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SUPERSYMMETRIC QUANTUM MECHANICS WITH LÉVY

DISORDER IN ONE DIMENSION

ALAIN COMTET, CHRISTOPHE TEXIER, AND YVES TOURIGNY

Abstract. We consider the Schrödinger equation with a random potential of
the form

V (x) =
w2(x)

4
−

w′(x)

2
where w is a Lévy noise. We focus on the problem of computing the so-called
complex Lyapunov exponent

Ω := γ − iπN

where N is the integrated density of states of the system, and γ is the Lyapunov
exponent. In the case where the Lévy process is non-decreasing, we show that
the calculation of Ω reduces to a Stieltjes moment problem, we ascertain the
low-energy behaviour of the density of states in some generality, and relate
it to the distributional properties of the Lévy process. We review the known
solvable cases—where Ω can be expressed in terms of special functions— and
discover a new one.

1. Introduction

The disordered model we consider is a particular case of the Schrödinger equation

(1.1) − ψ′′ + V (x)ψ = Eψ .

In this expression, ψ is the unknown (wave) function of the independent variable
x, E is the energy parameter, and V is the random potential. If V has stationary
increments, then the most accessible quantities describing the model’s behaviour
are the integrated density of states N(E), which counts the number of energy lev-
els below E per unit length, and the Lyapunov exponent γ(E), whose reciprocal
provides a measure of the localisation length at level E. These are conveniently
expressed in terms of the limit

lim
x→∞

lnψ(x,E)

x

where ψ(·, E) is the particular solution of Equation (1.1) satisfying ψ(0, E) = 0 and
ψ′(0, E) = 1. This limit is a self-averaging (non-random) quantity whose almost-
sure value we denote by Ω(E). The relationship between the real numbers γ(E)
and N(E) and the complex number Ω(E) is then (see [31, 33, 34])

(1.2) Ω(E) = γ(E)− iπN(E) .

We call Ω the complex Lyapunov exponent, or the characteristic function, of the
disordered system (1.1).
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Building on the pioneering work of Frisch & Lloyd [18], Kotani [26] made a
rigorous and detailed study of the integrated density of states when the potential
is a Lévy noise. In the present paper, we shall instead examine the case where

(1.3) V (x) =
w2(x)

4
− w′(x)

2

and it is the superpotential w— rather than V itself— that is the Lévy noise. Histor-
ically, the study of the random supersymmetric case was initiated by Ovchinnikov
& Erikhman [37] in the context of one-dimensional disordered semiconductors. The
same model, expressed later on in terms of Equations (1.15) and (1.16), may also
be derived as the square of a Dirac operator with a random mass. As such, it is
relevant in several contexts of condensed matter physics, including one-dimensional
disordered metals, random spin chains and organic conductors; see [13, 44] for re-
cent reviews. From the point of view of Anderson localisation, the one-dimensional
case is special, for localisation takes place as soon as there is any disorder [20, 27],
in contrast with the richer higher-dimensional case where a localisation transition
can occur. Nevertheless, there are compelling reasons for undertaking this study: in
the deterministic case, supersymmetry permits a detailed mathematical treatment
of the spectral problem, leading in a few cases to exact results [15]. It is therefore
natural to ask whether this favourable state of affairs persists in the presence of
randomness. Recently, we showed how to extend the Frisch–Lloyd approach to
a general class of random, point-like, scatterers, including one of supersymmetric
type [14], and one of our aims is to develop that preliminary work so as to bring out
the very elegant structure peculiar to the supersymmetric case. Another powerful
motivation is the equivalence between the supersymmetric model and the mathe-
matical description of diffusion in a random environment [9, 12, 29, 30, 41, 43]. In
the remainder of this introduction, we review the terminology and give an outline
of our main results.

1.1. Lévy processes. Any real-valued process with right-continuous, left-limited
paths started at the origin, and stationary independent increments, is called a Lévy
process [1, 4]. Such a process, sayW , is completely determined by its Lévy exponent
Λ, defined implicitly by

(1.4) E

(

eiθW (x)
)

= exΛ(θ) .

Furthermore, the Lévy–Khintchine formula holds:

(1.5) Λ(θ) = 2g
[

iµ θ − θ2
]

+

∫

R

[

eiθy − 1− iθy

1 + y2

]

m(dy)

for some constants µg ∈ R, g ≥ 0, and some Lévy measure m, i.e. a measure on R

such that

(1.6)

∫

R

min{1, y2}m(dy) <∞ .

Conversely, given numbers µg and g, and a Lévy measurem, there is a Lévy process
W with Lévy exponent (1.4); µg, g and m are called the Lévy characteristics of the
process.

Roughly speaking, the paths of a Lévy process consist of intervals of drifted
Brownian motion separated by jumps whose height and frequency are controlled by
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the Lévy measure. In the particular case where the Lévy measure m is finite, i.e.

(1.7) ρ :=

∫

R

m(dy) <∞

we call W an interlacing process; it may be expressed in the form

(1.8) W (x) = 2a x+ 2
√
g B(x) + J(x)

where B is a standard Brownian motion, the drift 2a is given by

(1.9) 2a := 2µg −
∫

R

y

1 + y2
m(dy)

and

(1.10) J(x) =

P (x)
∑

j=1

hj

where P is a Poisson process of intensity ρ, and the hj are random variables with
probability measure m/ρ. The processes B and P , and the random variables hj,
in these expressions are mutually independent. Figure 1 displays realisations of
two important particular cases: (a) a standard Brownian motion, corresponding
to the choice a = ρ = 0, and (b) a compound Poisson process with exponentially-
distributed jumps hj , corresponding to the choice a = g = 0 and ρ = 1.

(a) (b)
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Figure 1. W (x) against x for a particular realisation of (a) a
standard Brownian motion and (b) a driftless compound Poisson
process with exponentially-distributed jumps.

Not every Lévy measure is finite, and so interlacing processes do not exhaust
the class of Lévy processes; see Figure 2 for a particular realisation of a Lévy
process that is not interlacing, and [2] for a description of other important examples.
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Nevertheless, every Lévy processW may be approximated by an interlacing process
Wε as follows: let ε > 0, and define from m a new Lévy measure mε by

mε(A) := m(Aε) where Aε := {y ∈ A : |y| > ε} .
The measuremε is finite. Hence the processWε with Lévy characteristics µg, g and
mε is an interlacing process, and Λε converges to Λ pointwise as ε→ 0. The sense
in which the paths ofWε approximate those ofW can be made precise; see the proof
of Theorem 1 in [4]. The intuitive picture suggested by this construction is that
non-interlacing processes experience very small jumps with a very high frequency,
as illustrated by Figure 2.
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Figure 2. W (x) against x for a particular realisation of the subor-
dinator such that a = 0 and the Lévy measure is given by Equation
(1.26) with q = 1.

In what follows, particular attention will be paid to the subordinator case, where
the Lévy process is non-decreasing. For such processes, g = 0 and the Lévy measure
does not charge (−∞, 0]. A subordinator is therefore of bounded variation on finite
intervals and there holds

∫ ∞

0

min{1, y}m(dy) <∞

and

(1.11) Λ(θ) = 2a+

∫ ∞

0

(

eiyθ − 1
)

m(dy)

with a ≥ 0. We shall see that this case, as in Kotani’s study, affords a number of
simplifications.

1.2. The Frisch–Lloyd–Kotani study. Let us review the formal steps involved
in the calculation of Ω when the potential is the distributional derivative of a
Lévy process W . We refer the reader to the original papers [18, 26] for detailed
explanations, hypotheses and proofs, and to [14] for heuristics.
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Written in terms of the Riccati variable

Z(x) =
ψ′(x,E)

ψ(x,E)

the Schrödinger equation (1.1) with the potential V =W ′ = w becomes

Z ′ = −E − Z2 + w .

Z is a Feller process, started at infinity, whose infinitesimal generator, say G , is
given by (see for instance [1, 39])

(G u) (z) =
(

2µg − E − z2
)

u′(z)+2g u′′(z)+

∫

R

[

u(z + y)− u(z)− y u′(z)

1 + y2

]

m(dy) .

Z has a stationary distribution whose probability density, denoted f , is in the kernel
of the adjoint G †. Hence

(

E − 2µg + z2
)

f(z) + 2g f ′(z) +

∫

R

[∫ z−y

z

f(t) dt+
y f(z)

1 + y2

]

m(dy) = N

where the integrated density of states appears as a constant of integration; N may
be determined by finding a positive integrable solution and imposing the normali-
sation condition. The Lyapunov exponent γ is then given by the Cauchy Principal
Value integral

γ = −
∫ ∞

−∞
zf(z) dz .

The density f contains more information than is strictly necessary to determine Ω,
and it is sometimes more convenient to work with its Fourier transform

f̌(s) =

∫

R

e−iszf(z) dz .

f̌ satisfies the differential equation

(1.12) f̌ ′′(s) + c(is)f̌(s) = Ef̌(s) , s 6= 0 ,

where

(1.13) c(s) := −Λ(is)

s
= 2g[µ− s] +

∫

R

[

1− e−sy

s
− y

1 + y2

]

m(dy) .

It is then readily verified (see for instance [23], Appendix B) that

(1.14) Ω = i
f̌ ′(0+)

f̌(0+)

where, with a slight abuse of notation, f̌ now denotes any non-trivial solution of
the differential equation (1.12) such that

lim
s→∞

f̌(s) = 0 .

This representation in terms of the decaying solution of a homogeneous second-
order linear differential equation was used by Frisch & Lloyd as the basis of their
numerical study of the density of states [18]. Explicit formulae were obtained by
Halperin in the case of a Brownian motion [23] and by Nieuwenhuizen in the case of
a compound Poisson process with a gamma distribution of the jumps [34]. Kotani
performed a semiclassical analysis of the differential equation, in the limit of low
energy, for the particular case where W is a subordinator [26]. By using Langer’s
transformation, he was able to obtain an approximation of the decaying solution
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valid uniformly in the variable s, from which the low-energy behaviour of N(E)
could be deduced.

1.3. The supersymmetric case. The Schrödinger equation with the supersym-
metric potential (1.3) can be recast as the Dirac system

−ψ′ − w

2
ψ =

√
E φ(1.15)

φ′ − w

2
φ =

√
E ψ .(1.16)

The meaning of these equations when w = W ′ is a Lévy noise becomes clear if we
introduce an integrating factor:

− d

dx

[

exp

(

W

2

)

ψ

]

=
√
E exp

(

W

2

)

φ(1.17)

d

dx

[

exp

(

−W
2

)

φ

]

=
√
E exp

(

−W
2

)

ψ .(1.18)

Let us outline the modifications of the Frisch–Lloyd–Kotani approach required
in the supersymmetric case. The appropriate Riccati variable is

(1.19) Z := −
√
E
φ

ψ
.

Then

(1.20) Z ′ = −E − Z2 + wZ

and the Lévy noise now appears as a multiplicative term; as we have written it,
this stochastic equation should be interpreted in the sense of Stratonovich. In
the supersymmetric case, the essential spectrum is contained in R+. It will be
convenient to consider in the first instance the case E < 0, so that N(E) = 0 and Z
has a stationary distribution supported in R+, whose density we denote again by f .
To find an equation for f , we start from the simple observation that the logarithm
of Z satisfies a stochastic equation in which the noise appears as an additive term,
just as in the previous subsection. It is then straightforward to deduce

(1.21)
(

E − 2µg z + z2
)

f(z) + 2g z
d

dz
[zf(z)]

+

∫

R

{

∫ ze−y

z

f(t) dt+
yz

1 + y2
f(z)

}

m(dy) = N .

1.4. Exponentials of Lévy processes. For E = 0, Equation (1.20) has a non-
negative solution given by

1

Z(x)
= e−W (x) 1

Z(0)
+

∫ x

0

e−[W (x)−W (t)] dt .

In particular, if Z(0) = ∞, we may use the stationarity of the increments of W to
deduce that

1

Z(x)

(law)
=

∫ x

0

e−W (t) dt .

So the reciprocal of the zero-energy Riccati variable has the law of an exponential
of the Lévy process W . The study of these exponentials has received a great
deal of attention in the probability literature [5], and its close connection with our
disordered system makes it a rich source of ideas. In particular, Bertoin & Yor [6]
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studied the moments of the exponentials and found for them a first-order recurrence
relation which we proceed to extend to the case E 6= 0.

1.5. Main results and outline of the paper. In the supersymmetric case, be-
cause the noise appears in Equation (1.20) as a multiplicative term, the equation
for the Fourier transform of f contains an awkward integral term. Following the
example of Bertoin & Yor, it is in fact more expedient to work with the Mellin
transform

(1.22) f̂(s) :=

∫ ∞

0

z−sf(z) dz .

We derive in §2 the supersymmetric counterparts of the Frisch–Lloyd formulae
(1.12) and (1.14): for E < 0,

(1.23) Ef̂(s+ 1)− c(s)f̂(s) + f̂(s− 1) = 0

and

(1.24) Ω(E) =
c(0)

2
− E

f̂(1)

f̂(0)
.

The coefficient c(s) appearing in the difference equation (1.23) was defined earlier
by Equation (1.13) for s 6= 0, and this definition may be extended to s = 0 by taking

the obvious limit. To find f̂(0) and f̂(1), one can either solve the integro-differential
equation (1.21) for the distribution and then compute the relevant integrals or,
alternatively, seek a positive solution of Equation (1.23) satisfying the normalisation

condition f̂(0) = 1. The problem of computing the density of states and the inverse
localisation length in the “physical” region E > 0 is thus reduced to a problem of
analytic continuation— in the energy variable— from R− to the cut plane C\R+.
This formulation in terms of the Mellin transform sheds new light on the few solvable
cases that have appeared in the literature; we review them in §3.

The remaining sections are devoted to the subordinator case, where we have an
effective tool for performing the analytic continuation. We show in §4 that

(1.25) Ω(E) =
c(0)

2
+

− E

c(1) +
− E

c(2) + · · ·
for every complex E outside the essential spectrum, and we remark that the calcu-
lation of the density of states is tantamount to solving a Stieltjes moment problem.
In §5, we look for instances where the general solution of the difference equation
(1.23) is known explicitly. For the subordinator with Lévy measure

(1.26) m(dy) =
2p√
π

d

dy

[ −e−qy

√
1− e−2y

]

dy , p, q > 0,

we find, with the help of Masson [32], that the complex Lyapunov exponent is
expressible in terms of the parabolic cylinder functions. Then, in §6, we take up
the problem of determining the low-energy behaviour of the integrated density of
states and show how to compute the leading term in a semiclassical approximation;
we also provide a list of the possible singular behaviours. Some of the implications
of these results for diffusions in a random environment are discussed briefly. We
end the paper in §7 with a few concluding remarks.
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2. Characteristic function and Mellin transform

This section provides a derivation of Equations (1.23) and (1.24). For the partic-
ular case where W is a subordinator with finite means and a finite Lévy measure,
this derivation may be made completely rigorous by adapting the arguments of
Frisch & Lloyd [18] and Kotani [26]. In the general case, however, we shall be
content to view the formulae as merely plausible.

2.1. The difference equation. First, as a consequence of Sato’s Theorem 25.3
[40], we have the following criterion for the existence of the coefficient c(s) defined
by Equation (1.13): for s 6= 0, c(s) exists if and only if

∫

|y|>1

e−sym(dy) <∞ .

Also, it is readily seen by direct calculation that c(0) exists if and only if

(2.1)

∫

R

ym(dy) <∞

and, in case of existence,
c(0) = E (W (1)) .

In particular, c(s) exists for every s ≥ 0 if W is a subordinator with finite means.
Next, to derive the difference equation, multiply Equation (1.21) by z−s and

integrate over z. We use
∫ ∞

0

z−s z
d

dz
[zf(z)] dz = z1−szf(z)

∣

∣

∣

∞

0
−(1− s)

∫ ∞

0

z−s zf(z) dz = (s− 1)f̂(s− 1)

where we have assumed that

(2.2) lim
z→0+

z2−sf(z) = 0 and lim
z→∞

z2−sf(z) = 0 .

Also,

∫ ∞

0

z−s

[

∫ ze−y

z

f(t) dt+
yz

1 + y2
f(z)

]

dz

=

∫ ∞

0

z−s

[

∫ ze−y

z

f(t) dt

]

dz +
y

1 + y2
f̂(s− 1)

=
1

1− s
z1−s

[

∫ ze−y

z

f(t) dt

]

∣

∣

∣

∞

0

− 1

1− s

∫ ∞

0

z1−s
[

f(ze−y) e−y − f(z)
]

dz +
y

1 + y2
f̂(s− 1)

=
1

s− 1

∫ ∞

0

z1−sf(ze−y) e−y dz − 1

s− 1
f̂(s− 1) +

y

1 + y2
f̂(s− 1) .

By making the obvious substitution in the integral, we obtain

∫ ∞

0

z−s

[

∫ ze−y

z

f(t) dt+
yz

1 + y2
f(z)

]

dz

=
1

s− 1

[

e−(s−1)y − 1 +
(s− 1)y

1 + y2

]

f̂(s− 1) .
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When we put these results together, we eventually find that f̂(s) solves the differ-
ence equation (1.23).

Let us now look back on Condition (2.2) in the case s ≥ 0. The fact that the
limit at infinity vanishes is a consequence of the Rice formula

lim
z→∞

z2f(z) = N = 0 .

That the limit at zero vanishes is obvious if W is a subordinator and E = −k2 < 0,
because the support of f(z) is contained in [k,∞).

2.2. The Lyapunov exponent. For E 6= 0,

1

x
ln |ψ(x)| = 1

x
ln

∣

∣

∣

∣

√
E
φ(x)

Z(x)

∣

∣

∣

∣

=
1

x
ln
√

|E|+ 1

x
ln |φ(x)| − 1

x
ln |Z(x)| .

If the Lévy process is not a pure drift then the Riccati process will behave ergodi-
cally, and so the alternative formula

(2.3) γ(E) = lim
x→∞

1

x
ln |φ(x)|

will hold for E 6= 0. Our aim is to use this formula to express the Lyapunov
exponent in terms of the Mellin transform of the Riccati variable.

We shall suppose that W is an interlacing process of the form (1.8-1.10), with a
finite mean at x = 1. By Equation (2.1) this implies that the jumps hj themselves
have a finite mean. The Dirac system (1.15-1.16) is then

−ψ′ −
[

a+
√
g B′ +

1

2

∞
∑

j=1

hjδxj

]

ψ =
√
E φ

φ′ −
[

a+
√
g B′ +

1

2

∞
∑

j=1

hjδxj

]

φ =
√
E ψ .

Here

x0 := 0 and xj+1 := xj + ℓj

where the ℓj are independent and exponentially distributed with parameter ρ. For
x ∈ (xj , xj+1), we have

−ψ′ − [a+
√
g B′] ψ =

√
E φ

φ′ − [a+
√
g B′] φ =

√
E ψ .

Hence

ln |φ(xj+1−)| = ln |φ(xj+)|+
∫ xj+1

xj

φ′(y)

φ(y)
dy

= ln |φ(xj+)|+ aℓj +
√
g [B(xj+1)−B(xj)] +

∫ xj+1

xj

−E
Z(y)

dy .

On the other hand, by making use of Equation (1.18), we find

φ(xj+) = exp

(

hj
2

)

φ(xj−)

and it follows that

ln |φ(xj+1−)| = ln |φ(xj−)|+aℓj+
√
g [B(xj+1)−B(xj)]+

hj+1

2
+

∫ xj+1

xj

−E
Z(y)

dy .



10 ALAIN COMTET, CHRISTOPHE TEXIER, AND YVES TOURIGNY

Then, by summing over j, we obtain

1

x
ln |φ(x)| = 1

x
ln |φ(0)|+ 1

x







ax+
√
g B(x) +

1

2

P (x)
∑

j=1

hj







+
1

x

∫ x

0

−E
Z(y)

dy .

In the limit as x→ ∞, this becomes

(2.4) γ =
c(0)

2
+

∫ ∞

0

−E
z
f(z) dz .

This establishes the formula (1.24) for the complex Lyapunov exponent when W
is an interlacing process with finite means. We expect this formula to hold more
generally even in cases where the Lévy measure is not finite since, as mentioned in
§1.1, every such measure may be approximated by a finite measure.

3. Some known solvable cases

There are very few known cases where the complex Lyapunov exponent may be
expressed in terms of familiar functions. Whereas the examples we review here
were discovered by solving the integro-differential equation (1.21) directly, our pre-
sentation will emphasise the alternative approach based on solving the difference
equation satisfied by the Mellin transform.

Example 1. When the Lévy process is a pure drift, the process is deterministic
and we have

Λ(θ) = 2ia θ and c(s) = 2a .

The difference equation (1.23) takes the simple form

(3.1) Ef̂(s+ 1)− 2af̂(s) + f̂(s− 1) = 0 .

Its general solution is

c+

(

a+
√

a2 − E
)−s

+ c−
(

a−
√

a2 − E
)−s

.

The Mellin transform of the invariant density is positive for every s and equals
unity for s = 0. Hence

f̂(s) =
(

a+
√

a2 − E
)−s

and, by using Equation (2.4), we find

(3.2) Ω =
√

a2 − E .

The spectrum is the interval E ≥ a2; there, we have

N(E) =
1

π

√

E − a2 and γ(E) = 0 .

Hence γ vanishes in the spectrum— reflecting the fact that, for the non random
potential V (x) = a2, there is no localisation.

Example 2. The case where the Lévy process is a Brownian motion with drift has
been studied independently by Ovchinnikov and Erikhman [37] and Bouchaud et
al. [9]. In this case,

Λ(θ) = 2g
[

iµθ − θ2
]

and c(s) = 2g [µ− s] .

Hence f̂(s) satisfies the difference equation

Ef̂(s+ 1) + 2g [s− µ] f̂(s) + f̂(s− 1) = 0 .
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We recognise the reccurence relation satisfied by the modified Bessel functions. The
general solution is

[√
−E

]−s {

cK Ks−µ

(√
−E/g

)

+ (−1)s−µcI Is−µ

(√
−E/g

)}

and we obtain a positive solution by taking cI = 0.
Alternatively, we can solve the equation (1.21) for the invariant density. Since, in

this case, the Lévy measure is identically zero, this equation reduces to a differential
equation. The relevant solution is (before normalisation)

f(z) = zµ−1 exp

[

− 1

2g

(

z − E

z

)]

1(0,∞)(z)

and its Mellin transform

f̂(s) = 2
[√

−E
]µ−s

Ks−µ

(√
−E/g

)

agrees, as it should, with the expression found earlier by solving the difference
equation. Hence, by Formula (1.22),

Ω(−k2) = µg + k
K1−µ (k/g)

K−µ (k/g)

where we have set E = −k2. The analytic continuation of Ω from R− to R+ may
be done “by hand” and consists of replacing k by −ik:

Ω(k2 + i0+) = µg + k
H

(1)
1−µ (k/g)

H
(1)
−µ (k/g)

.

Expressions for N and γ follow easily. In particular, for µ = 0 (the driftless case),
we find

N(E) ∼ 2g

ln2E
and

1

γ(E)
∼ − 1

2g
lnE as E → 0+ .

So the density of states has a so-called Dyson-type singularity at the bottom edge
of the spectrum, and the model exhibits a very interesting “delocalisation” phe-
nomenon there [9, 13, 44].

Example 3. Let the Lévy exponent be

Λ(θ) = ρ

∫ ∞

0

[

eiθy − 1
]

qe−qy dy = ρ
iθ

q − iθ
.

This corresponds to a driftless compound Poisson process of intensity ρ where the
jumps are exponentially distributed with parameter q. Then

c(s) =
ρ

q + s
, s ≥ 0 .

Set

E = −k2, k > 0 .

Masson [32] showed that the general solution of the difference equation (1.23) is
given by

c+u+(s) + c−u−(s)



12 ALAIN COMTET, CHRISTOPHE TEXIER, AND YVES TOURIGNY

where

u±(s) := (±k)−s
B

(

± ρ

2k
, q + s+ 1

)

× 2F1

(

q + s+ 1,± ρ

2k
+ 1; q + s+ 1± ρ

2k
;−1

)

and B is the Euler beta function. To obtain a positive solution, we set c− = 0. The
formula eqrefmellinFormula for the complex Lyapunov exponent then agrees with
the calculation of our previous article [14], where we have worked directly from the
invariant density (before normalisation), namely

f(z) =
z−q

z2 − k2

(

z − k

z + k

)
ρ
2k

1(k,∞)(z) .

After normalisation we obtain the Lyapunov exponent from Equation (2.4) [14].
For negative energies γ coincides with the characteristic function Ω. After analytic
continuation we find the integrated density of states. The low-energy behaviour is
(see Bienaimé [7])

(3.3) N(E) ∼ ρ2q+1

Γ(q + 1)2
E−q exp

[

−π
2

ρ√
E

]

as E → 0+

and
γ ∼ ρ

2q
as E → 0+ .

Remark 3.1. The low-energy behaviour of the density of states in the supersym-
metric case is quite different from the usual Lifshits behaviour [28], namely

N(E) ∼ exp

[

−π ρ√
E

]

as E → 0+ .

The physical reasons for this difference will be explained in a forthcoming paper.

4. Continued fractions

There is a well-known connection between linear second-order difference equa-
tions and continued fractions [19, 32]; we exploit it to derive a continued fraction
that may, at least in the subordinator case, be used to compute the complex Lya-
punov exponent.

4.1. Pincherle’s Theorem. We say that a non-zero solution un of the difference
equation

(4.1) un+1 = anun−1 + bnun , n ∈ N ,

is recessive (or minimal or subdominant) if, for every other linearly independent
solution vn, there holds

un = o (vn) as n→ ∞ .

Pincherle’s Theorem says that the continued fraction

K :=
a1

b1 +
a2

b2 + · · ·
converges if and only if the difference equation (4.1) has a recessive solution un with
u0 6= 0. In case of convergence, the limit is −u1/u0 where un is any such recessive



SUPERSYMMETRY AND DISORDER 13

solution. The proof of this well-known result is elementary, but we include it here
because it contains information that will be useful later on. Introduce two particular
solutions pn and qn of the difference equation (4.1) satisfying

p0 = q1 = 1 and q0 = p1 = 0 .

These solutions are obviously linearly independent, and every other solution may
be expressed as a linear combination of them. Set

Kn :=
pn
qn

, n ∈ N .

To say that the continued fraction converges is to say that Kn has a (finite) limit
as n → ∞. First, suppose that the continued fraction converges; call its limit K∞
and set

un := qnK∞ − pn .

It then follows from this definition of the sequence un that u0 = −1 and

K∞ = −u1
u0

.

Furthermore, un solves the difference equation. To show that un is recessive, sup-
pose that vn is any other linearly independent solution. We can express vn in the
form

vn = αun + βqn

for some number α and some non-zero number β. Then

vn
un

= α+ β
qn
un

= α+
β

K∞ − pn

qn

−−−−→
n→∞

β ×∞ .

This shows that un is recessive. Conversely, suppose that the difference equation
has a recessive solution un such that u0 6= 0. Since q0 = 0, the particular solutions
qn and un are linearly independent. Therefore

lim
n→∞

un
qn

= 0 .

On the other hand, we can express un as a linear combination of pn and qn:

un = u0pn + u1qn .

It follows that

pn
qn

=
1

u0

(

un
qn

− u1

)

−−−−→
n→∞

−u1
u0

.

To complete the proof, there only remains to observe that there cannot be two
linearly independent solutions that are recessive.

Remark 4.1. The proof shows in particular that, if K converges to K∞, then every
recessive solution of the difference equation is a multiple of

qnK∞ − pn .
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4.2. The subordinator case. Let us now elaborate the relevance of Pincherle’s
Theorem to our study. For convenience, we shall omit the drift, so that the Lévy
exponent is given by Equation (1.11) with a = 0, and the coefficient c(n) by

(4.2) c(n) =

∫ ∞

0

1− e−ny

n
m(dy) .

Set

(4.3) un := Enf̂(n) , n ∈ N .

The fact that f̂(s) solves the difference equation (1.23) for s ∈ N implies that un
solves

(4.4) un+1 = −E un−1 + c(n)un , n ∈ N .

The corresponding continued fraction is

(4.5) K(E) :=
− E

c(1) +
− E

c(2) +
− E

c(3) + · · ·

.

We now observe that the coefficients c(n) are obviously positive. This means
that the continued fraction (4.5) is of the kind studied by Stieltjes [3, 36, 42, 45].
Stieltjes showed that a necessary and sufficient condition for the convergence of the
continued fraction in C\R+ is that the series

∞
∑

n=1

c(n)

diverge. Now, by Equation (4.2),

c(n) =

∫ 1

0

1− e−ny

n
m(dy) +

∫ ∞

1

1− e−ny

n
m(dy)

≥
∫ 1

0

1− e−ny

n
ym(dy) +

∫ ∞

1

1− e−ny

n
m(dy)

∼ 1

n

∫ ∞

0

min{1, y}m(dy) as n→ ∞ .

Hence the continued fraction converges for every E ∈ C\R+, and the limit K∞ is
a function of E analytic in C\R+.

Next, let us show that Enf̂(n) is a recessive solution of the difference equation
(4.4) when E < 0: since it is a solution, we may write

Enf̂(n) = α [qnK∞(E)− pn] + βqn

for some constants α and β. Note in particular that the qn are positive, because
the c(n) are positive. Suppose that β 6= 0. Then, since qnK∞ − pn is recessive, we
must have

Enf̂(n) ∼ βqn as n→ ∞ .

But this is absurd because the right-hand side is of the same sign for every n

whereas, since E < 0 and f̂(n) is by construction positive, the left-hand side alter-

nates in sign. Hence β = 0 and the recessiveness of Enf̂(n) follows from Remark 4.1.
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We deduce from Pincherle’s Theorem that

Ω(E) =
c(0)

2
+K∞(E)

for E < 0, and thence for every E ∈ C\R+ by analytic continuation.

Remark 4.2. This representation of the complex Lyapunov exponent in terms of the
continued fraction associated with the difference equation for the Mellin transform
is not valid for every Lévy process. For the Brownian motion with drift of Example

2, f̂(s) is not recessive, and the continued fraction converges to a ratio of Iν .

Remark 4.3. Continued fractions have been used before in the study of other
one-dimensional disordered systems— most notably by Nieuwenhuizen [34] and
Nieuwenhuizen & Luck [35]. In these works, however, the continued fraction arose
only in very special cases where the noise or randomness could be modelled in terms
of the exponential and other closely related distributions.

4.3. The density of states in the subordinator case. In particular, we have
the formula

(4.6) N(E) =
1

π
Im

[

u1
u0

]

= − 1

π
Im [K∞(E + i0+)] , E > 0 .

On the other hand, since the c(n) are all positive, the limit of the continued fraction
is the Stieltjes transform of a certain measure, say κ, on the half-line R+ and we
may write (see for instance [3, 36])

(4.7) − K∞(E)

E
=

∫ ∞

0

κ(dt)

t− E
, E ∈ C\R+ .

There is a simple relationship between the Stieltjes measure κ and the integrated
density of states N : by the Stieltjes–Perron inversion formula, for every open in-
terval (a, b) ⊂ R+

κ(a, b) = − 1

π

∫ b

a

Im

[

K∞(t+ i0+)

t

]

dt .

We then deduce from Equation (4.6)

(4.8) κ(dt) = N(t)
dt

t
.

Now, as is well-known, the coefficients c(n) appearing in the continued fraction K
may be expressed in terms of the positive integer moments of the measure κ; see [42]
for detailed formulae. So the problem of finding the density of states is essentially
equivalent to a Stieltjes moment problem.

5. A new solvable case

Having reviewed in §3 the few examples where the complex Lyapunov exponent
is known explicitly, we now look for new cases.
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5.1. Masson’s difference equation. Masson’s catalog of the solutions of the dif-
ference equation

(5.1) vn+1 − (z −Dn)vn − (An2 +Bn+ C)vn−1 = 0 , n ∈ N ,

expressed in terms of the hypergeometric function or its confluent limits, is particu-
larly valuable in this respect [32]. The correspondence between Masson’s difference
equation and (4.4) is as follows: set

cn := c(n)

and

(5.2) un =





√
−En

n−1
∏

j=0

cj



 vn .

Then un solves the difference equation (4.4) if and only if vn solves the difference
equation

vn+1 −
1√
−E

vn − 1

cn−1cn
vn−1 = 0 .

This is Masson’s difference equation (5.1) with D = 0 and z = 1/
√
−E provided

that

(5.3) cn−1cn =
1

An2 +Bn+ C
.

There are two possibilities: either

c(n) ∼ 1√
An

or c(n) ∼ 1√
Bn

as n→ ∞ .

The first case leads to solutions expressible in terms of the hypergeometric function;
this is our earlier Example 3. The second case, developed in the next subsection,
leads to solutions expressible in terms of parabolic cylinder functions; we follow
Masson’s terminology and call it the “Hermite case”.

5.2. The Hermite case. Let the Lévy process be the subordinator with Lévy
measure

(5.4) m(dy) =
2p√
π

d

dy

[ −e−qy

√
1− e−2y

]

dy , q > 0 .

The only dimensional parameter in this expression is p, which has the dimension of
an inverse length, or equivalently of

√
E. For convenience, we shall for the present

set it to unity, and reintroduce it later whenever it becomes relevant. To work out
the corresponding Lévy exponent, introduce the tail of the Lévy measure:

m(y,∞) :=

∫ ∞

y

m(dt) =
2√
π

e−qy

√
1− e−2y

.

This makes it clear that m is not a finite measure and that

(5.5) m(dy) ∼ dy

y3/2
as y → 0 + .



SUPERSYMMETRY AND DISORDER 17

We have

Λ(θ) =

∫ ∞

0

(

eiθy − 1
)

m(dy) = iθ

∫ ∞

0

dy eiθym(y,∞)

=
2iθ√
π

∫ ∞

0

dy eiθy
e−qy

√
1− e−2y

t=e−y

↓

=
2iθ√
π

∫ 1

0

dt
tq−iθ−1

√
1− t2

=
iθ√
π
B

(

q − iθ

2
,
1

2

)

.

Here, we have made use of Formula 1 in §8.380 of [21]. Hence

Λ(θ) = iθ
Γ
(

q−iθ
2

)

Γ
(

q−iθ+1
2

) .

We note for future reference the large θ behaviour

(5.6) Λ(θ) ∼ −
√
−2iθ as θ → ∞

which is directly related to the small y behaviour of the Lévy measure in Equation
(5.5). The coefficients appearing in the difference equation (4.4) are given by

(5.7) c(n) = cn :=
Γ
(

n+q
2

)

Γ
(

n+q+1
2

) .

Hence
1

cn−1cn
=
n+ q − 1

2
.

Let un and vn be related by Equation (5.2). Then Equation (5.3) says that
un solves the difference equation (4.4) if and only if vn solves Masson’s difference
equation with

z =
1√
−E

, A = 0, B =
1

2
, C =

q − 1

2
and D = 0 .

Masson’s Theorem 4 [32] then says that the difference equation (4.4) has two linearly
independent solutions u±n given by

(5.8) u±n :=
[

∓
√

−E/2
]n Γ (n+ q)

Γ
(

n+q
2

) D−n−q

(

±
√

−2/E
)

.

This fact is easily verified by using the recurrence relation satisfied by the parabolic
cylinder functions (see [17], Vol. 2, Chapter VIII):

Dν+1(x)− xDν(x) + νDν−1(x) = 0 .

Furthermore, u+n is recessive. By using the identity

Γ(2z) =
1√
π
22z−1Γ(z) Γ

(

z +
1

2

)

we deduce the following expression for the Mellin transform of the invariant density:

(5.9) f̂(s) =
[

√

−2/E
]s Γ

(

s+q+1
2

)

Γ
(

q+1
2

)

D−s−q

(

√

−2/E
)

D−q

(

√

−2/E
) .

Therefore, after re-introducing the parameter p, we obtain

(5.10) Ω(E) =
p

2

Γ
(

q
2

)

Γ
(

q+1
2

) +
q
√
−E√
2

Γ
(

q
2

)

Γ
(

q+1
2

)

D−q−1

(

p
√

−2/E
)

D−q

(

p
√

−2/E
) .
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Using D−q(0) = 2−q/2
√
π/Γ(1+q

2 ) we obtain

(5.11) Ω(E) ∼ γ∞ +
√
−E as E → −∞ .

The constant term is given by

(5.12) γ∞ = p
1

2
c(0) + p

2q√
π

Γ( q+1
2 )2 − q

2Γ(
q
2 )

2

Γ(q)

where

c(0) = E
(

W (1)) = p
Γ
(

q
2

)

Γ
(

q+1
2

) .

An analytic continuation to positive energies shows that

γ∞ = lim
E→+∞

γ(E) .

The Stieltjes measure of a ratio of parabolic cylinder functions is given explicitly
in Ismail & Kelker [25], Theorem 1.4. That result, combined with Equation (4.8),
leads to the following explicit formula for the integrated density of states:

(5.13) N(E) =
1

2
√
π

Γ
(

q
2

)

Γ(q)Γ
(

q+1
2

)

√
E

∣

∣

∣D−q

(

ip
√

2/E
)∣

∣

∣

2 .

The low energy behaviour is

(5.14) N(E) ∼ p2q

Γ
(

q+1
2

)2 E
1
2−q e−p2/E as E → 0+ .

Plots of N and γ for various values of the parameter q are shown in Figure 3.

Remark 5.1. Let E < 0 and set k =
√
−E. By using Equation (7.727) in [21], we

can invert the Mellin transform f̂ to obtain

(5.15) f(z) = C(k, q)
z1−q

(z2 − k2)
3
2

exp

(

− z2/k2

z2 − k2

)

1(k,∞)(z)

where

C(k, q) := 2

(

k√
2

)q
e

1
2k2

Γ
(

q+1
2

)

D−q

(√
2
k

) .

Remark 5.2. The limit q → 0+ is singular, since

E (W (1)) = c(0) = p
Γ
(

q
2

)

Γ
(

q+1
2

) → ∞ as q → 0+ .

On the other hand, if we set q = 0 in Equation (5.4), we obtain the Lévy measure
of the process with exponent

Λ(θ) =
2p√
π
+ ip θ

Γ
(−iθ

2

)

Γ
(

1−iθ
2

) .

This process is well-behaved; indeed

c(n) = p

[

Γ
(

n
2

)

Γ
(

n+1
2

) − 2√
πn

]
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and so

E (W (1)) = c(0) =
p√
π
2 ln 2 for q = 0 .

Unfortunately, Equation (5.3) does not hold in this case, and so we cannot use
Masson’s results.
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Figure 3. Integrated density of states and Lyapunov exponent for
the Hermite case with q = 0.2 (black continuous line), 0.5 (green
dotted line), 1 (blue dashed), 2 (red dashed-dotted) and 5 (black
continuous).

Remark 5.3. One reason for the importance of the subordinator subclass of the
Lévy processes is that they arise naturally in the study of diffusion processes. More
precisely, let X = X(t) be a diffusion process on R, started at the origin, and driven
by the Langevin equation

Ẋ = v (X) + η

where η is white noise and v is the deterministic drift function. Then the inverse
local time of X is a process, say τt, that measures how much time elapses before X
has spent a total time t in the vicinity of its starting point. It is a well-known fact
that τ is a subordinator. Given the drift v, one may in principle compute the Lévy
exponent of the inverse local time by studying a certain Sturm–Liouville problem
associated with the diffusion. In particular, for the drift

v(x) = −x ,

which corresponds to the familiar Ornstein–Uhlenbeck diffusion process, one finds
that the Lévy measure of τ is exactly the measure m in Equation (5.4) for q =
1; see for instance [24]. It is unclear whether this intriguing coincidence is the
manifestation of a deeper connection between the Ornstein–Uhlenbeck process and
the disordered model.

6. The low-energy behaviour of the density of states

Throughout this section, we suppose that the Lévy process W is a subordina-
tor. Whereas Kotani’s study rested on a semiclassical analysis of a differential
equation, we must, in the supersymmetric case, work with a difference equation.
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Finite-difference versions of the WKB method were expounded by Dingle & Mor-
gan [16] and Braun [11], and we shall draw on their work in what follows. It will
be convenient to recast the difference equation (4.4) in the form

(6.1) yn+1 + yn−1 =
c(n)√
E
yn

obtained by setting

un = E
n
2 yn .

The basic formula (4.6) for the integrated density of states becomes

(6.2) N(E) =

√
E

π
Im

[

y1(E + i0+)

y0(E + i0+)

]

where yn(E) is any recessive solution of Equation (6.1).

6.1. The remainders. The starting point of our analysis is the represention of
the recessive solution in terms of the remainders

(6.3) zn :=
E

c(n) +
− E

c(n+ 1) +
− E

c(n+ 2) + · · ·

.

These remainders are certainly well-defined numbers for E /∈ R+ because the con-
tinued fraction on the right-hand side converges. We note the obvious identity

(6.4) zn =
E

c(n)− zn+1
.

Set

(6.5) y+n :=

n
∏

j=1

zj√
E

If we take the empty product to equal 1, it is easy to show by induction on n that

E
n
2 y+n = Enf̂(n) for every n ≥ 0 .

This shows that y+n is a recessive solution of the difference equation (6.1). We
remark also that, since c(n) decays to zero, zn and zn+1 have a common limit,
namely −

√
−E, as n→ ∞. Hence, replacing zn+1 by zn in Equation (6.4) yields

(6.6) zn ∼ c(n)−
√

c(n)2 − 4E

2
as n→ ∞ .

We select this particular solution of the quadratic equation because it yields the
correct behaviour of zn in the limit E → 0; see Equation (6.4).

Henceforth, we suppose that E > 0 and set k =
√
E. The expression y+n (E)

should then be interpreted as y+n (E + i0+).
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6.2. An alternative formula for the density of states. The difference equation
(6.1) has a turning point nk, defined to be the largest integer not exceeding the root
of

c(n) = 2k .

We proceed to express the integrated density of states in terms of the recessive
solution at the turning point.

Let 0 < E ≤ c(1). For n > nk, we have

c(n) + i
√

4k2 − c(n)2

2
= k eiθn

where

θn = arccos
c(n)

2k
> 0 .

It then follows from Equation (6.6) that, for n > nk and E > 0, there holds

(6.7) y+n ∼ y+nk
exp



i
∑

j>nk

θj



 as n→ ∞ .

Since c(n) is real, the complex conjugate

y−n := y+n

is also a solution of the difference equation (6.1). Furthermore, y+n and y−n are
linearly independent. Introduce their Wronskian

Wn :=

∣

∣

∣

∣

y−n−1 y−n
y+n−1 y+n

∣

∣

∣

∣

.

Then

N(E) =
k

2π
Im

[

y+1
y+0

− y−1
y−0

]

=
k

2π
ImW1 .

On the one hand, by making use of the difference equation (6.1), it is easy to see
that the Wronskian of any two linearly independent solutions satisfies

Wn = W1

for every n ∈ N. On the other hand, by construction, y+n has the asymptotic
behaviour (6.7). Hence

Wn ∼
∣

∣y+nk

∣

∣

2 [
eiθn − e−iθn

]

=
∣

∣y+nk

∣

∣

2
[2i sin θn] ∼

∣

∣y+nk

∣

∣

2
2i as n→ ∞ .

We deduce

W1 =
∣

∣y+nk

∣

∣

2
2i

and so

(6.8) N(E) =
k

π

∣

∣y+nk

∣

∣

2
.
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6.3. Semiclassical approximation. There remains to find the small k behaviour
of y+nk

. From this point on, we shall not aim at a completely rigorous treatment,
but rather at a simple informative estimate based on heuristic considerations.

Following Braun [11], we introduce a small parameter h > 0 such that

h→ 0 if and only if k → 0 .

The relationship between h and E is assumed to be such that there exist functions
C and Z defined on R+ satisfying

(6.9) C(nh) =
c(n)

2k
and Z(nh) =

zn
k
.

Detailed examples will be given in due course. Equation (6.4) for the remainder
may then be expressed as

(6.10) 2C(x) − Z(x+ h) =
1

Z(x)

where

x = nh .

We look for a solution of Equation (6.10) of the form

(6.11) Z(x) = exp [S0(x) +O (h)] as h→ 0 .

When we substitute into Equation (6.10), use the MacLaurin series of the exponen-
tial function, and equate like powers of h, we find, for the leading term,

(6.12)
eS0 + e−S0

2
= C .

Then, by making use of the Euler-MacLaurin formula, we obtain

(6.13) y+n =
n
∏

j=1

Z(jh) = exp

{

1

h

∫ x

h

S0(t) dt+
S0(x) + S0(h)

2
+O(1)

}

.

In order to have

Z(nh) ∼ E

c(n)
as k → 0

for n < nk, we must select the following solution of Equation (6.12):

S0(x) = −arccosh [C(x)] .

Then

y+nk
= exp

{

− 1

h

∫ xk

h

arccosh [C(t)] dt− 1

2
arccosh [C(h)] +O(1)

}

where xk is defined by

(6.14) C(xk) = 1 .

In view of Formula (6.8), this leads to the estimate

(6.15) lnN = − 2

h

∫ xk

h

arccosh [C(t)] dt− arccosh [C(h)] + ln k +O(1)

as k → 0. The validity of this estimate is open to question, for we have assumed
implicitly that the O(1) correction term in Equation (6.13) is bounded uniformly
for h < x ≤ xk. We proceed to discuss some examples where this assumption seems
justified.
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Example 4. For the Lévy process of Example 3, set h = k. Then

c(n)

2k
=

ρ

2 (nh+ qh)
=: C(nh) .

The undesirable dependence of the function C on h could be removed by shifting the
index n. As it is, however, Formula (6.15) makes sense and may be used directly;
shifting the index would eventually lead to the same result. We have

− 2

h

∫ xk

h

arccosh

[

ρ

2 (t+ qh)

]

dt

y=C(t)
↓

= −ρ
h

[

arccoshy

y
+ arctan

1
√

y2 − 1

]

∣

∣

∣

1

ρ

2h(q+1)

= −ρ
h

π

2
− 2(q + 1) lnh+O(1) .

We deduce

N(E) ∼ AE−q exp

[

−π
2

ρ√
E

]

as E → 0+

for some constant A independent of E. This agrees with Equation (3.3).

Remark 6.1. We remark that, for every finite Lévy measure,

c(n) :=

∫ ∞

0

1− e−ny

n
m(dy) ∼ 1

n

∫ ∞

0

m(dy) as n→ ∞ .

Therefore the asymptotic relation

(6.16) lnN(E) ∼ −π
2

1√
E

∫ ∞

0

m(dy) as E → 0+

holds more generally for every subordinator with a finite Lévy measure.

Example 5. For the solvable model of §5.2, we have

c(n) =
Γ
(

n+q+1
2

)

Γ
(

n+q
2

) .

Strictly speaking, the corresponding function C is defined implicitly by Equation
(6.9), but a more tractable expression may be obtained by using the identity

c(n− 1) c(n) =
2

n+ q − 1
.

Then

C(nh)2 =
1

2k2
(

n+ q − 1
2

) +O(h2) as h→ 0 .

So, for the purpose of our calculation, we may take

h := 2k2 and C(x) :=
1

√

x+ h
(

q − 1
2

)

.
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Then

− 2

h

∫ xk

h

arccosh [C(t)] dt

y=C(t)
↓

= − 4

h

{

√

y2 − 1

2y
− 1

2y2
arccoshy

}

∣

∣

∣

1

[h(q+ 1
2 )]

− 1
2

∼ − 2

h
−
(

q +
1

2

)

lnh+O(1) as h→ 0 .

Formula (6.15) then yields

N(E) ∼ AE
1
2−q e−

1
E as E → 0+ .

This is in agreement with the exact result found in §5.2; see Equation (5.14).

Example 6. The so-called alpha-stable subordinator has for its Lévy measure

m(dy) = p
α

Γ(1− α)

dy

y1+α
, 0 < α < 1 .

The corresponding Lévy exponent is

(6.17) Λ(θ) = −p (−iθ)α .

Some of the properties of alpha-stable subordinators are reviewed in the appendix.
For p = 1, the continued fraction coefficients are

c(n) = nα−1

and so we set

h := (2k)
1

1−α and C(x) := xα−1 .

Then

− 2

h

∫ xk

h

arccosh−1 [C(t)] dt = − 2

h
µα − 2(1− α) lnh+O(1) as h→ 0

where we have set

µα := (1− α) 2F1

(

1

2
,

1

2(1− α)
; 1 +

1

2(1− α)
; 1

)

=
π

B

(

1
2 + 1

2(1−α) ,
1
2

) .

We deduce from Formula (6.15)

(6.18) N(E) ∼ AE
1
2 exp

[

− µα

2
α

1−α

(p2/E)
1

2(1−α)

]

as E → 0 + .

6.4. The case of infinite Lévy measure. Let us now discuss the case
∫

R+

m(dy) = ∞

in greater generality. A first interesting observation is that the two instances en-
countered earlier, namely the Hermite case and the alpha-stable case with α = 1/2,
have led to the same leading behaviour of the integrated density of states at low en-
ergy; compare Equations (5.14) and (6.18). The mathematical explanation is that
the corresponding Lévy measures have the same singularity at y = 0; the fact that
their tails are very different has little bearing on the low-energy behaviour of N .
The physical interpretation is that, for an infinite Lévy measure m with support
R+, the low energy eigenstates of the supersymmetric Hamiltonian are strongly
affected by the frequent small jumps but depend weakly on the rare large jumps
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of the Lévy process. This contrasts with the case of a finite measure, where the
exponent appearing in Formula (6.16) indicates that there is no such distinction.

Turning then to the analysis of the low-energy states of the supersymmetric
Hamiltonian, consider the finite interval [0, ℓ]. In the absence of any potential, this
interval supports an eigenstate of (kinetic) energy Ekin ≈ 1/ℓ2. A low-energy state
E ≈ 1/ℓ2 is possible if, in the interval 0 ≤ x ≤ ℓ, the potential V = w2/4 − w′/2
remains sufficiently small to ensure that V ≪ Ekin. BecauseW (x) is a subordinator,
we expect that the potential’s average value is roughly proportional to the square of
W (ℓ)/ℓ. Hence, if W (ℓ) does not exceed some small value, say ε, then the potential

brings in a contribution V ≈ (ε/ℓ)2 to the energy. Equating ℓ and 1/
√
E, we deduce

(6.19) lnN(E) ∼ lnP
(

W
(

1/
√
E
)

< ε
)

as E → 0+ .

We argued earlier that, in this limit, only the frequent small jumps of the process
matter. With this in mind, let us begin with the case of a Lévy noise whose measure
exhibits the “alpha-stable singularity”

m(dy) ∼ p
dy

y1+α
, 0 < α < 1 , as y → 0+.

In the appendix, we describe the implications of this singularity for the form of the
probability density function, say fW (· ;x), of the random variable W (x); we find

fW (u ;x) =
1

(px)1/α
fW

(

u

(px)1/α
; 1

)

.

Equation (A.4) in the appendix, which describes the small u behaviour of this
density, then leads to

(6.20) lnN(E) ∼ ln

∫ ε

0

fW

(

u ; 1/
√
E
)

du ∼ −E− 1
2(1−α) as E → 0+ .

Modulo a constant factor on the right-hand side, these heuristic arguments extend
our earlier result (6.18).

Finally, let us mention very briefly the limiting case α → 0, where the Lévy
measure satisfies

(6.21) m(dy) ∼ dy

y
as y → 0+ .

The corresponding process W shares this singularity with the so-called gamma
subordinator; see the appendix. By the same heuristic arguments as before, we
arrive once again at Equation (6.19), and the result is

(6.22) lnN(E) ∼ − ln(1/E)√
E

as y → 0+ .

6.5. Comparison with the Kotani case V = w. It is interesting to compare
these results with those obtained by Kotani [26] for the random Schrödinger equa-
tion

−ψ′′ + wψ = Eψ .

For the compound Poisson process of Example 4, Kotani showed rigorously that

(6.23) N(E) ∼ A exp

[

− ρ π√
E

]

as E → 0 ,
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where ρ is defined as before by (1.7). This is the well-known Lifshits singularity
[28]. For the alpha-stable subordinator of Example 6, he found

(6.24) N(E) ∼ A exp
[

−ναE
−1−α
2(1−α)

]

as E → 0

where

να :=

[

pα
Γ(1−α)

]
1

1−α

B

(

1
1−α ,

1
2

) .

Kotani also obtained exact expressions for the constant factor A; see [26], Theorem
4.7. In the supersymmetric case, the constant factor may in principle be obtained
by including the next term in the WKB expansion of the remainder Z, but the
calculations involved are tedious.

The asymptotic behaviour (6.24) may be recovered by a heuristic argument sim-
ilar to the one developed in the supersymmetric case. The main difference is that,
whereas in the supersymmetric case V = w2/4−w′/2 the Lévy process is dimension-
less, in the case V = w it has the dimension of the reciprocal of length. Consider
as before an interval [0, ℓ], and suppose that the Lévy process does not increase
beyond a certain threshold ε in that interval. The contribution of the potential
energy now reads V ≈ ε/ℓ. Therefore a state of low energy E ≈ Ekin ≈ 1/ℓ2 is

possible if V ≪ Ekin i.e. ε≪ 1/ℓ ≈
√
E. Hence

lnN(E) ∼ lnP
(

W
(

1/
√
E
)

< ε
)

∼ −E− 1+α
2(1−α) as E → 0+ .

The different exponent, compared to Equation (6.20), comes from the fact that the

threshold ε is now dimensional and scales with energy as
√
E. The case m(dy) ∼

dy/y for y → 0+ leads to the same behaviour as in the supersymmetric case; see
Equation (6.22).

6.6. Classical diffusion. The formal equivalence between supersymmetric quan-
tum mechanics and classical diffusion is well-known and has proved fruitful in the
study of diffusion in a random environment [9, 29, 30, 43]. The purpose of this
subsection is to outline the most immediate implications of our results for this field
of study.

Consider a diffusing particle placed initially at a position x0. The Fokker-Planck
equation for the probability density P (· ; t) of its position at time t is

∂

∂t
P (x; t) =

∂

∂x

[

∂

∂x
+ v(x)

]

P (x; t) − a(x)P (x; t)

where v and a are, respectively, the drift and the absorption (killing) rate of the
diffusion. The transformation

P (x; t) = e−
1
2

∫
x

0
v(y) dy ψ(x; t)

leads to the Schrödinger equation

− ∂

∂t
ψ = H ψ for H := − d2

dx2
+

v
2

4
− v

′

2
+ a .

When v and a are random, the expected value of P (x0; t) turns out to be indepen-
dent of the starting point x0; it is related to the density of states N ′(E) associated
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with the disordered system via

P (x0; t) =

∫ ∞

0

dEN ′(E) e−Et .

By standard Tauberian arguments, the long-time behaviour of this expected density
is therefore completely determined by the low-energy behaviour of the density of
states:

lnN(E) ∼ −E ν
ν−1 as E → 0+ ⇒ lnP (x0; t) ∼ −tν as t→ ∞ .

The Kotani case V = w corresponds to the choice v = 0 and a = w. Here,
the decay of the return probability density follows from the decay of the total
probability due to absorption. For finite Lévy measures, the Lifshits singularity
(6.23) leads to the well-known exponent ν = 1/3 [31]. On the other hand, when
the Lévy measure is infinite, the behaviour (6.24) leads to the exponent

ν =
1 + α

3− α
.

The supersymmetric case V = w2/4−w′/2 corresponds to the choice v = w and
a = 0. In this case, there is no absorption, the total probability is conserved, and
the decay of the return probability density is due to the expected drift of the Lévy
process:

E (W (x)) = x

∫ ∞

0

ym(dy) = 2ax .

For a pure deterministic drift, ν = 1 and the return density decays exponentially.
For a non-zero Lévy measure, however, the fluctuations in the drift bring about a
slower rate of decay. For example, in the case of a finite measure, we find, as in
Kotani’s case, ν = 1/3; for the alpha-stable case, we find

ν =
1

3− 2α
.

For the singular measure (6.21), the spectral singularity (6.22) leads to the prob-
ability decay

lnP (x0; t) ∼ −t1/3 ln2/3 t .
In this marginal case, the singular nature of the measure is only reflected in the
logarithmic correction. This behaviour holds for both the random drift case and
the random absorption case.

7. Conclusion

In this paper, we have developed the supersymmetric version of the Frisch–Lloyd
methodology for computing the density of states of a system with Lévy disorder.
The main novelty is that, in the supersymmetric case, the complex Lyapunov ex-
ponent may be expressed in terms of the positive solution of a difference equation.
When the Lévy process is non-decreasing, the complex Lyapunov exponent has a
continued fraction expansion whose coefficients have simple expressions in terms
of the Lévy exponent, and the problem of computing the density of states reduces
to a Stieltjes moment problem. One pleasing outcome was the discovery of a new
solvable case. Our efforts to adapt to the supersymmetric case Kotani’s semiclas-
sical analysis of the low-energy regime have also borne some fruit, although our
approach only gives the leading term. This analysis has shown in particular that,
for infinite Lévy measures, the low-energy behaviour of the integrated density of
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states is controlled by the small jumps of the process. This result is in some sense
the dual of that obtained in an earlier study by one of us, namely that it is the tail
of the Lévy measure that determines the high-energy regime [7, 8].

The paper raises a number of questions that deserve further study:

(1) Much of the work presented here has been concerned with the subordinator
case. From the point of view of localisation, however, the most interesting
processes are those with zero means, such as Brownian motion. Hence we
require a less restrictive theory.

(2) As mentioned earlier, exponentials of Lévy processes may be viewed as the
zero-energy case of the supersymmetric model. There has been a great
deal of recent work on such exponentials, including their close connection
with self-similar processes [38] and a generalisation to complex exponentials
[22]. Our own findings encourage us to seek interpretations of some of these
results in terms of disordered systems.

Appendix A. Some Lévy processes

We recall in this appendix some basic facts concerning the distributional prop-
erties of two important classes of Lévy processes.

A.1. The alpha-stable process. We study the subordinator characterised by the
infinite Lévy measure

m(dy) =
α

Γ(1− α)

dy

y1+α
, 0 < α < 1 .

The fact that the Lévy exponent

Λ(θ) = −(−iθ)α

has a simple power law indicates that the law is stable, namely,

W (x)
(law)
= x1/αW (1)

or, in other terms, that the probability density function fW (· ;x) of the random
variable W (x) satisfies

fW (u ;x) = x−1/α fW (x−1/αu ; 1)

where

(A.1) fW (u ; 1) =

∫

R

dz

2π
eizu−(iz)α .

This distribution is a particular case of a more general two-parameter family of
Lévy stable laws with probability density function

Lα,β(u) =

∫

R

dz

2π
eizu−|z|α(1+iβ sign(z) tan[πα/2]) .

The parameter β ∈ [−1,+1] tunes the asymmetry of the law; β = 0 corresponds to
a symmetric law, such as the Cauchy L1,0 or the Gaussian L2,0 laws, while β = +1
corresponds to subordinators, whose distributions have support in R+ [10, 46]. The
precise relationship between fW (· ; 1) and Lα,β is

fW (u ; 1) = [cos(πα/2)]−1/α Lα,1

(

[cos(πα/2)]−1/αu
)

.
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The distribution (A.1) may be analysed as follows: for u < 0, the analyticity
of the integrand in the lower complex plane implies f(u) = 0. For u > 0 we
can deform the contour of integration in order to follow the branch cut along the
positive imaginary semi-axis; the result is

(A.2) fW (u ; 1) =

∫ ∞

0

dt

π
sin (tα sinπα) e−tu−tα cosπα

and so we deduce an asymptotic power law tail similar to the Lévy measure

(A.3) fW (u ; 1) ∼ α

Γ(1− α)
u−1−α as u→ ∞ .

The behaviour of the density function (A.1) for small u may be studied by using
a stationary phase approximation. Let us write

fW

(

λ1−1/α ; 1
)

= λ1/α
∫

R

dz

2π
eλϕ(z) where ϕ(z) = iz − (iz)α .

Since Re[ϕ(z)] < 0 for Im z < 0, we can deform the contour of integration in order
to pass through the stationary point z0 = −iα1/(1−α) such that ϕ′(z0) = 0; this
leads to

(A.4) fW (u ; 1) ∼ 1√
2πBα

u−
2−α

2(1−α) exp
[

−Aαu
− α

1−α

]

as u→ 0+

where Aα = (1− α)αα/(1−α) and Bα = (1− α)α−1/(1−α).
For example, we can verify that these behaviours are the correct ones in the case

α = 1/2, since L1/2,1(u), the density of the so-called Lévy distribution, admits the
simple expression

fW (u ; 1) =
1

2
√
π
u−3/2e−1/(4u)1(0,∞)(u) .

A.2. The gamma process. The gamma process is characterised by the infinite
Lévy measure [1]

m(dy) =
dy

y
e−by .

Using
∫ ∞

0

dt

t
(e−At − e−Bt) = ln

B

A
we obtain the Lévy exponent

(A.5) Λ(θ) = − ln (1− iθ/b) .

From the point of view of the statistical properties of the frequent small jumps, the
gamma process can be understood as the α→ 0 limit of the alpha-stable process.

The distribution can be studied by considering the Fourier transform

fW (u ;x) =

∫

R

dz

2π

eizu

(1 + iz/b)x
.

A contour deformation leads to

(A.6) fW (u ;x) =
bx

Γ(x)
ux−1 e−bu 1(0,∞)(u) .

In particular, the moments are finite, given by

E (W (x)n) =
Γ(n+ x)

Γ(x)
b−n .
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