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The non-equilibrium dynamics of strongly correlated many-body systems exhibits some of the
most puzzling phenomena and challenging problems in condensed matter physics. Here we report
on essentially exact results on the time evolution of an impurity injected at a finite velocity into
a one-dimensional quantum liquid. We provide the first quantitative study of the formation of the
correlation hole around a particle in a strongly coupled many-body quantum system, and find that
the resulting correlated state does not come to a complete stop but reaches a steady state which
propagates at a finite velocity. We also uncover a novel physical phenomenon when the impurity
is injected at supersonic velocities: the correlation hole undergoes long-lived coherent oscillations
around the impurity, an effect we call quantum flutter. We provide a detailed understanding and an
intuitive physical picture of these intriguing discoveries, and propose an experimental setup where
this physics can be realized and probed directly.

Quantum environments are known to be capable of
drastically altering the properties of embedded parti-
cles, notable examples being the formation of polarons in
solid-state systems [1], Kondo singlets in systems with lo-
calized impurities [2], and quasiparticles in Fermi liquids
[3]. The study of these phenomena has typically been car-
ried out assuming the dressing of the particle is in equilib-
rium [4], however recent experiments have begun address-
ing nonequilibrium phenomena associated with the for-
mation of these strongly correlated states [5–7]. The the-
oretical analysis poses one of the most formidable chal-
lenges in condensed matter physics, requiring accurately
capturing the dynamics of strongly interacting quantum
phases of matter [3, 9, 10]. In this work we provide an
essentially exact numerical study of the formation of a
correlation hole around an impurity injected into a one-
dimensional gas of hardcore bosons, also known as the
Tonks-Girardeau (TG) gas [11, 12]. Intriguingly, we find
the most striking features when the particle is injected
supersonically. The physics of fast particles is responsible
for a rich variety of phenomena, such as flutter in aerody-
namics, Cerenkov radiation [13], and bremsstrahlung[14].
Our results provide an example of new physics induced
by supersonic motion in a non-relativistic quantum sys-
tem. Previous works on fast propagation in Bose gases
assumed either a weakly coupled gas described by a set
of noninteracting Bogoliubov excitations [15–20], or a
strongly interacting system treated within a low-energy
effective field theory approach [21–23]. In this paper we
find that there are novel features that require both the
strong coupling regime and a high energy impurity, thus
going beyond the regime addressed in previous works.

Our main observations in tracking the fate of the im-
purity injected into a 1D quantum liquid are twofold.
Firstly, the injected particle forms a strongly correlated
state with the quantum liquid that does not come to a full

stop, instead it reaches a steady state which propagates
at a reduced velocity. We provide a study of the for-
mation of these dissipationless propagating states, and a
protocol for their generation by direct particle injection.
Secondly, if the impurity is injected at a supersonic veloc-
ity, the correlation hole around the impurity undergoes
pronounced oscillations. We call this phenomenon quan-
tum flutter in analogy with supersonic flutter in aerody-
namics, which also arises from nonlinear interactions of a
fast object with the background medium. This quantum
flutter is due to the formation of an entangled many-
body state, whose coherence is long-lived. Recent work
has shown that strongly coupling a particle to a bath
can lead to non-Markovian dynamics and the possibility
of coherence surviving for long times [24, 25]. Quantum
flutter provides an example of a quantum system taken
far out of equilibrium whose relaxation shows striking
quantum coherent effects that go beyond a hydrodynam-
ical description. We propose a direct experimental re-
alization of this physics in a cold atomic setting, where
impurity physics in Tonks-Girardeau gases has already
been realized [7, 26, 27]. But first, we develop a detailed
understanding of the intricate and intriguing physics of
the formation of the dissipationless current-carrying state
and subsequent quantum flutter.

Physical system and correlation hole formation

Our system consists of an impurity with flipped spin of
mass m↓ interacting via a contact interaction with a one-
dimensional TG gas of hardcore bosons, of mass m↑. At
present, we assume the masses are equal: m↑ = m↓ = m.
In the absence of the impurity, Girardeau [12] showed
that the TG gas can be mapped to a fully polarized non-
interacting Fermi gas, thus solving an interacting many-
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FIG. 1. Correlation hole formation and quantum flutter: Formation of the correlation hole and emission of the wave
packet in the background gas, for interaction strength γ = 5 and injected momentum Q = 1.35kF . a, Time evolution of the
density distribution around the impurity, L〈ρ̂↑(x, t)ρ̂↓(0, t)〉/ρ, for an impurity with initial momentum Q = 1.35kF pointing
in the x > 0 direction. From t = 0 to about t = 5tF , the correlation hole forms. Simultaneously, a large wave packet in the
background gas forms (red ridge). Friedel-like oscillations in the spatial direction are visible outside of the correlation hole.
We highlighted the line at t = 25tF outside the correlation hole in red, where the oscillations are clearly visible. In blue we
highlighted two lines at constant positions (xρ = −0.85 and xρ = 0.93) on the peaks bordering the correlation hole, along
which oscillations, which we call quantum flutter, are visible. b, Front view of the correlation hole. Here we see oscillations
inside the correlation hole, which correspond to the quantum flutter. We highlighted lines of constant height (xρ = 0.6 and
0.8), which are oscillating back and forth in space as a function time, thus the correlation hole is ’fluttering’. c, Change in

momentum distribution in the background gas after the formation of the correlation hole: L
(
〈n̂k↑(t = 5tF )〉 − 〈n̂k↑(t = 0)〉

)
where n̂k↑ = c†k↑ck↑. A narrow peak in the momentum distribution of the majority particles is formed (indicated by the red

arrow), corresponding to the emitted wave packet. Also, we see a depletion of 〈n̂k↑〉 for |k| < kF , from the correlation hole
being delocalized across the Fermi sea. Note that 〈n̂k↑〉 is defined in the fermionic language.

body quantum problem exactly. We have now extended
this argument to the problem with an impurity: because
the impurity is distinguishable from the TG bosons, the
TG bosons can be fermionized independently of the im-
purity.

Since we are describing results for an impurity in a
TG gas and a fully polarized Fermi sea simultaneously,
we can adopt the notation from the fermionic system. All
the ’fermionic’ quantities we describe have direct analogs
in the TG gas. For example, we define the ’Fermi mo-
mentum’ kF of the TG gas (or the Fermi sea) through
its density ρ: kF = πρ. We will refer to either the TG
bosons or the fullly polarized fermions as the background
particles, and give them all spin up. The impurity is then
a down spin. We define fermionic creation (annihilation)

operators: c†kσ (ckσ) creates (annihilates) a fermion of

momentum k and spin σ (σ =↑ or ↓). The ground state
of the background gas becomes simply a fully polarized
Fermi sea: |FS〉 =

∏
|k|<kF c

†
k↑|0〉, where FS stands for

Fermi sea and |0〉 is the vacuum.
We call x↓ the position of the impurity, and x1, . . . , xN

the positions of the N particles in the background gas
(where N is odd). The Hamiltonian of the system is

H =
P̂ 2
↓

2m↓
+

N∑
i=1

P̂ 2
i↑

2m↑
+ g

∫
dxρ̂↓(x)ρ̂↑(x) (1)

where P̂↓ (P̂i↑) is the momentum and m↓ (m↑) the mass
of the impurity (i − th background particle); g is the
coupling between the impurity and the bosons; ρ̂σ(x) =
ψ†σ(x)ψσ(x) is the density operator of spin σ, where ψ†σ(x)
(ψσ(x)) creates (annihilates) a fermion of spin σ at po-
sition x. As stated previously we set m↓ = m↑ = m for
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now. We parametrize the interaction strength between
the impurity and the background particles with the di-
mensionless interaction parameter γ = mg/ρ.

To obtain the physics we are describing, we start the
impurity in a plane wave, thus our initial state is

|Ψ〉 = c†Q↓|FS〉 (2)

where Q is the initial impurity momentum. We let this
state evolve in time under the Hamiltonian in Eq. 1 and
then calculate the expectation value of the quantities we
are interested in.

Because this system is integrable, obtaining the many-
body eigenstates of the problem reduces to solving the
Bethe-Ansatz equations relevant to this problem [2, 29].
Therefore, after obtaining all the eigenstates, one can
calculate the expectation value of any operator, by in-
troducing a complete set of eigenstates, and using mas-
sively parallelized computing resources (see Supplemen-
tary Information Sections S.1 through S.4 for details).
To probe the dynamics in our system, we calculate the
density distribution of the quantum liquid around the im-
purity. This corresponds to calculating the expectation
value 1

L 〈ρ̂↓(0, t)ρ̂↑(x, t)〉L/vF , which measures the den-
sity of the quantum liquid a distance x away from the
impurity (we multiply by L and divide by the Fermi ve-
locity vF = ~kF /m such that this quantity is 1 at time
t = 0). We plot this quantity in Fig. 1a for coupling γ = 5
and initial momentum Q = 1.35kF . We define a Fermi
time as the inverse Fermi energy: tF = 1/EF = 2m/k2

F .
We see that for t from 0 to 5tF , the correlation hole is
forming, and a narrow wave packet in the background
gas is being emitted. This last statement can be ver-
ified by calculating the momentum distribution in the
background gas, 〈n̂k↑(t)〉. We plot the change in this
quantity in Fig. 1c at t = 5tF , and indeed find a narrow
wave packet peaked at some momentum close to Q (Note
that 〈n̂k↑〉 only corresponds to the physical momentum
distribution in the fermionic case [11]).

Phenomenology of the quantum flutter

In the pictures of the density distribution of the quan-
tum liquid around the impurity, we saw hints of the quan-
tum flutter as evidenced by oscillations in time inside the
correlation hole (see Fig. 1b). To see these oscillations
in more detail, we plot the time derivative of the density
distribution 1

L
d
dt 〈ρ̂↓(0, t)ρ̂↑(x, t)〉L/vF inside the correla-

tion hole (meaning within an interparticle distance 1/ρ
from the impurity). We see that the correlation hole is
moving back and forth around the impurity. We can find
a pronounced signature of this effect in another quan-
tity, the time dependence of the momentum of the im-
purity 〈P↓(t)〉 which we plot in Fig. 2b. The expected
impurity momentum initially decays quickly during the

formation of the correlation hole, but the decay even-
tually abates, leaving the impurity with a final momen-
tum equal to a sizeable fraction of the Fermi momentum.
After this initial drop, the impurity momentum shows
pronounced oscillations at a fixed frequency. The first
phenomenon, saturation of momentum loss, happens for
any nonzero initial momentum, but the oscillations only
become pronounced when Q is close to or larger than kF .
The oscillations in the impurity momentum and the oscil-
lations of the correlation hole are in phase, as evidenced
in the time derivative of the first moment of the density
distribution of the quantum liquid around the impurity:

L
∫ ρ−1

−ρ−1 dxx〈ρ̂↓(0, t)ρ̂↑(x, t)〉/vF , see Fig. 2c. This quan-
tity corresponds to the classical momentum of a density
distribution of the form 〈ρ̂↓(0, t)ρ̂↑(x, t)〉, and it oscillates
approximately in phase with the oscillations of the impu-
rity momentum. This result suggests that the oscillations
are due to a momentum exchange between the impurity
and its correlation hole.

Physical mechanism behind the quantum flutter

Now that we have a complete picture of the different
components in the time evolution, we detail the physical
mechanism underlying the quantum flutter: the system is
undergoing coherent oscillations between two families of
states which we call ’exciton-like’and ’polaron-like’ (see
Fig. 3a). Therefore the fluttering corresponds to a quan-
tum beating between two families of states. That this
quantum superposition is coherent for such a long time
is quite remarkable, and is related to the fact that the po-
laron and exciton dispersions are relatively flat at strong
coupling.

To provide insight into the nature of the dynamical
processes and motivate the intuitive physical picture de-
scribed above we supplemented the Bethe Ansatz analy-
sis with a variational approach based on a restricted set of
wave functions which have been used succesfully in previ-
ous works to study the ground state properties of impu-
rities in cold atomic systems [4, 30, 31], and are capable
of capturing the states that we conjecture are respon-
sible for quantum fluttering. That this approach agrees
quantitatively with the Bethe Ansatz results (see Supple-
mentary Information Section S.5) strongly supports the
qualitative picture we will now describe.We emphasize,
however, that all quantitative results presented in this
work (except for the mass imbalance results in Fig. 5)
were obtained from the full Bethe Ansatz equations.

Our intuitive picture behind quantum flutter relies on
two types of states, an exciton and a polaron, which we
describe qualitatively using variational wave functions.
The exciton state with total momentum K is the lowest
energy state composed of a Fermi sea, an impurity and
a hole. In its simplest incarnation it has the following
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FIG. 2. Properties of quantum flutter: Properties of the quantum flutter, with parameters γ = 5 and Q = 1.35kF . We
observe oscillations of the correlation hole around the impurity, and of the momentum of the impurity, which are in phase
and consistent with the picture of the impurity exchanging momentum with its correlation cloud. This suggests that coherent
quantum mechanical processes are leading to a collective mode of the system, which we call quantum flutter. a, Plot of the
time derivative of the density distribution of the background gas within the correlation hole: 1

L
d
dt
〈ρ̂↓(0, t)ρ̂↑(x, t)〉L/vF with

x within an interparticle distance ρ−1 of the impurity. Pronounced oscillations of the correlation hole are observed at a fixed
frequency. b, Time evolution of the expected momentum of the impurity. We notice two main features: first the momentum
does not decay to zero. Second, the momentum shows oscillations at a fixed frequency around the saturation value. These
oscillations are in phase with the oscillations of the correlation hole. c, Comparison of the time derivative of the first moment

of the density of the background gas inside the correlation cloud, L d
dt

∫ ρ−1

ρ−1 dxxρ↓(0, t)ρ̂↑(x, t)〉/vF , and the oscillations of the

impurity momentum. If the background gas were classical, this time derivative of its first moment would correspond to its
momentum. The oscillations of the two quantities are almost in phase and of the same order of magnitude, substantiating the
claim that the quantum flutter corresponds to the impurity exchanging momentum with its correlation hole.

form:

|Exc(K)〉 = (
∑
q

α(K)
q c†K+q↓cq↑)|FS〉. (3)

We call E(Exc(K)) the energy of the exciton at momen-
tum K. We remind the reader that Eq. 3 gives a descrip-
tion of the exciton in a truncated Hilbert space. A full
description of this state, obtained from the Bethe-Ansatz
equations, will contain an infinite number of particle-
hole pair excitations. However, this level of description is
enough to obtain quantitative agreement with the Bethe
Ansatz calculations, as we describe later.

A polaron state is a dressed impurity state, i.e. it
consists of an impurity on top of a Fermi sea, dressed
by particle-hole excitations of the Fermi sea. We call
|Pol(K)〉 the ground state of a system made up of a Fermi

sea and an impurity with total momentum K, which,
allowing at most one particle-hole pair excitation, is given
by [30]

|Pol(K)〉 = (β(K)c†K↓ +
∑
kq

γ
(K)
kq c†K−k+q↓c

†
k↑cq↑)|FS〉.

(4)
We call E(Pol(K)) the energy of the polaron at momen-
tum K. As for the exciton, in the full Bethe Ansatz
solution the polaron will contain an infinite number of
particle-hole pair excitations, but capturing the polaron
at this level already gives quantitatively accurate results.

Now, once the system has emitted a wave packet in the
background gas, it leaves behind a hole that the impurity
can interact with. Therefore the impurity and hole can
form an exciton, and the wave function of the system
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FIG. 3. Physical picture behind quantum flutter: An
intuitive picture behind the quantum flutter involves the sys-
tem forming a coherent quantum superposition of two fam-
ilies of states. The energy difference between the van Hove
singularities, where the density of states diverges, in these
families of states is exactly equal to the oscillation frequency
of the quantum flutter, which becomes a quantum beating
effect in this picture. a, The families of states behind the
quantum flutter, as discussed in the text. The impurity
can bind to the hole left behind by the emitted particle,
creating an exciton. Alternatively, it can also not bind to
the hole and formed a state dressed with particle-hole pairs,
called a polaron. Therefore, the two families of states are
c†k↑|Exc(Q−k)〉 (Exciton+Particle) and c†k↑cq↑|Pol(Q−k+q)〉
(Polaron+Hole+Particle). b, Stars: oscillation frequency
~wosc = ~2π/τosc in the impurity momentum where τosc is
the period of the oscillations seen in Fig. 2b. Green line:
energy difference between c†Q↑|Exc(0)〉 and c†Q↑c0↑|Pol(0)〉,
which equals E(Pol(0)) − E(Exc(0)). They agree to within
1%.

would be

Exciton+Particle state: c†k↑|Exc(Q− k)〉 (5)

where k is the momentum of the emitted particle. An-
other option is that the impurity does not bind with the
hole, instead it forms a polaron with the Fermi sea. We
then have a polaron, a hole and a particle in the back-
ground, giving a wave function of the form

Polaron+Particle+Hole state : c†k↑cq↑|Pol(Q− k + q)〉
(6)

See Fig. 3a for a schematic representation of these two
possibilities.

One can interpret the quantum flutter as being due to

the system being in a superposition of these two possibili-
ties: Exciton+Particle and Polaron+Particle+Hole. The
particle has momentum close to the total momentum Q,
and the hole is a deep hole, meaning that its momen-
tum is close to zero. Consider now the case where the
particle has momentum exactly equal to Q, and the hole
momentum exactly equal to zero. Then our two states
are c†Q↑|Exc(0)〉 and c†Q↑c0↑|Pol(0)〉. Now, we can cal-
culate the energy of |Exc(0)〉 and |Pol(0)〉 exactly using
Bethe Ansatz (this means that Eqns. 3 and 4 are now
dressed with an arbitrary number of particle-hole pair ex-
citations). Using this quantity, we can look at the differ-

ence in energy between c†Q↑c0↑|Pol(0)〉 and c†Q↑|Exc(0)〉,
which is E(Pol(0))−E(Exc(0)), because both states have
a Fermi sea and a particle at Q so those energies cancel
out, and the hole at zero momentum carries no energy. In
Fig. 3b, we plot this difference in energy and compare it
to the frequency of the quantum flutter ~ωosc = ~2π/τosc
where τosc is the period of the oscillations in impurity
momentum. The two quantities match to within 1%,
which is consistent with our physical picture of quantum
flutter arising from quantum beating. Note that in cal-
culating the energy we used the fact that the emitted
wave packet is spatially separated from the impurity and
therefore does not interact with it. Also, we assumed
the deep hole weakly interacts with the polaron, as the
polaron is mostly dressed close to the Fermi points.

As we mentioned earlier, the emitted particle does not
have momentum exactly equal to Q, and the hole on top
of the polaron is not exactly at zero momentum, instead
they have some spread. However, at stronger coupling
the polaron and exciton have increasingly flat disper-
sions. Therefore as long as the hole on top of the polaron
is close to zero momentum, then the energy difference
between c†k↑c0↑|Pol(Q− k)〉 (setting the hole momentum

to zero for now) and c†k↑|Exc(Q − k)〉 will depend only
weakly on k. Thus the emitted particle can form a wave
packet without disturbing the oscillation frequency of the
flutter much. However, forming a superposition of states
with different energies will lead to damping of the os-
cillations, which is indeed what we observe. From this
picture we can also understanding why the oscillations
only appear when Q is of the order of or larger than kF :
Q = kF is the minimum momentum necessary to be able
to create a particle in the background gas (whose mo-
mentum has to be larger than kF ) and an exciton at zero
momentum. That the oscillations become so pronounced
is then due to the van Hove singularity at the top of the
exciton branch (i.e. in E(Exc(K)) at K = 0).

As mentioned earlier, the picture of quantum flutter
given above is qualitative, but in fact a variational ap-
proach that can capture the families of states in Eq. 3
and Eq. 4 leads to results which are in quantitative agree-
ment with the results from Bethe Ansatz (see Supplemen-
tary Information section S.5 for details). This strongly
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supports the physical understanding behind quantum
flutter that we expound, of a long-lived coherent super-
position of exciton-like and polaron-like states.
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FIG. 4. Dependence of oscillations on initial mo-
mentum: Average impurity momentum 〈P↓(t)〉 as a func-
tion of time, for γ = 5, for different initial momenta: (red)
Q = 1.05kF , (orange) Q = 1.35kF , (green) Q = 1.7kF , (blue)
Q = 2kF . Inset: zoom in on the oscillations. The structure of
the oscillations depends only weakly on the initial impurity
momentum. This implies (see text) that if the impurity was
in a wave packet state peaked at high enough momentum, the
average momentum of the impurity would flutter.

Experimental consequences

We propose several experiments to detect the physics
described above. For the most direct realization of it,
consider a neutral bosonic atom that is confined to a
quasi-1D geometry and made to have strong repulsive
interactions via a Feshbach resonance, thus realizing a
simulation of a Tonks-Girardeau gas [7, 26, 27, 33]. This
atom must have at least three internal hyperfine states
|1〉, |2〉 and |3〉, such that |1〉 and |3〉 strongly interact,
while the pairs |1〉 and |2〉, and the pairs |2〉 and |3〉
weakly interact. Start the system with most atoms in
the |1〉 state, and a few in the |2〉 state. Now use a two-
photon Raman pulse to excite the |2〉 atoms into a |3〉
state with a given momentum. Then use time-of-flight
measurements to map out the time dependence of the
momentum distribution of the |3〉 particles. The aver-
aged momentum should see the quantum flutter.

Typically impurity experiments use localized RF
pulses to create impurity wave packets. From our re-
sults for 〈P↓(t)〉, one can immediately obtain the results
for 〈P↓(t)〉 for an impurity initially in a wave packet, i.e.

an initial state of the form
∑
k αkc

†
k↓|FS〉 where αk is

the Fourier transform of the wave packet. Namely the
resulting 〈P↓(t)〉 can immediately be obtained from our
calculations by averaging the results obtained for plane

wave impurities, weighted with |αk|2:

〈P↓(t)〉 =
∑
k

|αk|2〈FS|ck↓P↓(t)c†k↓|FS〉. (7)

The reason is that the Hamiltonian conserves total mo-
mentum, so the different momentum components of the
wave packet evolve independently of each other. In Fig. 4
we show that 〈GS|ck↓P↓(t)c†k↓|GS〉 is only weakly depen-
dent on k after the initial decay if k > kF , therefore the
quantum flutter would not be washed out if the wave
packet was peaked around high enough a momentum.

r=0.8
r=1

r=1.2

r=1.4

r=m¯�m

0 5 10 15 20 25 30
t�tF0.05

0.1

0.15

0.2

0.25

0.3

<P¯HtL>�kF

FIG. 5. Dependence of oscillations on mass imbal-
ance: Time dependence of the impurity momentum 〈P↓(t)〉
for initial momentum Q = 1.05kF , interaction strength γ = 5,
and different mass imbalances r = m↓/m↑, from top to bot-
tom: r = 0.8, 1, 1.2, 1.4. These results are obtained from
the variational approach discussed in the text. The r = 1
case agrees quantitatively with the result obtained from the
Bethe Ansatz approach (see Supplementary Information Sec-
tion S.5). We see that the saturation of momentum loss and
quantum flutter exist away from the integrability point. For
r < 1 the quantum flutter gets strongly damped, while for
r > 1 the damping depends only weakly on r.

Whether quantum flutter is present in other models is
an important question, which we have begun answering.
As discussed above, we have a variational approach that
agrees with the Bethe Ansatz results, and therefore al-
lows us to explore non-integrable models. It is known
that the equilibration of integrable and non-integrable
models is qualitatively different, due to the infinite set
of conserved quantities in the integrable case [34]. Non-
integrable models, on the other hand, are expected to
relax to a local equilibrium described by hydrodynamics.
In our case, we varied the ratio r = m↓/m↑ of the mass
of the impurity and of the background particles, making
the system non-integrable. As shown in Fig. 5 we find
that the saturation of momentum loss and subsequent
quantum flutter are still present when the mass ratio is
changed. For r < 1 the quantum flutter becomes more
strongly damped, while for r > 1 the damping is weakly
dependent on mass ratio.
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Discussion

We have provided an example of new physics arising
from the injection of a supersonic particle into a many-
body quantum system. In many physical and biologi-
cal systems [35, 36] an important question is whether a
correlated quantum state can travel through an environ-
ment while maintaining its coherence. The phenomenon
of quantum flutter provides an example of the forma-
tion of an entangled state that is propagating through
the many-body system and remaining coherent for long
times. Furthermore, we showed that this dynamically
generated and protected coherent state is not a singular
feature of the integrable point, and we find similar fea-
tures as we perturb away from integrability. The most
important question that remains from this work is which
physical systems exhibit effects similar to quantum flut-
ter, and more generally whether quantum systems taken
far out of equilibrium exhibit quantum coherent effects,
which go beyond a hydrodynamic picture of local relax-
ation. We have begun answering these questions, and
believe that state-of-the-art theoretical and experimental
methods for studying nonequilibrium quantum dynamics
should be able to shed more light on this topic.
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SUPPLEMENTARY INFORMATION

THE MODEL AND POLARON
TRANSFORMATION TO THE IMPURITY

FRAME

We are considering a one-dimensional Fermi gas of
atoms which we call spin up, and one impurity with spin
down (in other words, we fermionized the TG gas). The
second-quantized representation of the Hamiltonian is

H = − ~2

2m

∫ L

0

dx
∑
α=↑,↓

[∂2
xψ̂
†
α(x)]ψ̂α(x)

+ g

∫ L

0

dx : ρ̂↑(x)ρ̂↓(x) : (S1)

where ρ̂α(x) = ψ̂†α(x)ψ̂α(x), α =↑, ↓ . The Fourier trans-
form

ψ̂†α(x) =
1√
L

∑
q

e−iqxĉ†αq (S2)

where α =↑, ↓, q = 2πm
L , m = 0,±1,±2, . . ., gives the

momentum-space representation of the fermion fields en-
tering Eq. (S1). The fermion anti-commutation relations

in the momentum space are [ĉαq, ĉ
†
βq′ ]+ = δαβδqq′ . The

symbol “::” stands for the normal ordering.

The Hamiltonian (S1) commutes with the global spin

operator Ŝ = (Ŝx, Ŝy, Ŝz):

[H, Ŝ] = 0, Ŝ =
1

2

∫ L

0

dx
∑
α,β

ψ̂†α(x)σαβψ̂β(x), (S3)

where σ = (σx, σy, σz) is the vector composed of the
three Pauli matrices. The spin-ladder operators S± =
Sx ± iSy convert spin-down particles into spin-up, and
vice versa. Their momentum-space representation is

S− =
∑
k

ĉ†↓k ĉ↑k, S+ = S†−. (S4)

Another conserved quantity is the total momentum,

[H, P̂ ] = 0, P̂ = P̂↑ + P̂↓. (S5)

The model (S1) is Bethe-Ansatz solvable. McGuire
[S1 ] found its wave functions |Ψq〉 and spectrum EΨq in
the sector with one spin-down particle, and an arbitrary
number N of spin-up particles:

H|Ψq〉 = EΨq |Ψq〉, N↓|Ψq〉 = |Ψq〉, P̂ |Ψq〉 = q|Ψq〉,
(S6)

where N↓ =
∫ L

0
dx ρ̂↓(x). Note that we write N for the

number of spin-up particles, which we also refer to as the
host particles, instead of N↑ to lighten the notation. We
assume N is odd.

Despite the McGuire solution, the calculation of
the far-from-equilibrium impurity dynamics in the
model (S1) still remains a challenge. Call

|inq〉 = c†↓q|FS〉 (S7)

the initial state where the Fermi sea for N particles is
defined as (qm = 2πm/L and ’vac’ is the vacuum)

|FS〉 =

(N+1)/2∏
m=−(N−1)/2

c†qm↑|vac〉. (S8)

The average impurity momentum Pq(t) is then

Pq(t) = 〈inq|P̂↓(t)|inq〉, (S9)

and we refer to it interchangeably as 〈P↓(t)〉 for short-
hand. It can be represented as

Pq(t) =
∑

Ψq,Ψ′q

e
it(EΨq−EΨ′q

)〈FS|ĉ↓q|Ψq〉

×〈Ψq|P̂↓|Ψ′q〉〈Ψ′q|ĉ
†
↓q|FS〉 (S10)

using the completeness of the basis of the functions |Ψq〉.
In order to get Pq(t) for sufficiently broad ranges of q,
t, and particle number reliably one should include a vast
number of terms in the sum on the right hand side of
Eq. (S10). Therefore it is crucial to find a computation-
efficient representation of the matrix elements entering
the decomposition (S10).
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To perform this task we find it convenient to use the
mobile impurity reference frame. The transformation to
this frame (often called polaron transformation) for an
arbitrary operator O reads (see, for example, Ref. [S2 ])

O → OQ = QOQ−1, Q = eiP̂↑x̂↓ (S11)

where P̂↑ is the total momentum operator of the back-
ground particles, and x̂↓ is the impurity coordinate oper-
ator. This transformation acts on the impurity and host
momenta as follows

P̂↑Q = P̂↑, P̂↓Q = P̂↓ − P̂↑, (S12)

Applying the transformation (S11) to the Hamiltonian of
our model, we get

HQ = − ~2

2m

∫ L

0

dx [∂2
xψ̂
†
↑(x)]ψ̂↑(x)+(P̂↓− P̂↑)2 +gρ̂↑(0).

(S13)
The conservation of the total momentum in the labora-
tory frame, Eq. (S5), leads to the conservation of P̂↓ in

the impurity frame, [HQ, P̂↓] = 0. Therefore the func-
tions |Ψq〉, Eq. (S6), can be written as

|Ψq〉 = Q−1c†↓q|0〉 ⊗ |fq〉, (S14)

where |0〉 is the state with no particles, and the states |fq〉
are orthogonal, normalized and form a complete basis of
eigenstates of the Hamiltonian HQ(q):

HQ(q) =
∑
fq

|fq〉Efq 〈fq|, 〈fq|f ′q〉 = δfqf ′q , (S15)

where

HQ(q) = − ~2

2m

∫ L

0

dx [∂2
xψ̂
†
↑(x)]ψ̂↑(x)+(q−P̂↑)2 +gρ̂↑(0)

(S16)
is obtained by projecting the Hamiltonian (S13) onto the
sector with P̂↓ equal to q. We stress that |Ψq〉 and |fq〉
are in one-to-one correspondence, and EΨq

= Efq . Sub-
stituting the expression (S14) into Eq. (S10) we get

Pq(t) = q −
∑
fq,f ′q

e
it(Efq−Ef′q

)〈FS|fq〉〈fq|P̂↑|f ′q〉〈f ′q|FS〉.

(S17)

SLATER DETERMINANT REPRESENTATION
OF THE WAVE FUNCTIONS

A great advantage of the states |fq〉 is that in the co-
ordinate representation these states are Slater determi-
nants:

fq(x1, . . . , xN ) =
Yfq√
N !

detN (φj(xl)). (S18)

Here Yfq is a normalization constant,

φj(x) =
1√
L

[
exp

{
i

(
2zj
L
x+ δj

)}
− g(x)θj

]
(S19)

where j = 1, . . . , N and

g(x) =
1

Θ

N+1∑
t=1

exp

{
i

(
2zt
L
x+ δt

)}
, (S20)

where Θ =
∑N+1
t=1 θt and θt =

√
a sin δt. The phase shifts

δt are

δt = −π
2

+ arctan(azt − c), t = 1, . . . , N + 1 (S21)

and

a =
8

gL
, c =

4Λ

g
. (S22)

The rapidities zt are solutions to the Bethe equations

cot zt = azt − c, t = 1, . . . , N + 1 (S23)

and

2

L

N+1∑
t=1

zt = q. (S24)

We stress that it is Eq. (S24) which ensures that the total
momentum of the system is q and couples Eqs. (S23) for
different t = 1, . . . , N + 1. We will assume that zt are
ordered in ascending order:

z1 ≤ · · · ≤ zN+1. (S25)

The energy Efq of the state |fq〉 is

Efq =
4

L2

N+1∑
t=1

z2
t . (S26)

Among the solutions to the Bethe equations (S23)
there is a special subset corresponding to c = −∞. One
has for the solutions from this subset

zt = πnt, δt = 0,
θt
Θ

=
1

N + 1
, t = 1, . . . , N + 1,

(S27)
where nt are arbitrary integers. It is thus natural to
associate zt with the momenta of a free-fermion problem.
Let us apply the operator S− given by Eq. (S4) to the
wave function of N + 1 spin-up fermions:

|Ψq〉 =
1√
N + 1

S−c
†
↑z1 · · · c

†
↑zN+1

|0〉, (S28)

where q is defined, as usual, by Eq. (S24). Clearly, the
functions (S28) are indeed eigenfunctions of the Hamil-
tonian (S1). Note also a determinant representation for
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fq alternative to the one given by Eq. (S18):

fq(x1, . . . , xN ) =
1√

(N + 1)!

×

∣∣∣∣∣∣∣∣∣∣

1√
L
e

2i
L x1z1 · · · 1√

L
e

2i
L x1zN 1√

L
e

2i
L x1zN+1

...
. . .

...
...

1√
L
e

2i
L xNz1 · · · 1√

L
e

2i
L xNzN 1√

L
e

2i
L xNzN+1

1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣
.(S29)

For c = ∞ we get the same set of solutions as for
c = −∞. Therefore only one of the sets should be used
to avoid double counting.

DETERMINANT REPRESENTATION OF THE
MATRIX ELEMENTS

Using the identity

1

N !

∫ L

0

dx1 · · · dxN detN [φj(xl)] detN [ϕj(xl)]

= detN

[∫ L

0

dy φj(y)ϕl(y)

]
(S30)

valid any functions φj and ϕj , j = 1, . . . , N we get the
matrix elements entering Eq. (S17) is the form of deter-
minants of N ×N matrices.

To ensure the normalization 〈fq|fq〉 = 1 of the wave
function (S18) the constant Yfq should satisfy

|Yfq |−2 =
1

Θ2

(
N+1∑
t=1

θ2
t

1 + θ2
t

)
N+1∏
t=1

(1 + θ2
t ), (S31)

where θt and Θ are defined by Eq. (S20).
The ground state wave function of N free fermions,

|FSN 〉, is

|FSN 〉 =
1√
N !

detN

[
1√
L

exp

{
i
2uj
L
xl

}]
, (S32)

where the momenta uj , j = 1, . . . , N, are (we require N
to be odd)

uj = π

(
−N + 1

2
+ j

)
, j = 1, . . . , N. (S33)

For the overlap of the states (S18) and (S32) the identity
(S30) implies

〈FSN |fq〉 = Yf detN X , (S34)

where the entries of an N ×N matrix X are

X lj =
θl√
a

[
1

uj − zl
− 1

Θ

N+1∑
t=1

θt
uj − zt

]
, j, l = 1, . . . , N.

(S35)

The denominators on the right hand side of this equation
may vanish in the case of c = −∞ only. To avoid dealing
with the resulting singularities it is convenient to use the
representation (S29) to calculate the overlap with the
function (S32). This gives

detN X =
(−1)[P ]

N + 1
, uj = zPj

(S36)

and zero otherwise. Here P denotes a permutation of the
ordered set (S25):

z1, . . . , zN+1 → zP1
, . . . , zPN+1

(S37)

and [P ] is the sign of the permutation.
The determinant representation of the matrix elements
〈fq|P̂↑|f ′q〉 is

〈fq|P̂↑|f ′q〉 = YfYf ′
∂

∂λ
detN (Y + λZ)

∣∣∣∣
λ=0

, (S38)

where N ×N matrices Y and Z are, respectively,

Y lj =

∫ L

0

dy φ̄j(y)φ′l(y) = K(z′l, zj)−
θj
Θ

N+1∑
t=1

K(z′l, zt)

− θ′l
Θ′

N+1∑
t=1

K(z′t, zj) +
θjθ
′
l

ΘΘ′

N+1∑
t,t′=1

K(z′t′ , zt) (S39)

and

Z lj = −i
∫ L

0

dy φ̄j(y)∂yφ
′
l(y)

=
2

L
[z′lK(z′l, zj)−

θj
Θ

N+1∑
t=1

z′lK(z′l, zt)−
θ′l
Θ′

N+1∑
t=1

z′tK(z′t, zj)

+
θjθ
′
l

ΘΘ′

N+1∑
t,t′=1

z′t′K(z′t′ , zt)] (S40)

where

K(z′, z) =
e2i(z′−z) − 1

2i(z′ − z)
ei(δ

′−δ), K(z, z) = 1. (S41)

CONVERGENCE OF NUMERICS

Now that we’ve derived how to calculate matrix ele-
ments like 〈fq|f ′q〉 and 〈fq|f ′q〉 and 〈fq|P̂↑|f ′q〉, we discuss
how to generate all the states |fq〉. One has to generate
all ordered sets of N + 1 integers {n1, . . . , nN+1}. We
then look for a value of c such that one can solve Eqns.
(S23) and (S24). Not all ordered sets of integers will
allow for such a solution due to the quantization condi-
tion 2

∑
i zi = qL, therefore one should search through
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the space of ordered sets of integers for sets that will al-
low for a set or rapidities that satisfy the quantization
condition.

Since the number of many-body eigenstates is expo-
nential in the system size, the challenge is to generate
eigenstates that contribute significantly to the calcula-
tion of a given quantity. Note that although the idea is
simple, one requires a clever algorithm to generate the
eigenstates that contribute significantly to the calcula-
tion. Indeed, it turns out that a set of states that grows
polynomially with system size is sufficient to obtain accu-
rate results, making it tractable on massively parallelized
computing resources. As was shown in other works [S3 ],
we found that it is convenient to start with the set of inte-
gers symmetrically ordered around 0, and consider sets of
integers obtained from this set by taking a fixed number
of integers out of that set and into integers outside the
set. In fact, by taking the sets of integers where either
0, 1, 2 or 3 integers have been taken out of the symmet-
rically ordered set, one obtains convergent results, as we
show in this section. This set of of ordered integers grows
polynomially with N , thus the complexity of the problem
has become polynomial in system size and tractable.

We calculate Eq. (S17) numerically for a finite number
of particles, N , and for a finite number of intermediate
states |fq〉 and |f ′q〉 included in the sum. In the present
section we demonstrate that our choice of N and of the
most relevant subset of states |fq〉 and |f ′q〉 makes the re-
sults presented in the paper indistinguishable from what
one would have in the thermodynamic limit (that is, for
N =∞) and all intermediate states included in the sum.

Let us start with discussing the dependence of Pq(t)
on the choice of intermediate states entering the sum in
Eq. (S17), for a given finite N . We define

%s =
∑
s

|〈fq|FS〉|2, s = subset of states {fq}. (S42)

The completeness of {fq} implies the sum rule %{fq} = 1
(i.e. if all states are summed over), therefore we can use
the devation of 1−ρs from 0 as a check of the convergence
of our numerics. Let Ns be a number of states in the
subset s. Clearly, ρs depends not only on Ns but on which
states are included in s. We plot in Fig. S1 the function
1 − ρs versus Ns obtained for the states ordered in a
descending order of the overlap |〈fq|FS〉|.

We then examine how 〈P↓(t)〉 depends on the number
of states Ns included in the sum in Eq. (S17). A typical
result is illustrated in Fig. S2. It reflects two important
facts:(a) our numerics have converged;(b) the error does
not increase over time, instead it remains bounded.

We can now examine the dependence of 〈P↓(t)〉 on N .
The convergence of our numerics, discussed in the previ-
ous paragraphs, allows us to separate the effects of finite
Ns from those of finite N. The latter are clearly seen in
Fig. S3. We see that finite N effects play a role for t
above some critical value, which increases with N . At

this critical time one sees revivals, which correspond to
the emitted particle going around the system. Below this
time the results are independent of particle number, and
therefore valid for the thermodynamic limit N =∞. For
example, Fig. S2b of our paper is a plot for N = ∞.
Indeed, the saturation of momentum loss and quantum
flutter are obtained before the revivals.

THE VARIATIONAL APPROACH

We consider a variational wave function with two
particle-hole pairs

(α0(t)c†Q +
∑
kq

βkq(t)c
†
Q−k+qc

†
k↑cq↑

+
∑
kk′qq′

γkk′qq′(t)c
†
Q−k+qc

†
k↑cq↑)|FS〉. (S43)

This set of wave functions can capture the states we
stated were responsible for quantum flutter, Eqs. 3 and 4
in the main text. We obtain time-dependent variational
equations by minimizing the expectation value of i∂t−H
where

H =
∑
kσ

k2

2mσ
+
g

L

∑
k,k′,q

c†k−q↑c
†
k′+q↓ck′↓ck↑. (S44)

We therefore solve the time dependent equations from
considering the variational minimization with respect to
the variables α0(t), βkq(t), and γkk′qq′(t):

δ〈Ψ(t)|(i∂t −H)|Ψ(t)〉 = 0 (S45)

The resulting coupled equations can be obtained from the
equations one gets from studying the ground state [S4 ],
by replacing the energy E replaced with i∂t. The re-
sulting equations contain continuum variables k, k′, q, q′

which are discretized, and the equations are solved use
Runge-Kutta integration. In Fig. S4 we compare the
results obtained from the variational approach (which is
in the thermodynamic limit) and the Bethe Ansatz re-
sult with 48 particles, for γ = 5 and Q = 1.05kF . We
find that the absolute difference between the two plots
remains below 0.02kF .
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Figure S1. Saturation of the sum rule as a function of the number of states. Shown is the log-log plot of the sum
rule 1−%s versus the number of included states Ns. The states in the subset s are ordered in decreasing order of |〈fq|FS〉|. The
parameters are: number of particles in the background gas N = 31, dimensionless coupling γ = 5, initial momentum q = 1.5kF .

Figure S2. Convergence of our numerical calculation of 〈P↓(t)〉 using the Bethe-Ansatz approach.
a, Plot of 〈P↓(t)〉 for the number of included states Ns = 3× 104(8× 104), which corresponds to a saturation of the sum rule
%s = 0.994 (0.998). b, Plot of the relative error for these two curves given on the left panel. The input parameters are the
same as those used for Fig. S1: number of hosts N = 31, dimensionless coupling γ = 5, initial momentum q = 1.5kF .
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Figure S3. Dependence of our results on the number of particle N in the background gas. We find that finite size
effects manifest themselves as a revival which is pushed out to longer times for larger particle numbers. Before the revivals,
the results are independent of particle number. Therefore, since the saturation of momentum loss and quantum flutter occur
before the revivals, these results are valid for the thermondynamic limit N =∞. a, Plot of 〈P↓(t)〉 for γ = 5, initial momentum
q = 1.5kF and various N : N = 28, 32, 36. b, Zoomed in plots from the left panel. We notice that the curves lie exactly on top
of each other before the effects or revivals start to set in.

Figure S4. Comparison of the Bethe Ansatz results with the variational approach. a, Plot of 〈P↓(t)〉/kF obtained
from the Bethe Ansatz approach(full line) and from the variational approach (dotted line), for γ = 5 and Q = 1.05kF . The
Bethe Ansatz results were obtained for 48 particles. b, The absolute difference between the two curves in a is below 0.02kF at
all times.
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