk

ǫ+ Mk

2

)

. At the level k, Mk is the

integer part of γ2k(1−σ), to have the same scaling of
the variance as in the Gaussian model. The constant
γ is chosen so that for all the values of σ studied,
⌊(γ2k(1−σ))⌋/(γ2k(1−σ)) ≈ 1 for every k. Consider



-3.5

-3

-2.5

-2

-1.5

-1

1.5 2 2.5 3 3.5 4

f

T

f (∞)(T )

f (m)(T − Tc + T
(m)
c )

FIG. 2: To get a better convergence for the free-energy,

we considered the sequence f (m)(T − Tc + T
(m)
c ) instead

of f (m)(T ). As T
(m)
c → Tc for m → ∞, the two sequences

have the same limit f (∞)(T ). Here we see that for σ = .1,

f (m)(T ) has negative entropy s(m)(T ) for T < T
(m)
c .

the disorder-dependent density of states for a sam-
ple a : N a

k (E) =
∑

S δHk(S),E . The recursion re-
lation that defines the model’s Hamiltonian implies
that when two samples a and b at the level k are
merged to define a sample at the level k + 1, the
resulting density of states N c

k+1(E) satisfies:

N c
k+1(E) =

∑

Ea,Eb,ǫ

E=Ea+Eb+ǫ

nk(Ea, Eb, ǫ) (2)

where nk(Ea, Eb, ǫ) =
∑

S1,S2
δHa

k
(S1),Ea

×
×δHb

k
(S1),Eb

δǫk(S1,Se),ǫ is the number of states in
the composite system that have Ha = Ea, Hb = Eb

and interaction energy equal to ǫ. For given Ea and
Eb, the joint distribution of the nk(Ea, Eb, ǫ) for the
different values of ǫ is multinomial with parameters
qǫ = 〈nk(Ea, Eb, ǫ)〉 = N a

k (Ea)N b
k (Eb)µk(ǫ), while

nk’s with different first or second argument are
independent.

Our algorithmic approach starts from the exact
iteration of Eq. 2. Thanks to the use of a discrete
interaction energy, the iteration time grows with k
proportionally to 2k(3−σ). This allowed us to reach
the level k = 12. The results of the iteration shows
that the values of the energy can be divided in bulk

region of energy density around the origin where the

number of states Nk(E) = e2
kSk(E/2k) is exponential

in the system size, and an edge region where the
number of states is of order one (see fig. 3).

In order to proceed further, we assume the ex-
istence and self-averaging property of the entropy
density S(e) in the thermodynamic limit. We then

coarse-grain our description. We discretize the en-

ergy density in the bulk region and use an approxi-
mated iteration for the entropy, where the sum (2)
is approximated by its maximum term. We account
for the edge region using the exact recursion for the
N0 = 10, 000 lowest energy levels. We can in this
way iterate many times and obtain a good estimate
of the thermodynamic limit behaviour.

In fig. 3, we present the average entropy den-
sity as a function of the energy density e for vari-
ous values of σ. In order to identify the transition,
it is more convenient to average the data obtained
with a fixed energy difference from the fluctuating
ground states. We can get in this way good esti-
mates of the value of the inverse critical tempera-
ture of the model βc = s′(e0). An interesting fea-
ture emerging from our analysis is that close to the
ground state energy density e0 the entropy is not an-
alytic and behaves as S(e) ≈ βc(e− e0)+C(e− e0)

a

with a well fitted by the value a = 2 − σ. This be-
havior, when translated in the canonical formalism,
implies a singularity of the free-energy close to Tc,

F (T ) = E0+Const× (T −Tc)
2−σ
1−σ , corresponding to

a specific heat exponent α = − σ
1−σ .
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FIG. 3: The entropy s(e) vs e/
√
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(with γ = 30, 10, 5, 5 respectively), from the outside to
the inside. Inset: power law behaviour of β − βc. The
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Having found evidence for a thermodynamic phase
transition, we turn our attention to the distribution
of low-lying energy states. The REM picture sug-
gests that, close to the ground state, the number
of energy levels with given energy E are indepen-
dent Poissonian variables with density 〈N∞(E)〉 =
eβc(E−E0). A computation using extreme value
statistics shows that the probability Qℓ(k) that the
ground state and first ℓ− 1 excited states are occu-



pied by n levels is given by:

Qℓ(n) = (1− exp(−ℓβc))
n/(ℓβcn). (3)

In fig. 4 we show the Qℓ(n) obtained numerically
together with a fit with the form (3). This procedure
confirms the validity of a REM-like transition, and
provides an alternative way of estimating the critical
temperature. As fig. 5 shows, the two estimates
for different values of k tend to the same limit from
opposite directions.
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with βc = 1.20
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Conclusions- In this letter we have introduced a
hierarchical, non-mean field, REM. We have ana-

lyzed it through small coupling series, through a
1RSB replica Ansatz, and through an algorithmic
approach. The two approaches point to the exis-
tence of a REM-like phase transition at the temper-
ature where the entropy vanishes. At variance with
the mean field result (which predicts a discontinuity
in the specific heat), one finds a non-trivial specific
heat exponent at Tc. It will be interesting to study
the replica structure of this hierarchical REM in or-
der to explore other possible replica solutions at low
temperatures. Another important theme of future
research is the study of spin-glass models with p-
body interaction [13, 19, 20]: at the mean field level,
these models display an entropy crisis transition sim-
ilar to the one of the REM whenever p ≥ 3. It will
be interesting to study them on hierarchical lattices.
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