PRAMANA © Indian Academy of Sciences Vol. xx, No. x
— journal of XXXX XXXX
physics pp. 1-10

Kondo effect and mesoscopic fluctuations
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Abstract. Two important themes in nanoscale physics in the last twadiex are correlations
between electrons and mesoscopic fluctuations. Here wawetir recent work on the intersection
of these two themes. The setting is the Kondo effect, a pgmaatic example of correlated electron
physics, in a nanoscale system with mesoscopic fluctuationgarticular, we consider a small
guantum dot coupled to a finite reservoir (which itself magterge quantum dot). We discuss three
aspects of this problem. First, in the high temperaturemegiwe argue that a Kondo temperature
Tk which takes into account the mesoscopic fluctuations isszaat concept: for instance, physical
properties are universal functions 0f/Tx. Second, when the temperature is much less than the
mean level spacing due to confinement, we characterize sahataess-over from weak to strong
coupling. This strong coupling regime is itself charactedi by well-defined single particle levels,
as one can see from a Nozieres Fermi-liquid theory argunfémally, using a mean-field technique,
we connect the mesoscopic fluctuations of the quasi-pastiolthe weak coupling regime to those
at strong coupling.
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1. Introduction

The term “Kondo effect” refers to the physics of a local quantsystem with an inter-
nal degree of freedom—often referred to as a “quantum inydbriinteracting with a
gas of otherwise non-interacting electrons. It representsof the simplest models in
condensed matter physics for whicbrrelationsplay a central role [1]. On the other
hand, “mesoscopic fluctuations” refers to the variation lofgical properties when one
considers a quantum coherent region: the differing interfee contributions for nomi-
nally the same system lead to sample-to-sample variatiomet fluctuations [2]. While
each of these topics has been intensively investigatedithdilly, their intersection—
the interplay of mesoscopic fluctuations and correlatectelas—has not. Yet as strong
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correlations, such as the Kondo effect, continue to be tigeed in nanoscale systems
where mesoscopic fluctuations are ubiquitous, study ofritexsection is very natural.
We have carried out investigations of several aspects obstepic Kondo physics in the
last five years [3=7], and we summarize and integrate that iahis article.

In the simplest version of the Kondo problem—thd model (also called the Kondo
model)—the impurity is just treated as a quantum spin ongihigracting locally with
the electron gas[1]. The corresponding Hamiltonian thexse

HK - Zeaélgéao’ + Hint 5 (1)

oo

where¢é!  creates a particle with energy, spino and wave-functiorp,, (r). The (anti-
ferromagnetic) interaction with the impurity is

Hine = % S -s(0) (2)

with Jo > 0 the coupling strengtt§ = (S.., S,,, S.) a quantum spin/2 operator &' S;
is half of the Pauli matrix;), s(0) = 20} (0)04,+ ¥, (0) the spin density of the electron
gas at the impurity position = 0, and¥f (0) = 3=, ¢4 (0)él,.

Originally, physical realizations of the Kondo Hamiltoniavere actual impurities (e.g.
Fe) in a bulk metal (e.gAu). The wave-functiong,, could then be taken as plane waves,
and one could assume a constant spadirgetween the,,, so that the electron gas could
be characterized by only two quantities: the local denditstatesyy = (AA)~! (Ais
the volume of the sample) and the bandwibhof the spectrum.

What gives the Kondo problem its particular place in conddmaatter physics is that
it is the simplest problem for which the physics is domindigdenormalization effects.
Indeed, assuming the dimensionless consfgng < 1, it can be shown using one-loop
renormalization group analysis| [8], or equivalent earéipproaches such as Anderson
poor man’s scaling [9] or Abrikosov re-summation of pargdetgrams|[10], that the
low energy physics remains unchanged by the simultaneamehof.J, andD, to new
valuesJ.g andD.g¢ provided they are related by

Jo
. 3
1-— Jol/o ln(Do/Deﬁ) ( )

JeH(Def‘f) =

The renormalization procedure should naturally be stoppleen D, becomes of or-
der the temperatur® of the system. Equatioi](3) defines an energy scale, the Kondo
temperature

Tk = Do exp(—1/Jovp) , 4)

which specifies the crossover between the weakly and sramigiracting regimes. For

T > Tk, the impurity is effectively weakly coupled to the electgas, and the properties
of the system can be computed within a perturbative apprpemhded the renormalized

interactionJ.(T') is used. The regim& < Tk is characterized by an effectively very
strong interaction(despite the bare coupling valye, being small) in such a way that the
spin of the impurity is almost completely screened by theteda gas. Perturbative renor-
malization analysis [and thi$(3)] can not be applied integme, but a rather complete
description of clean bulk systems has been obtained by atyari approaches, including
numerical renormalization group [11], Bethe ansatz tephes[12, 13], and the Nozieres
Fermi liquid description. [14].
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One important consequence of the scaling Ialv (3) is thatiphlyguantities can be
described byniversalfunctions. This can be understood by a simple counting of the
number of parameters defining thed model in the bulk. As an illustration, we will use
the local magnetic susceptibility, defined by

¥
Xloc E/o dr{S.(7)5.(0)), (5)

which is the variation of the impurity spin magnetizatioronpapplying a field only to
the impurity. The electron gas is characterized by its laaisity of states, and its
bandwidthDg, and the impurity by the coupling constaiif. Therefore, for a given
temperaturd’, xioc, Or indeed any physical quantity, can depend only on theseda-
rameters. Furthermore, only two dimensionless paramea@rbe constructed from them,
the ratioT' /D, and the producfyry. However, because of the scaling ldw (3), these two
parameters turn out to be redundant. A dimensionless dyaati therefore be expressed
as a function of single parameter, which is usually chosen toBETk. Thus we have,
for instance,

TX]OC(T> = fX(T/TK) ) (6)

wheref, (x) is a universal function which has been computed by Wilsof {sing his
numerical renormalization group approach.

We see that the universal character of Kondo physics is &tdi@nsequence of the
fact that the local density of states is flat and featurelassoenergy scale of the order of
max(Tk,T). There are many situations, however, for which the vanmticenergy of the
local density of states,.(r; €) is significantly more complex, and it is natural to ask in
what way this modifies the description given above for thé lflat-band case. One type
of non-flatness is a continuous density of states in whiclvéniation sets in for energies
above some scale, s&y. In this case, deviations from universal Kondo behavior are
expected either in the regindg < Tk for anyT or in the regim&dy > Tk whenT > dg.
Other relevant examples of deviations emerge in mesosegpiems from a discrete (and
therefore non-flat) density of states, and it is to thesewleatow turn.

One circumstance in which such a non-trivial density ofestatccurs naturally is in the
context of quantum dots. Indeed, as was pointed out both &gr@n and Raikh [15] and
by Ng and Leel[16], a quantum dot containing an odd numberagtelns and which is
sufficiently small so that the spacing between its levelsusimlarger thaii” can be de-
scribed by an Anderson impurity model; the role of the etattyas is played by the leads
to which the dot is weakly coupled. In the deep Coulomb bldek@gime particle num-
ber fluctuations are suppressed, and a Schrieffer-Wolfsfamation shows [1] that such
a description is essentially equivalent to a Kondo imputitythe low temperature regime
T <« Tx, a correlated state is formed which mixes the wavefunctidise quantum dot
and both leads, leading to a large conductance?/h) despite the Coulomb blockade.
These predictions were confirmed experimentally a decade [[57], and subsequently
Kondo physics has been seen in a variety of nanoscale syft&m9], some of which
have even reached the unitarity limit.

In quantum dot Kondo physics, one is very naturally lead gieys in which a small
guantum dot playing the role of a quantum impurity is conedd¢b a larger mesoscopic
object (itself not a quantum impurity) in which finite sizedaimterference effects are
important. In other words, the context of Kondo physics immpum dots leads one to
consider situations where the “quantum impurity” is corteddo an electron gas dis-
playing finite size and mesoscopic fluctuation effects. Asm@sequence, for each such
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mesoscopic electron reservoir, two new energy scales aritethe description of the
Kondo problem: the corresponding mean level spacinand the Thouless enerdyry, .
The former is the scale at which the discreetness of the tyenisstates becomes rele-
vant, and the latter is the scale below which mesoscopicuifticins set in. Our goal in
this short review is to provide a survey of some of our own lte§@-7] describing how
Kondo physics is modified by the presence of these energgscal

2. TheT > A regime

Let us consider, to start with, a situation where the meagl lgyacingA in the reservoirs
is still much smaller than the other relevant energy scatepdrticular the temperature)
but for which the Thouless enerdyyy, of the reservoir is significant|[3; 4]. Assuming
ballistic motion,Ey, is the inverse of the time of flight across the system (up tactofa
h). It characterizes the range of energy below which mesadsdlogtuations are present
(at all scales in this range), in particular in the local digraf states. Since belo,, the
reservoir’s electronic density of states is not flat andueséss, one may wonder whether
a Kondo temperature (perhaps fluctuating) can be definedif ahgsical quantities re-
main universal functions of the ratib/Tx.

To fix the ideas, let us consider tlsed Hamiltonian [1) with a local density of states
at the impurity sitev(r = 0;¢) def > 1#i(0)]25(e — €). In the semiclassical regime,
v(r=0;¢) can be written as the sum

v(e) = vy + va(e) (7

wherev is the bulk-like contribution (one should of course inclige either a realistic
band dispersion relation or a cutoff B, to account for the finite bandwidth), and the
fluctuating termvg () is a quantum correction associated with interference &sffec

Let us denote by the Kondo temperature of the associated bulk system fortwhic
v(e) is replaced byy. ForT > T2 it is possible to use a perturbative renormalization
group approach in the same way as in the bulk, but includiagrisoscopic fluctuations
of the density of states. Following [20], this gives in theednop approximation

Jo

Jet(Defr) = , 8

) = T o) vat) ©
with

vg(w) = ;/_ de:;ojr(i)z 9

the temperature smoothed density of states (note that tleemalization up to two loop
order was given in Ref.[20]).

There are two different ways to use the above renormalizafoup equation. First,
for some physical systems, the fluctuations of the localitieostates may be very sig-
nificant, yielding even larger variation of the Kondo pradjees because of the exponential
dependence i {4). In this case, one is mainly interestedeltictuations of the Kondo
temperature (which is now a functional of the local densitgtates) defined as then-
ergy scaleseparating the weak and strong coupling regimes. One carudethe same
approach as in the bulk flat-band case and déefial/s] as the temperature at which the
one-loop effective interaction diverges, giving the insjilequation

Do Ju
Jo/ d—l/g(w) =1. (10)

Ti:[vs] ¥
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Examples of systems for which the fluctuationsigfare large enough so that one is
mainly interested in the fluctuations of the scajedefined by[(ID) include, for instance,
the case of “real” (chemical) impurities in a geometry sutant one dimension is not
much larger than the Fermi wavelength. This may be eithemaftgum point contact in a
two dimensional electron gas [20] or a thin three dimendifima [21]. There is a sig-
nificant chance that the impurity is located in a place at Whiie Friedel oscillations are
large (i.e. the term inyg associated with the trajectory bouncing back from the beund
ary directly to its starting point). In this case, impuritimcated at peaks of the Friedel
oscillations have a significantly larger Kondo temperathes those at the troughs. Dis-
ordered metals near or beyond the localization transitrenaaother system with large
fluctuations of the local density of states, and can lead itiquéar to a finite probability
of having a “free moment” for whicl}; [vs] corresponding to certain spatial locations is
actually zero|[22, 23].

In contrast to these cases, in a typical ballistic or disgrdenetallic mesoscopic sys-
tem with all dimensions much larger than the Fermi wavelete fluctuating part of the
local density of statesg is a quantum correction to the secular tefgrand thus paramet-
rically smaller. Consequently, the fluctuationsigf[vz(w)] defined by[(ID) are not large
compared td’?, which if it is taken only as an energy scale is somewhat nmegess.

In the flat-band bulk case, howevé&i has a precise meaning beyond being an energy
scale: it is the parameter entering into universal fundtisich asf, in (6). 7k is thus
directly and quantitatively related to physical obsereabtits fluctuations need not be
large to be relevant. This suggests asking whether the m@sieSluctuations of physical
observables such as the local susceptibility. are described by the universal form

Tx10c(T) = fx(T/TK[Vﬁ]) ) (11)

with all the mesoscopic fluctuations encoded in the reatimaéind position dependent
Kondo temperatur&k [vs]).

In the high temperature regim > T3 such universality follows from a perturba-
tive renormalization argument (although not so straightérdly, c.f. the discussion in
Refs.[3,.24]). Furthermore, comparison with quantum Mddglo results shows that
predictions obtained in this way are quantitatively vergwate [3, 4]. More surpris-
ingly, such an approach remains valid up to (and actuallyesamat below)I2: in the
high temperature regime, then, mesoscopic fluctuationbeamcluded rather easily into
Kondo physics. As perturbative renormalization group isvadid belowTk, Eq. [11) is
not expected to apply in the low temperature regifme 7. This is indeed confirmed
by quantum Monte Carlo cacuulations [3]: the low temperategime of the mesoscopic
Kondo problem is therefore richer and more complex.

3. TheT < A regime

Let us now consider the temperature regieg A where the discreetness of the spec-
trum has to be taken into accountl[5, 6]. In this temperatamge, the physical properties
of the system will be dominated by its many-body ground staie first few excitations.
For illustration, we consider a small quantum dot (the quanimpurity) connected to a
large mesoscopic quantum dot reservoir, as shown i Fig thel case of an odd number
of electrons in the reservoir dot, a sketch of the low enexgjtations is shown in Fid.]1.
Without reproducing the details of the analysis given InE[B(where the everv case as
well as other Kondo systems are also discussed), we sha#t m&w comments on this
figure and on the way it has been constructed.
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(a) (b)
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Figure 1. (a) A double dot system, coupled very weakly to leatls &nd L.2). In the
Coulomb blockade regime, the small dot behaves as a$fiat is coupled to a finite
reservoirR provided by the large dot. The leads are used to measure titaten
spectrum of the system. (b) Sketch of the ground state artdefirstations of the
mesoscopic Kondo problem as a function of coupling stredgth.

First, we stress that the total spin of the ground state catigbbeously shown to be
zero for all for positive values of [5,16]. The rest of the diagram can be obtained by
analyzing the two limiting regimea > 7% and A < T{ and assuming a smooth
interpolation between themT} is, as before, the Kondo temperature of the analogous
flat-band bulk system.) The smallbehavior follows from a perturbative treatment of the
(renormalized) coupling.g between the two dots. The ground state and first excitation
are the singlet and triplet states of two weakly interacpas (all orbitals other than
the last one (singly occupied) being frozen). The secondtagian corresponds to the
promotion of a particle to a higher orbital, and thereforelaes the energy spacinyy,
between these two orbitals. Because of mesoscopic flushsath, fluctuates around the
mean level spacing\ if one applies a weak magnetic field or slightly changes tlapsh
of the reservoir dot.

The strong-coupling limitA < T2 can, on the other hand, be addressed in the spirit
of Noziéres’ Fermi-liquid picture: in the strong interiaet regime, the impurity spin is
locked in a singlet with an electron gas quasiparticle, theidv—1 quasiparticles forming
an essentially non-interacting Fermi gas [1, 14]. The gdxstate and two first excitations
sketched in Figl]1l can therefore be understood as arisimg fine corresponding Fermi
gas: doubly occupied orbitals for the ground state, and ptimm of a particle to the
first unoccupied orbital for the excitations (involving teore the corresponding level
spacingAs # A,). The degeneracy between the singlet and triplet excitatis lifted
by the residual interaction generated at the impurity §itgd py virtual breaking of the
Kondo singlet.

In order to connect the levels in the weak coupling regimé&tsé at strong coupling,
we note that the order of the spins of the states is the san@lirrégimes and so simply
draw interpolating lines between them in Hig. 1.

Both the weak-coupling and strong-coupling limiting regsnare Fermi gases—by
construction for weak interactions and because of the@tesziFermi liquid picture [14]
for strong interactions. For a finite size fully coherenteysthese Fermi gases will both
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display mesoscopic fluctuations of the one particle ensrgiel wavefunctions—in the
case above, for instance, baty and A3 are expected to show mesoscopic fluctuations
aroundA when some external parameter (magnetic field, gate voletge, is varied.
We would like to address now the question of characterizivgge fluctuations, and in
particular the correlations between the Noziéres Fermigal the weak interaction one.

4. Slave boson/fermion mean field approach

A complete solution of this problem would presumably inetleveloping a Fermi liquid
theory “a la Nozieres" [14] taking properly into accouhetmesoscopic fluctuations. A
first step in this direction is to use a mean field treatmenrgthas the slave boson/fermion
techniquel[1], which can be done as follows.

Starting from thes-d model Eq.[(ll), one can introduce Abrikosov fermiadns [10] as a
representation of the spiry2. The correspondence between the auxiliary fermifhs
with spino =1, | and the initial quantum spin operators is

S =l —fln2. st=fln. S =flf. (12)
with the constraint
fifs+rif=1. (13)
The Kondo interaction can then be rewritten as
JO JO
Hin = ? , f;fa’cj)glc()a - I ; C(T)UCOU . (14)

This fermionic representation is exact. The mean field appration consists in replacing
the quartic part of the Kondo term by an effective quadratimt

S fiorchorcn = D [ Flevo (el for) + o folFhico)] (15)

in which the mean valueé - -) are computed self-consistently. The constrdint (13) is
imposed through the introduction of the Lagrange multipkse

Hint = Hint — €0 Z f;fcf . (16)

In the mean field approximation, the Kondo problem is theeefeansformed into an
effective resonant level model, which, for a given spin comgnt, can be written as

Hyp = Y |eiclei + v (0)fles + v 0)cl 1] — o' (17)

i

and for which the parametersande, are fixed by the self-consistent equations
v="Jo> @i (0)(ffe),  (fTf)=1/2. (18)

This approach does not describe correctly the intermedégfiene A, T ~ Tk, and in
particular predicts a phase transitiori/at instead of the observed crossover. The strong
interaction / low temperature reginde, 7' < Tk that we are interested in is, on the other
hand, very well described.
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5. Spectral fluctuations of the chaotic resonant level model

Understanding the fluctuations of the Kondo problem wittiia thean field approach
amounts, therefore, to understanding those of the resdeagit model with fluctuat-
ing parameters. These parameters @re-the energy of the resonant level—and the
coupling strengthv. Let us furthermore denote the mean local density of stayes b
p =< |$:(0)|* > /A (for a billiard of aread, < |¢;(0)|* >~ 1/.A). From the physics
of the Kondo problem it is expected (and found in practicej} ¢h is essentially fixed at
the Fermi energy and that the width= r|v|?p of the resonance can be identified with
the Kondo temperature (up to a constant factor), the fluictngtroperties of which have
been addressed within the mean field approach in [25]. Initie T2 ~ I' > A that we
now consider, the fluctuations ef andI" take place on a scale which is parametrically
small compared t@y. Itis thus reasonable to assume that most of the fluctuatidiise
given by those of the resonant level model, with the flucaratif ¢ andI" adding only
small corrections.

We therefore consider the spectral fluctuations of the r@sdevel model, and further-
more limit the scope to chaotic motion within the reservait.dRandom matrix theory
provides a good model of the energy levels and wavefunctiotiss situation|[26] 27]:
we use the Gaussian orthogonal ensemble (GOE 1) for time reversal symmetric
systems and the Gaussian unitary ensemble (GUE, 2) for non-symmetric systems
[26,[28]. The joint distribution function of the unperturbeeservoir dot energy levels is
therefore given by [28]

1
Ps(er, €, - ,GN)o<H|ei—€j|BeXp <_m 6?) (19)
i>j i

and the corresponding distribution of values of the wavefion at the impurity site is the
Porter-Thomas distribution

To connect the mesoscopic fluctuations of the levels befudeafter the resonant level
is added, we would like, for instance, the joint distribatiof both sets of levels. For the
resonant level model, the perturbed energy leyals}Y_ are related to the unperturbed
levels{e;} ¥, through

|¢1(0)|2 _ Aa — €0

Ao —€ |2

(21)
>0

(recall thateg is the bare position of the resonance). From this, the joistridution
function of the{e; } and{\,} can be computed|[7]:

H (Aa — €0) H(el — ) H (Ao —Ay)

a>0 i>7 a>y
P({ei}, {Aa}) x
H(Gi — 60)1_’8/2 H(GQ — Gi)ﬂ H |€i - )\a|1_ﬂ/2
i>1 i>1 e
Np
X exXp |~y <Z A2 — Z e?)] , (22)
a>0 1>0

with in addition the constraint },_,€; = >, Aa-
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It is not completely straightforward, however, to deduaanrirthis joint distribution
useful correlation functions involving a few levels, fronmieh we could get an intuitive
sense of how the fluctuations of the unperturbed systemtéaffese of the perturbed one.
Another possible route is, in the spirit of the Wigner sumnfisr the nearest neighbor
distribution of the classic random matrix ensemble, tot$tam a simple toy model, in
which a good part of the information is ignored but on the otmend the expressions
obtained are tractable and contain enough of the relevéorhiration to provide a good
first approximation.

To construct such a toy model, first note that EqJl (21) impdésasthere is one and
only one level\ between two successive levelsande; .. Itis reasonable to assume that
it is mainly the fluctuations of these levels and their assed wavefunction amplitudes
©i(0) andy;+1(0) which determine the position df. Second, if we are interested in the
center of the resonance, i.e. states such that the distance, from the resonant level
is significantly smaller than the width of the resonance @lutis approximatel{ik), the
right hand side of Eq[{21) can be neglected. Denating: A|;(0)|?, we therefore get

T Ta+1
A—€  A—€nt1

=0, (23)

with the z;’s fluctuating according td_(20). Interestingly, all enespales beyond the
spacing(e,+1 — €,) have disappeared from this equation: this toy model pre@ictni-
versal distribution of the ratioA — €,)/(ea+1 — €o)- A straightforwad calculation gives

GOE 1 1 GUE 1
P N o e 0= and P~ ™()) 5 (24)
for the time reversal symmetric case (GQEs= 1) and non-symmetric case (GUE,=
2), respectively.

As a consequence we see that the correlations between teeturtyed energiesand
the perturbed ones come from two different mechanisms. On the one hamdgenergy
scales larger than\ the constraints imposed by Ef.{21), in particular the faat there
can be only one staté between two successiws, imposes a very strong correlation
between the two sets of levels. On the other ham@&nergy scales smaller thax, these
correlations depend a lot on the statistics of the wavefanctWithin our toy-model
approach, there is no correlation in the GUE case, whileierGOE the\’s tend to
cluster (with a square root singularity) near #'® Numerical simulations with the full
resonant model confirm these latter predictions [7].

6. Conclusion

To conclude this short review, we have seen that studyingdmelo problem in the con-
text of quantum dots makes it natural to consider how megisdtictuations affect
strong correlations. The high temperature regifne 7% is the simplest to comprehend:
reasoning based on the one-loop renormalization groupoapprmakes it possible to
incorporate all the effects of the mesoscopic fluctuatiots those of the Kondo temper-
ature itself, keeping otherwise all quantities univergath the same universal functions
as for the flat-band bulk. Universality is lost at temperasuvelowl k. However, the very
low temperature regimé, A < Ty can be tackled in the spirit of Nozieres’ Fermi liquid
approach. As a first step, we have developed a slave bosoidfemean field theory of
this regime and obtained in this way a convincing qualieatiescription. The crossover
between these two understood limiting cagesf orderTy, is, as usual, the most difficult
part of the problem, and is still completely open.
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