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We study numerically the spectrum and eigenstate properties of the Google matrix of various
examples of directed networks such as vocabulary networks of dictionaries and university World
Wide Web networks. The spectra have gapless structure in the vicinity of the maximal eigenvalue for
Google damping parameter α equal to unity. The vocabulary networks have relatively homogeneous
spectral density, while university networks have pronounced spectral structures which change from
one university to another, reflecting specific properties of the networks. We also determine specific
properties of eigenstates of the Google matrix, including the PageRank. The fidelity of the PageRank
is proposed as a new characterization of its stability.

PACS numbers: 89.20.Hh, 89.75.Hc, 05.40.Fb, 72.15.Rn

I INTRODUCTION

The rapid growth of the World Wide Web (WWW)
brings the challenge of information retrieval from this
enormous database which at present contains about 1011

webpages. An efficient algorithm for classification of web-
pages was proposed in [1], and is now known as the
PageRank Algorithm (PRA). This PRA formed the basis
of the Google search engine, which is used by the major-
ity of Internet users in everyday life. The PRA allows to
determine efficiently a vector ranking the nodes of a net-
work by order of importance. This PageRank vector is
obtained as an eigenvector of the Google matrix G built
on the basis of the directed links between WWW nodes
(see e.g. [2]):

G = αS+ (1− α)E/N . (1)

Here S is the matrix constructed from the adjacency ma-
trix Aij of the directed links of the network of size N ,
with Aij = 1 if there is a link from node j to node i,
and Aij = 0 otherwise. Namely, Sij = Aij/

∑
k Akj if∑

k Akj > 0, and Sij = 1/N if all elements in the column
j ofA are zero. The last term in Eq.(1) with uniform ma-
trix Eij = 1 describes the probability 1− α of a random
surfer propagating along the network to jump randomly
to any other node. The matrix G belongs to the class
of Perron-Frobenius operators. For 0 < α < 1 it has
a unique maximal eigenvalue at λ = 1, separated from
the others by a gap of size at least 1 − α (see e.g. [2]).
The eigenvector associated to this maximal eigenvalue is
the PageRank vector, which can be viewed as the steady-
state distribution for the random surfer. Usual WWW

∗present address: Laboratoire de Physique Théorique et Modèles
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networks correspond to very sparse matrix A and re-
peated applications of G on a random vector converges
quickly to the PageRank vector, after 50− 100 iterations
for α = 0.85 which is the most commonly used value [2].
The PageRank vector is real nonnegative and can be or-
dered by decreasing values pj , giving the relative impor-
tance of the node j. It is known that when α varies, all
eigenvalues evolve as αλi where λi are the eigenvalues for
α = 1 and i = 2, ...N , while the largest eigenvalue λ1 = 1,
associated with the PageRank, remains unchanged [2].

The properties of the PageRank vector for WWW have
been extensively studied by the computer science com-
munity and many important properties have been estab-
lished [3–7]. For example, it was shown that pj decreases
approximately in an algebraic way pj ∼ 1/jβ with the
exponent β ≈ 0.9 [3]. It is also known that typically for
the Google matrix of WWW at α = 1 there are many
eigenvalues very close or equal to λ = 1, and that even
at finite α < 1 there are degeneracies of eigenvalues with
λ = α (see e.g. [8]).

In spite of the important progress obtained during
these investigations of PageRank vectors, the spectrum
of the Google matrix G was rarely studied as a whole.
Nevertheless, it is clear that the structure of the network
is directly linked to this spectrum. Eigenvectors other
than the PageRank describe the relaxation processes to-
ward the steady-state, and also characterize various com-
munities or subsets of the network. Even if models of
directed networks of small-world type [9] have been an-
alyzed, constructed and investigated, the spectral prop-
erties of matrices corresponding to such networks were
not so much studied. Generally for a directed network
the matrix G is nonsymmetric and thus the spectrum of
eigenvalues is complex. Recently the spectral study of
the Google matrix for the Albert-Barabasi (AB) model
[10] and randomized university WWW networks was per-
formed in [11]. For the AB model the distribution of
links is typical of scale-free networks [9]. The distribu-
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tion of links for the university network is approximately
the same and is not affected by the randomization proce-
dure. Indeed, the randomization procedure corresponds
to the one proposed in [12] and is performed by taking
pairs of links and inverting the initial vertices, keeping
unchanged the number of ingoing and outgoing links for
each vertex. It was established that the spectra of the
AB model and the randomized university networks were
quite similar. Both have a large gap between the largest
eigenvalue λ1 = 1 and the next one with |λ2| ≈ 0.5 at
α = 1. This is in contrast with the known property of
WWW where λ2 is usually very close or equal to unity
[2, 8]. Thus it appears that the AB model and the ran-
domized scale-free networks have a very different spectral
structure compared to real WWW networks. Therefore it
is important to study the spectral properties of examples
of real networks (without randomization).
In this paper, we thus study the spectra of Google

matrices for the WWW networks of several universities
and show that indeed they display very different proper-
ties compared to random scale-free networks considered
in [11]. We also explore the spectra of a completely dif-
ferent type of real network, built from the vocabulary
links in various dictionaries. In addition, we analyze the
properties of eigenvectors of the Google matrix for these
networks. A special attention is paid to the PageRank
vector and in particular we characterize its sensitivity to
α through a new quantity, the PageRank fidelity.

The paper is organized as follows. In Section II we give
the description of the university and vocabulary networks
whose Google matrices we consider. The properties of
spectra and eigenstates are investigated in Section III.
The fidelity of PageRank and its other properties are
analyzed in Section IV. Section V explores various models
of random networks for which the spectrum can be closer
to the one of real networks. The conclusion is given in
Section VI.

II DESCRIPTION OF NETWORKS OF

UNIVERSITY WWW AND DICTIONARIES

In order to study the spectra and eigenvectors of
Google matrices of real networks, we numerically ex-
plored several systems.
Our first example consists in the WWW networks of

UK universities, taken from the database [13]. The ver-
tices are the HTML pages of the university websites in
2002. The links correspond to hyperlinks in the pages
directing to another webpage. To reduce the size of
the matrices in order to perform exact diagonalization,
only webpages with at least one outlink were considered.
There are still dangling nodes, despite of this selection,
since some sites have outlinks only to sites with no out-
link. We checked on several examples that the general
properties of the spectra were not affected by this reduc-

tion in size. We present data on the spectra from five
universities:

• University of Wales at Cardiff (www.uwic.ac.uk),
with 2778 sites and 29281 links.

• Birmingham City University (www.uce.ac.uk);
10631 sites and 82574 links.

• Keele University (Staffordshire) (www.keele.ac.uk);
11437 sites and 67761 links.

• Nottingham Trent University (www.ntu.ac.uk);
12660 sites and 85826 links.

• Liverpool John Moores University
(www.livjm.ac.uk); 13578 sites and 111648
links.

A much larger sample of university networks from the
same database was actually used, including universities
from the US, Australia and New Zealand, in order to
insure that the results presented were representative.
As opposed to the full spectrum of the Google ma-

trix, the PageRank can be computed and studied for
much larger matrix sizes. In the studies of Section IV,
we therefore included additional data from the univer-
sity networks of Oxford in 2006 (www.oxford.ac.uk) with
173733 sites and 2917014 links taken from [13], and the
network of Notre Dame University from the US taken
from the database [14] with 325729 sites and 1497135
links (without removing any node).
In addition, we also investigated several vocabulary

networks constructed from dictionaries; the network data
were taken from [15].

• Roget dictionary (1022 vertices and 5075 links) [16].
The 1022 vertices correspond to the categories in
the 1879 edition of Roget’s Thesaurus of English
Words and Phrases. There is a link from category X
to category Y if Roget gave a reference to Y among
the words and phrases of X, or if the two categories
are related by their positions in the book.

• ODLIS dictionary (Online Dictionary of Library
and Information Science), version December 2000
[17] (2909 vertices and 18419 links).
A link (X,Y) from term X to term Y is created if
the term Y is used in the definition of term X.

• FOLDOC dictionary (Free On-Line Dictionary of
Computing) [18] (13356 vertices and 120238 links)
A link (X,Y) from term X to term Y is created if
the term Y is used in the definition of term X.

Distribution of ingoing and outgoing links for these
university WWW networks is similar to those of much
larger WWW networks discussed in [3, 7, 9]. An exam-
ple is shown in the Appendix for the network of Liver-
pool John Moores University, together with data from
AB models discussed in [11] (see Fig. 12).
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III PROPERTIES OF SPECTRUM AND

EIGENSTATES

To study the spectrum of the networks described in
the previous section, we construct the Google matrix G

associated to them at α = 1. After that the spectrum
λi and right eigenstates ψi of G (satisfying the relation
Gψi = λiψi) are computed by direct diagonalization us-
ing standard LAPACK routines. Since G is generally a
nonsymmetric matrix for our networks, the eigenvalues
λi are distributed in the complex plane, inside the unit
disk |λi| ≤ 1.

The spectrum for our eight networks is shown in Fig.1.
An important property of these spectra is the presence of
eigenvalues very close to λ = 1 and moreover we find that
λ = 1 eigenvalue has significant degeneracy. It is known
that such an exact degeneracy is typical for WWW net-
works (see e.g. [7, 8]). In addition to this exact degen-
eracy, there are quasidegenerate eigenvalues very close
to λ = 1. It is important to note that these features
are absent in the spectra of random networks studied
in [11] based on the AB model and on the randomiza-
tion of WWW university networks, where the spectrum
is characterized by a large gap between the first eigen-
value λ1 = 1 and the second one with |λ2| ≈ 0.5. For ex-
ample, the spectrum shown in Fig.1 panel H corresponds
to the same university whose randomized spectrum was
displayed in Fig.1 (bottom panel) in [11]. Clearly the
structure of the spectrum becomes very different after
randomization of links. Another property of the spectra
displayed in Fig.1 that we want to stress is the presence
of clearly pronounced structures which are different from
one network to another. The structure is less pronounced
in the case of the three spectra obtained from dictionary
networks. In this case, the spectrum is flattened, be-
ing closer to the real axis. In contrast, for the WWW
university networks, the spectrum is spread out over the
unit disk. However, there is still a significant fraction of
eigenvalues close to the real axis. We understand this
feature by the existence of a significant number of sym-
metric ingoing and outgoing links (48 % in the case of
the Liverpool John Moores University network), which
is larger compared to the case of randomized university
networks considered in [11].
To characterize the spectrum, we introduce the

relaxation rate γ defined by the relation |λ| =
exp(−γ/2). For characterization of eigenvectors ψi(j),
we use the PArticipation Ratio (PAR) defined by ξ =
(
∑

j |ψi(j)|
2)2/

∑
j |ψi(j)|

4. This quantity gives the effec-
tive number of vertices of the network contributing to a
given eigenstate ψi; it is often used in solid-state systems
with disorder to characterize localization properties (see
e.g. [19]). The dependence of the density of states W (γ)
in γ, which gives the number of eigenstates in the inter-
val [γ, γ+ dγ], is shown in Figs.2,3,4,5 (top panels). The
normalization is chosen such that

∫
∞

0
W (γ)dγ = 1, cor-
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FIG. 1: Distribution of eigenvalues λi of Google matrices in
the complex plane at α = 1 for dictionary networks: Roget (A,
N=1022), ODLIS (B, N=2909) and FOLDOC (C, N=13356);
university WWW networks: University of Wales (Cardiff) (D,
N=2778), Birmingham City University (E, N=10631), Keele
University (Staffordshire) (F, N=11437), Nottingham Trent
University (G, N=12660), Liverpool John Moores University
(H, N=13578)(data for universities are for 2002).
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FIG. 2: (Color online) Left: Roget dictionary, α = 1. Top
panel: normalized density of states W (black) obtained as
a derivative of a smoothed version of the integrated density
(smoothed over a small interval ∆γ varying with matrix size),
integrated density is shown in red (grey) . Bottom panel:
PAR of eigenvectors as a function of γ; degeneracy of λ = 1 is
18 (note that the value W (0) corresponds to eigenvalues with
|λ| = 1). Right: ODLIS dictionary, same as left; degeneracy
of λ = 1 is 4.

responding to the total number of eigenvalues N (equal
to the matrix size). We also show the integrated version
of this quantity in the same panels. In the same Figs
we show the PAR ξ of the eigenstates as a function of γ
(bottom panels).
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FIG. 3: (Color online) Left: FOLDOC dictionary, same as
Fig. 2; degeneracy of λ = 1 is 1; Right: University of Wales
(Cardiff), same as left; degeneracy of λ = 1 is 69.

It is clear that for the dictionary networks the density
of states W depends on γ in a relatively smooth way,
with a broad maximum at γ ≈ 1 − 2. The distribution
of PAR has also a maximum at approximately the same
values. The case of the dictionary FOLDOC is a bit spe-
cial, showing a bimodal distribution which is also clearly
seen in the dependence of ξ on γ. This comes from the
fact that the distribution of eigenvalues in Fig. 1 (panel
C) is highly asymmetric with respect to the imaginary
axis. The latter case has also no degeneracy at λ = 1.
In these three networks the density of states decreases
for γ approaching 0. We note that the integrated version
of the density of states reaches a plateau for γ ≥ 6 − 7.
This saturation value is less than 1, meaning that a cer-
tain nonzero fraction of eigenvalues are extremely close
to λ = 0.
For the WWW university networks, the density of
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FIG. 4: (Color online) Left: Birmingham City University,
same as Fig. 2; degeneracy of λ = 1 is 71; Right: Keele
University (Staffordshire), same as left; degeneracy of λ = 1
is 205.

states is much more inhomogeneous in γ. Even if a broad
maximum is visible, there are sharp peaks at certain val-
ues of γ. The sharpest peaks correspond to exact degen-
eracies at certain complex values of λ. The degeneracies
are especially visible at the real values λ = 1/2, λ = 1/3
and other 1/n with integer values of n. We attribute
this phenomenon to the fact that the small number of
links gives only a small number of different values for
the matrix elements of the matrix G. For the university
networks, the degeneracy at λ = 1 is much larger than
in the case of dictionaries. The integrated densities of
states show visible vertical jumps which correspond to
the degeneracies; their growth saturates at γ ≈ 7 show-
ing that about 30− 50% of the eigenvalues are located in
the vicinity of λ = 0.
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FIG. 5: (Color online) Left: Nottingham Trent University,
same as Fig. 2; degeneracy of λ = 1 is 229. Right: Liverpool
John Moores University, same as left; degeneracy of λ = 1
is 109; other degeneracy peaks correspond to λ = 1/2 (16),
λ = 1/3 (8); λ = 1/4 (947), λ = 1/5 (97), being located at
γ = −2 lnλ; other degeneracies are also present, e.g. λ =
1/

√
2 (41).

The PAR distribution for the university networks fluc-
tuates strongly, even if a broad maximum is visible. Typ-
ical values have ξ ≈ 100, which is small compared to the
matrix size N ∼ 104. This indicates that the majority
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of eigenstates are localized on certain zones of the net-
work. This does not exclude that certain eigenstates with
a larger ξ will be delocalized on a large fraction of the
network in the limit of very large N .

FIG. 6: Cloud of eigenvalues for Liverpool John Moores Uni-
versity, α = 1. Circles: full matrix N = 13578. Stars: trun-
cated matrix of size 8192 (left) and 4096 (right).

The exact G matrix diagonalization requires signifi-
cant computer memory and is practically restricted to
matrix size N of about N < 30000. However, real net-
works such as WWW networks can be much larger. It
is therefore important to find numerical approaches in
order to obtain the spectrum of large networks using ap-
proximate methods. A natural possibility is to order the
sites through the PageRank method and to consider the
spectrum of the (properly renormalized) truncated ma-
trix restricted to the sites with PageRank larger than
a certain value. In this way, the truncation takes into
account the most important sites of the network. The
effect of such a truncation is shown in Fig. 6 for the
largest network of our sample. The numerical data show
that the global features of the spectrum are preserved
by moderate truncation, but individual eigenvalues devi-
ate from their exact values when more than 50% of sites
are truncated. Probably future developments of this ap-
proach are needed in order to be able to truncate a larger
fraction of sites.

IV FIDELITY OF PAGERANK AND ITS OTHER

PROPERTIES

In the previous section we studied the properties of
the full spectrum and all eigenstates of the G matrix for
several real networks. The PageRank is especially impor-
tant since it allows to obtain an efficient classification of
the sites of the network [1, 2]. Since the networks usually
have small number of links, it is possible to obtain the
PageRank by vector iteration for enormously large size
of networks as described in [1, 2].
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FIG. 7: (Color online) PAR ξ of PageRank as a function of α
for University of Wales (Cardiff) (black/dashed), Notre-Dame
(blue, dotted), Liverpool John Moores University (red/long
dashed) and Oxford (green/solid) Universities (curves from
top to bottom at α = 0.6). Network sizes vary from N =
2778 to N = 325729. Inset is a zoom for data from Oxford
University close to α = 1.

Due to this significance of the PageRank, it is impor-
tant to characterize its properties. In addition, it is im-
portant to know how sensitive the PageRank is with re-
spect to the Google parameter (damping parameter) α in
Eq. (1). The localization property of the PageRank can
be quantified through the PAR ξ defined above. The de-
pendence of ξ on α is shown in Fig.7 for four University
WWW networks, including two from Fig.1 (panels D and
H) and two of much larger sizes (Notre Dame and Ox-
ford). For α → 0 the PAR goes to the matrix size since
the G matrix is dominated by the second part of Eq. 1.
However, in the interval 0.4 < α < 0.9 the dependence
on α is rather weak, indicating stability of the PageRank.
For 0.9 < α < 1 the PAR value has a local maximum
where its value can be increased by a factor 2 − 3. We
attribute this effect to the existence of an exact degen-
eracy of the eigenvalue λ = 1 at α = 1, discussed in the
previous section. In spite of this interesting behavior of ξ
in the vicinity of α = 1, the value of ξ, which gives the ef-
fective number of populated sites, remains much smaller
than the network size. In other models considered in
[11, 20], a delocalization of the PageRank was observed
for some α values, so that ξ was growing with system size
N . For the WWW university networks considered here,
delocalization is clearly absent (network sizes in Fig. 7
vary over two order of magnitudes). This is in agreement
with the value of the exponent β ≈ 0.9 for the PageR-
ank decay, which was found for large samples of WWW
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data in [3, 7]. Indeed, for that value of β, PAR should
be independent of system size.
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FIG. 8: (Color online) Some PageRank vectors pj for Notre-
Dame university (left panel) and Oxford (right panel). From
top to bottom at log

10
(i) = 5: α=0.49 (black), 0.59 (red), 0.69

(green), 0.79 (blue) , 0.89 (violet) and 0.99 (orange). Dashed
line indicates the slope -1.

Our data for PageRank distribution also show its sta-
bility as a whole for variation of α in the interval 0.4 <
α < 0.9, as it is shown in Fig. 8.
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FIG. 9: (Color online) PageRank fidelity f(α, α′) for Notre-
Dame university (N = 325729); left panel: f(α, α′ = 0.85) =
|〈ψ(α)|ψ(0.85)〉|2 (see Eq. (2)); right panel: color density plot
of f(α, α′) .

The sensitivity of the PageRank with respect to α can
be more precisely characterized through the PageRank

fidelity defined as

f(α, α′) = |
∑

j

ψ1(j, α)ψ1(j, α
′)|2 , (2)

where ψ1(j, α) is the eigenstate at λ = 1 of the Google
matrix G with parameter α in Eq. (1); here the sum
over j runs over the network sites (without PageRank
reordering). We remind that the eigenvector ψ1(j, α) is
normalized by

∑
j ψ1(j, α)

2 = 1. Fidelity is often used in
the context of quantum chaos and quantum computing to
characterize the sensitivity of wavefunctions with respect
to a perturbation [21, 22]. The variation of this quantity

with α and α′ is shown in Fig. 9. The fidelity reaches its
maximum value f = 1 for α = α′. According to Fig. 9
(right panel), the stability plateau where fidelity remains
close to 1, indicating stability of PageRank, is broadest
for α = 0.5. This is in agreement with previous results
presented in [23], where the same optimal value of α was
found based on different arguments.

V SPECTRUM OF MODEL SYSTEMS

The results obtained in [11] compared to those pre-
sented in the previous section show that while the spec-
trum of the network has a large gap between λ = 1
and the other eigenvalues, still certain properties of the
PageRank can be similar in both cases (e.g. the expo-
nent β). In fact the studies performed in the computer
science community were often based on simplified mod-
els, which can nevertheless give the value of β close to the
one of real networks. For example, the model studied by
Avrachenkov and Lebedev [5] allows to obtain analytical
expressions for β with a value close to the one obtained
for WWW. It is interesting to see what are the spectral
properties of this model. In Fig. 10 we show the spec-
trum for this model for α = 0.85. Our data show that
this model has an enormous gap, thus being very different
from spectra of real networks shown in Fig. 1.
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FIG. 10: Spectrum of eigenvalues λ in the complex plane
for the Avrachenkov-Lebedev model of [5], with N = 211

(network size), α = 0.85, m = 5 outgoing links per node.
Multiplicity of links is taken into account in the construction
of G.

The above results, together with those of [11], show
that many commonly used network models are charac-
terized by a large gap between λ = 1 and the second
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eigenvalue, in contrast with real networks. In order to
build a network model where this gap is absent, we in-
troduce here what we call the color model. It is an ex-
tension of the AB model, that allows to obtain results for
the spectral distribution that are closer to real networks.
We divide the nodes into n sets (”colors”), allowing n to
grow with network size. Each node is labeled by an inte-
ger between 0 and n − 1. At each step, links and nodes
are added as in the AB model but also with probability
η the new node is introduced with a new color. The only
links authorized between nodes are links within each set.
Such a structure implies that the second eigenvalue of
matrix G is real and exactly equal to α [24]. The colors
correspond to communities in the network.

In order to have a more realistic model, we allow for
the rule for links to be broken with some probability ε.
That is, at each time step an link between two nodes is
chosen at random according to the rules of the AB model.
Then if it agrees with the color rule above it is used; if
it does not then with probability 1− ε it is just omitted,
and with probability ε it is nevertheless added.

The spectrum of this color model is shown in Fig. 11
for α = 0.85. The second eigenvalue is now exactly at
λ = 0.85, demonstrating the absence of a gap. There is
also a set of eigenvalues which is located on the real line,
but the majority of states remains inside a circle |λ| < 0.3
as in the AB model.
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FIG. 11: Spectrum of eigenvalues λ in the complex plane
for the color model, N = 213, p = 0.2, q = 0.1, α = 0.85.
Nodes are divided into n color sets labeled from i = 0 to
n − 1; nodes and links are created according to AB model;
only authorized links are links within a color set i. This rule
is broken with probability ǫ = 10−3. We start with 3 color
sets; with probability η a new color is introduced (we take
η = 10−2). In the example displayed, when the number of
nodes reaches N , n = 83 colors.

Thus the color model allows to eliminate the gap, but
still the distribution of eigenvalues λ in the complex plane
remains different from the spectra of real networks shown
in Fig. 1: the structures prominent in real networks are
not visible, and eigenvalues in the gap are concentrated
only on the real axis or close to it.

VI CONCLUSION

In this work we performed numerical analysis of the
spectra and eigenstates of the Google matrix G for sev-
eral real networks. The spectra of the analyzed networks
have no gap between first and second eigenvalues, in con-
trast with commonly used scale-free network models (e.g.
AB model). The spectra of university WWW networks
are characterized by complex structures which are differ-
ent from one university to another. At the same time,
PageRank of these university networks look rather simi-
lar. In contrast, the Google matrices of vocabulary net-
works of dictionaries have spectra with much less struc-
ture.
These studies show that usual models of random scale-

free networks miss many important features of real net-
works. In particular, they are characterized by a large
spectral gap, which is generally absent in real networks.
We attribute the physical origin of this gap to the known
property of small-world and scale-free networks that only
logarithmic time (in system size) is needed to go from any
node to any other node (see e.g. [9]). Due to that, the
relaxation process in such networks is fast and the gap,
being inversely proportional to this time, is accordingly
very large. In contrast, the presence of weakly coupled
communities in real networks makes the relaxation time
very large, at least for certain configurations. Therefore,
it is desirable to construct new random scale-free models
which could capture in a better way the actual properties
of real networks. The color model presented here is a first
step in this direction. We note that Ulam networks built
from dynamical maps can capture certain properties of
real networks in a relatively good manner [20, 25]. In
these latter networks, it is possible to have a delocaliza-
tion of the PageRank when α or map parameters vary;
we didn’t observe such feature here.
Indeed, our data show that the PageRank remains lo-

calized for all values of α > 0.3. We also showed that
the use of the fidelity as a new quantity to characterize
the stability of PageRank enables to identify a stability
plateau located around α = 0.5.
We think that future investigation of the spectral prop-

erties of the Google matrix will open new access to iden-
tification of important communities and their properties
which can be hidden in the tail of the PageRank and
hardly accessible to classification by the PageRank algo-
rithm. Furthermore, the degeneracies at various values
of λ and the characteristic patterns directly visible in
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the spectra of the Google matrix should allow to identify
other hidden properties of real networks.
We thank Leonardo Ermann and Klaus Frahm for dis-

cussions, and CALcul en MIdi-Pyrénées (CALMIP) for
the use of their supercomputers.
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[14] Albert-László Barabási webpage at

the University of Notre Dame
http://www.nd.edu/˜networks/resources.htm

[15] Vladimir Batagelj and Andrej Mr-
var (2006): Pajek datasets. URL:
http://vlado.fmf.uni-lj.si/pub/networks/data/.

[16] Peter Mark Roget: Roget’s Thesaurus of English Words
and Phrases, http://www.gutenberg.org/etext/22

[17] Joan M. Reitz (2002): ODLIS: Online Dic-
tionary of Library and Information Science,
http://vax.wcsu.edu/library/odlis.html

[18] Denis Howe, Editor: FOLDOC (2002): Free on-line dic-
tionary of computing, http://foldoc.org/

[19] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355
(2008).

[20] D. L. Shepelyansky and O. V. Zhirov, preprint

arXiv:0905.4162 (2009).
[21] T. Gorin, T. Prosen, T. H. Seligman and M. Znidaric,

Physics Reports 435, 33 (2006).
[22] K. M. Frahm, R. Fleckinger and D. L. Shepelyansky, Eur.

Phys. J. D 29, 139 (2004).
[23] K. Avrachenkov, N. Litvak and K. S. Pham, Internet

Math. 5, 47 (2009).
[24] T. Haveliwala and S. Kamvar, The Second Eigenvalue of

the Google Matrix, Stanford University Technical Report
nr 582 (2003).

[25] L. Ermann and D. L. Shepelyansky, preprint
arXiv:0911.3823 (2009).

APPENDIX

Here we show the distributions of links for the AB
model discussed in [11] and for the university WWW
network (panel H of Fig. 1).
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FIG. 12: Cumulative distribution of ingoing links P in
c (k) (top

panel) and of outgoing links P out
c (k) (bottom panel) for the

AB model with vector size N = 214, for q = 0.1 (black/solid)
and q = 0.7 (red/dashed), data are averaged over 80 realiza-
tions of AB model, and for the network of Liverpool John
Moores University with N = 13578, (panel H in Fig. 1)
(blue/dotted). Average number of in- or outgoing links is
< k >= 6.43 for q = 0.1, < k >= 14.98 for q = 0.7,
< k >= 8.2227 for LJMU. Dashed straight line indicates the
slope -1. Logarithms are decimal.
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