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Kondo effect and mesoscopic fluctuations
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Abstract. Two important themes in nanoscale physics in the last two decades are correlations
between electrons and mesoscopic fluctuations. Here we review our recent work on the intersection
of these two themes. The setting is the Kondo effect, a paradigmatic example of correlated electron
physics, in a nanoscale system with mesoscopic fluctuations; in particular, we consider a small
quantum dot coupled to a finite reservoir (which itself may bea large quantum dot). We discuss three
aspects of this problem. First, in the high temperature regime, we argue that a Kondo temperature
TK which takes into account the mesoscopic fluctuations is a relevant concept: for instance, physical
properties are universal functions ofT/TK. Second, when the temperature is much less than the
mean level spacing due to confinement, we characterize a natural cross-over from weak to strong
coupling. This strong coupling regime is itself characterized by well-defined single particle levels,
as one can see from a Nozières Fermi-liquid theory argument. Finally, using a mean-field technique,
we connect the mesoscopic fluctuations of the quasi-particles in the weak coupling regime to those
at strong coupling.
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1. Introduction

The term “Kondo effect” refers to the physics of a local quantum system with an inter-
nal degree of freedom—often referred to as a “quantum impurity”—interacting with a
gas of otherwise non-interacting electrons. It representsone of the simplest models in
condensed matter physics for whichcorrelationsplay a central role [1]. On the other
hand, “mesoscopic fluctuations” refers to the variation of physical properties when one
considers a quantum coherent region: the differing interference contributions for nomi-
nally the same system lead to sample-to-sample variation termed fluctuations [2]. While
each of these topics has been intensively investigated individually, their intersection—
the interplay of mesoscopic fluctuations and correlated electrons—has not. Yet as strong

∗denis.ullmo@u-psud.fr
†s.burdin@cpmoh.u-bordeaux1.fr
‡dl35@phy.duke.edu
§baranger@phy.duke.edu

1



Denis Ullmo, et. al.

correlations, such as the Kondo effect, continue to be investigated in nanoscale systems
where mesoscopic fluctuations are ubiquitous, study of the intersection is very natural.
We have carried out investigations of several aspects of mesoscopic Kondo physics in the
last five years [3–7], and we summarize and integrate that work in this article.

In the simplest version of the Kondo problem—thes-d model (also called the Kondo
model)—the impurity is just treated as a quantum spin one half interacting locally with
the electron gas [1]. The corresponding Hamiltonian then reads

HK =
∑

ασ

ǫαĉ
†
ασ ĉασ +Hint , (1)

whereĉ†ασ creates a particle with energyǫα, spinσ and wave-functionϕα(r). The (anti-
ferromagnetic) interaction with the impurity is

Hint =
J0

h̄2 S · s(0) (2)

with J0 > 0 the coupling strength,S = (Sx, Sy, Sz) a quantum spin1/2 operator (̄h−1Si

is half of the Pauli matrixσi), s(0) = h̄
2 Ψ̂

†
σ(0)σσσ′ Ψ̂σ(0) the spin density of the electron

gas at the impurity positionr = 0, andΨ̂†
σ(0) =

∑

α ϕα(0)ĉ
†
α.

Originally, physical realizations of the Kondo Hamiltonian were actual impurities (e.g.
Fe) in a bulk metal (e.g.Au). The wave-functionsϕα could then be taken as plane waves,
and one could assume a constant spacing∆ between theǫα, so that the electron gas could
be characterized by only two quantities: the local density of statesν0 = (A∆)−1 (A is
the volume of the sample) and the bandwidthD0 of the spectrum.

What gives the Kondo problem its particular place in condensed matter physics is that
it is the simplest problem for which the physics is dominatedby renormalization effects.
Indeed, assuming the dimensionless constantJ0ν0 ≪ 1, it can be shown using one-loop
renormalization group analysis [8], or equivalent earlierapproaches such as Anderson
poor man’s scaling [9] or Abrikosov re-summation of parquetdiagrams [10], that the
low energy physics remains unchanged by the simultaneous change ofJ0 andD0 to new
valuesJeff andDeff provided they are related by

Jeff(Deff) =
J0

1− J0ν0 ln(D0/Deff)
. (3)

The renormalization procedure should naturally be stoppedwhenDeff becomes of or-
der the temperatureT of the system. Equation (3) defines an energy scale, the Kondo
temperature

TK = D0 exp(−1/J0ν0) , (4)

which specifies the crossover between the weakly and strongly interacting regimes. For
T ≫ TK, the impurity is effectively weakly coupled to the electrongas, and the properties
of the system can be computed within a perturbative approachprovided the renormalized
interactionJeff(T ) is used. The regimeT ≪ TK is characterized by an effectively very
strong interaction(despite the bare coupling valueJ0ν0 being small) in such a way that the
spin of the impurity is almost completely screened by the electron gas. Perturbative renor-
malization analysis [and thus(3)] can not be applied in thisregime, but a rather complete
description of clean bulk systems has been obtained by a variety of approaches, including
numerical renormalization group [11], Bethe ansatz techniques[12, 13], and the Nozières
Fermi liquid description [14].
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One important consequence of the scaling law (3) is that physical quantities can be
described byuniversalfunctions. This can be understood by a simple counting of the
number of parameters defining thes-dmodel in the bulk. As an illustration, we will use
the local magnetic susceptibility, defined by

χloc ≡

∫ β

0

dτ〈Sz(τ)Sz(0)〉 , (5)

which is the variation of the impurity spin magnetization upon applying a field only to
the impurity. The electron gas is characterized by its localdensity of statesν0 and its
bandwidthD0, and the impurity by the coupling constantJ0. Therefore, for a given
temperatureT , χloc, or indeed any physical quantity, can depend only on these four pa-
rameters. Furthermore, only two dimensionless parameterscan be constructed from them,
the ratioT/D0 and the productJ0ν0. However, because of the scaling law (3), these two
parameters turn out to be redundant. A dimensionless quantity can therefore be expressed
as a function of asingleparameter, which is usually chosen to beT/TK. Thus we have,
for instance,

Tχloc(T ) = fχ(T/TK) , (6)

wherefχ(x) is a universal function which has been computed by Wilson [11] using his
numerical renormalization group approach.

We see that the universal character of Kondo physics is a direct consequence of the
fact that the local density of states is flat and featureless on an energy scale of the order of
max(TK, T ). There are many situations, however, for which the variation in energy of the
local density of statesνloc(r; ǫ) is significantly more complex, and it is natural to ask in
what way this modifies the description given above for the bulk flat-band case. One type
of non-flatness is a continuous density of states in which thevariation sets in for energies
above some scale, sayδfl. In this case, deviations from universal Kondo behavior are
expected either in the regimeδfl < TK for anyT or in the regimeδfl > TK whenT > δfl.
Other relevant examples of deviations emerge in mesoscopicsystems from a discrete (and
therefore non-flat) density of states, and it is to these thatwe now turn.

One circumstance in which such a non-trivial density of states occurs naturally is in the
context of quantum dots. Indeed, as was pointed out both by Glazman and Raikh [15] and
by Ng and Lee [16], a quantum dot containing an odd number of electrons and which is
sufficiently small so that the spacing between its levels is much larger thanT can be de-
scribed by an Anderson impurity model; the role of the electron gas is played by the leads
to which the dot is weakly coupled. In the deep Coulomb blockade regime particle num-
ber fluctuations are suppressed, and a Schrieffer-Wolff transformation shows [1] that such
a description is essentially equivalent to a Kondo impurity. In the low temperature regime
T ≪ TK, a correlated state is formed which mixes the wavefunctionsof the quantum dot
and both leads, leading to a large conductance (≃ e2/h) despite the Coulomb blockade.
These predictions were confirmed experimentally a decade later [17], and subsequently
Kondo physics has been seen in a variety of nanoscale systems[18, 19], some of which
have even reached the unitarity limit.

In quantum dot Kondo physics, one is very naturally lead to systems in which a small
quantum dot playing the role of a quantum impurity is connected to a larger mesoscopic
object (itself not a quantum impurity) in which finite size and interference effects are
important. In other words, the context of Kondo physics in quantum dots leads one to
consider situations where the “quantum impurity” is connected to an electron gas dis-
playing finite size and mesoscopic fluctuation effects. As a consequence, for each such
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mesoscopic electron reservoir, two new energy scales enterinto the description of the
Kondo problem: the corresponding mean level spacing∆ and the Thouless energyETh.
The former is the scale at which the discreetness of the density of states becomes rele-
vant, and the latter is the scale below which mesoscopic fluctuations set in. Our goal in
this short review is to provide a survey of some of our own results [3–7] describing how
Kondo physics is modified by the presence of these energy scales.

2. TheT ≫ ∆ regime

Let us consider, to start with, a situation where the mean level spacing∆ in the reservoirs
is still much smaller than the other relevant energy scales (in particular the temperature)
but for which the Thouless energyETh of the reservoir is significant [3, 4]. Assuming
ballistic motion,ETh is the inverse of the time of flight across the system (up to a factor
h̄). It characterizes the range of energy below which mesoscopic fluctuations are present
(at all scales in this range), in particular in the local density of states. Since belowETh the
reservoir’s electronic density of states is not flat and featureless, one may wonder whether
a Kondo temperature (perhaps fluctuating) can be defined, andif physical quantities re-
main universal functions of the ratioT/TK.

To fix the ideas, let us consider thes-d Hamiltonian (1) with a local density of states

at the impurity siteν(r = 0; ǫ)
def
=
∑

i
|ϕi(0)|

2δ(ǫ − ǫi). In the semiclassical regime,
ν(r=0; ǫ) can be written as the sum

ν(ǫ) = ν0 + νfl(ǫ) (7)

whereν0 is the bulk-like contribution (one should of course includehere either a realistic
band dispersion relation or a cutoff atD0 to account for the finite bandwidth), and the
fluctuating termνfl(ǫ) is a quantum correction associated with interference effects.

Let us denote byT 0
K the Kondo temperature of the associated bulk system for which

ν(ǫ) is replaced byν0. ForT ≫ T 0
K it is possible to use a perturbative renormalization

group approach in the same way as in the bulk, but including the mesoscopic fluctuations
of the density of states. Following [20], this gives in the one-loop approximation

Jeff(Deff) =
J0

1− J0
∫ D0

Deff

(dω/ω) νβ(ω)
, (8)

with

νβ(ω) ≡
ω

π

∫ ∞

−∞

dǫ
νloc(ǫ)

ω2 + ǫ2
(9)

the temperature smoothed density of states (note that the renormalization up to two loop
order was given in Ref. [20]).

There are two different ways to use the above renormalization group equation. First,
for some physical systems, the fluctuations of the local density of states may be very sig-
nificant, yielding even larger variation of the Kondo properties because of the exponential
dependence in (4). In this case, one is mainly interested in the fluctuations of the Kondo
temperature (which is now a functional of the local density of states) defined as theen-
ergy scaleseparating the weak and strong coupling regimes. One can then use the same
approach as in the bulk flat-band case and defineTK[νβ ] as the temperature at which the
one-loop effective interaction diverges, giving the implicit equation

J0

∫ D0

T∗

K
[νβ ]

dω

ω
νβ(ω) = 1 . (10)
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Examples of systems for which the fluctuations ofνβ are large enough so that one is
mainly interested in the fluctuations of the scaleT ∗

K defined by (10) include, for instance,
the case of “real” (chemical) impurities in a geometry such than one dimension is not
much larger than the Fermi wavelength. This may be either a quantum point contact in a
two dimensional electron gas [20] or a thin three dimensional film [21]. There is a sig-
nificant chance that the impurity is located in a place at which the Friedel oscillations are
large (i.e. the term inνfl associated with the trajectory bouncing back from the bound-
ary directly to its starting point). In this case, impurities located at peaks of the Friedel
oscillations have a significantly larger Kondo temperaturethan those at the troughs. Dis-
ordered metals near or beyond the localization transition are another system with large
fluctuations of the local density of states, and can lead in particular to a finite probability
of having a “free moment” for whichT ∗

K[νβ ] corresponding to certain spatial locations is
actually zero [22, 23].

In contrast to these cases, in a typical ballistic or disordered-metallic mesoscopic sys-
tem with all dimensions much larger than the Fermi wavelength, the fluctuating part of the
local density of statesνfl is a quantum correction to the secular termν0 and thus paramet-
rically smaller. Consequently, the fluctuations ofT ∗

K[νβ(ω)] defined by (10) are not large
compared toT 0

K, which if it is taken only as an energy scale is somewhat meaningless.
In the flat-band bulk case, however,TK has a precise meaning beyond being an energy

scale: it is the parameter entering into universal functions such asfχ in (6). TK is thus
directly and quantitatively related to physical observables—its fluctuations need not be
large to be relevant. This suggests asking whether the mesoscopic fluctuations of physical
observables such as the local susceptibilityχloc are described by the universal form

Tχloc(T ) = fχ(T/TK[νβ ]) , (11)

with all the mesoscopic fluctuations encoded in the realization and position dependent
Kondo temperatureTK[νβ ]).

In the high temperature regimeT ≥ T 0
K such universality follows from a perturba-

tive renormalization argument (although not so straightforwardly, c.f. the discussion in
Refs. [3, 24]). Furthermore, comparison with quantum MonteCarlo results shows that
predictions obtained in this way are quantitatively very accurate [3, 4]. More surpris-
ingly, such an approach remains valid up to (and actually somewhat below)T 0

K: in the
high temperature regime, then, mesoscopic fluctuations canbe included rather easily into
Kondo physics. As perturbative renormalization group is not valid belowTK, Eq. (11) is
not expected to apply in the low temperature regimeT ≪ T 0

K. This is indeed confirmed
by quantum Monte Carlo cacuulations [3]: the low temperature regime of the mesoscopic
Kondo problem is therefore richer and more complex.

3. TheT ≪ ∆ regime

Let us now consider the temperature regimeT ≪ ∆ where the discreetness of the spec-
trum has to be taken into account [5, 6]. In this temperature range, the physical properties
of the system will be dominated by its many-body ground stateand first few excitations.
For illustration, we consider a small quantum dot (the quantum impurity) connected to a
large mesoscopic quantum dot reservoir, as shown in Fig. 1. In the case of an odd number
of electrons in the reservoir dot, a sketch of the low energy excitations is shown in Fig. 1.
Without reproducing the details of the analysis given in [5,6] (where the evenN case as
well as other Kondo systems are also discussed), we shall make a few comments on this
figure and on the way it has been constructed.
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Figure 1. (a) A double dot system, coupled very weakly to leads (L1 andL2). In the
Coulomb blockade regime, the small dot behaves as a spinS that is coupled to a finite
reservoirR provided by the large dot. The leads are used to measure the excitation
spectrum of the system. (b) Sketch of the ground state and first excitations of the
mesoscopic Kondo problem as a function of coupling strengthJ0ν0.

First, we stress that the total spin of the ground state can berigorously shown to be
zero for all for positive values ofJ [5, 6]. The rest of the diagram can be obtained by
analyzing the two limiting regimes∆ ≫ T 0

K and∆ ≪ T 0
K and assuming a smooth

interpolation between them. (T 0
K is, as before, the Kondo temperature of the analogous

flat-band bulk system.) The smallJ behavior follows from a perturbative treatment of the
(renormalized) couplingJeff between the two dots. The ground state and first excitation
are the singlet and triplet states of two weakly interactingspins (all orbitals other than
the last one (singly occupied) being frozen). The second excitation corresponds to the
promotion of a particle to a higher orbital, and therefore involves the energy spacing∆2

between these two orbitals. Because of mesoscopic fluctuations,∆2 fluctuates around the
mean level spacing∆ if one applies a weak magnetic field or slightly changes the shape
of the reservoir dot.

The strong-coupling limit∆ ≪ T 0
K can, on the other hand, be addressed in the spirit

of Nozières’ Fermi-liquid picture: in the strong interaction regime, the impurity spin is
locked in a singlet with an electron gas quasiparticle, the otherN−1 quasiparticles forming
an essentially non-interacting Fermi gas [1, 14]. The ground state and two first excitations
sketched in Fig. 1 can therefore be understood as arising from the corresponding Fermi
gas: doubly occupied orbitals for the ground state, and promotion of a particle to the
first unoccupied orbital for the excitations (involving therefore the corresponding level
spacing∆3 6= ∆2). The degeneracy between the singlet and triplet excitations is lifted
by the residual interaction generated at the impurity site [14] by virtual breaking of the
Kondo singlet.

In order to connect the levels in the weak coupling regime to those at strong coupling,
we note that the order of the spins of the states is the same in both regimes and so simply
draw interpolating lines between them in Fig. 1.

Both the weak-coupling and strong-coupling limiting regimes are Fermi gases—by
construction for weak interactions and because of the Nozi`eres Fermi liquid picture [14]
for strong interactions. For a finite size fully coherent system these Fermi gases will both
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display mesoscopic fluctuations of the one particle energies and wavefunctions—in the
case above, for instance, both∆2 and∆3 are expected to show mesoscopic fluctuations
around∆ when some external parameter (magnetic field, gate voltage,etc.) is varied.
We would like to address now the question of characterizing these fluctuations, and in
particular the correlations between the Nozières Fermi gas and the weak interaction one.

4. Slave boson/fermion mean field approach

A complete solution of this problem would presumably involve developing a Fermi liquid
theory “à la Nozières” [14] taking properly into account the mesoscopic fluctuations. A
first step in this direction is to use a mean field treatment based on the slave boson/fermion
technique [1], which can be done as follows.

Starting from thes-d model Eq. (1), one can introduce Abrikosov fermions [10] as a
representation of the spin1/2. The correspondence between the auxiliary fermionsf †

σ

with spinσ =↑, ↓ and the initial quantum spin operators is

Sz ≡ [f †
↑f↑ − f †

↓f↓]/2 , S+ ≡ f †
↑f↓ , S− ≡ f †

↓f↑ , (12)

with the constraint

f †
↑f↑ + f †

↓f↓ = 1 . (13)

The Kondo interaction can then be rewritten as

Hint =
J0
2

∑

σσ′

f †
σfσ′c†0σ′c0σ −

J0
4

∑

σ

c†0σc0σ . (14)

This fermionic representation is exact. The mean field approximation consists in replacing
the quartic part of the Kondo term by an effective quadratic term

∑

σσ′

f †
σfσ′c†0σ′c0σ 7→

∑

σσ′

[

f †
σc0σ〈c

†
0σ′fσ′〉+ c†0σfσ〈f

†
σ′c0σ′〉

]

, (15)

in which the mean values〈· · · 〉 are computed self-consistently. The constraint (13) is
imposed through the introduction of the Lagrange multiplyer ǫ0:

Hint 7→ Hint − ǫ0
∑

σ

f †
σfσ . (16)

In the mean field approximation, the Kondo problem is therefore transformed into an
effective resonant level model, which, for a given spin component, can be written as

HMF =
∑

i

[

ǫic
†
ici + v∗ϕ∗

i (0)f
†ci + vϕi(0)c

†
if

†
]

− ǫ0f
†f (17)

and for which the parametersv andǫ0 are fixed by the self-consistent equations

v = J0
∑

i

ϕ∗
i (0)〈f

†ci〉 , 〈f †f〉 = 1/2 . (18)

This approach does not describe correctly the intermediateregime∆, T ≃ TK, and in
particular predicts a phase transition atTK instead of the observed crossover. The strong
interaction / low temperature regime∆, T ≪ TK that we are interested in is, on the other
hand, very well described.
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5. Spectral fluctuations of the chaotic resonant level model

Understanding the fluctuations of the Kondo problem within the mean field approach
amounts, therefore, to understanding those of the resonantlevel model with fluctuat-
ing parameters. These parameters areǫ0—the energy of the resonant level—and the
coupling strengthv. Let us furthermore denote the mean local density of states by
ρ ≡< |φi(0)|

2 > /∆ (for a billiard of areaA, < |φi(0)|
2 >≃ 1/A). From the physics

of the Kondo problem it is expected (and found in practice) that ǫ0 is essentially fixed at
the Fermi energy and that the widthΓ = π|v|2ρ of the resonance can be identified with
the Kondo temperature (up to a constant factor), the fluctuation properties of which have
been addressed within the mean field approach in [25]. In the limit T 0

K ≃ Γ ≫ ∆ that we
now consider, the fluctuations ofǫ0 andΓ take place on a scale which is parametrically
small compared toT 0

K. It is thus reasonable to assume that most of the fluctuationswill be
given by those of the resonant level model, with the fluctuation of ǫ0 andΓ adding only
small corrections.

We therefore consider the spectral fluctuations of the resonant level model, and further-
more limit the scope to chaotic motion within the reservoir dot. Random matrix theory
provides a good model of the energy levels and wavefunctionsin this situation [26, 27]:
we use the Gaussian orthogonal ensemble (GOE,β = 1) for time reversal symmetric
systems and the Gaussian unitary ensemble (GUE,β = 2) for non-symmetric systems
[26, 28]. The joint distribution function of the unperturbed reservoir dot energy levels is
therefore given by [28]

Pβ(ǫ1, ǫ2, · · · , ǫN) ∝
∏

i>j

|ǫi − ǫj |
β
exp

(

−
1

4v2

∑

i

ǫ2i

)

(19)

and the corresponding distribution of values of the wavefunction at the impurity site is the
Porter-Thomas distribution

Pβ(x = A|φj(0)|
2) =

1

(2πx)1−β/2
exp

(

−
β

2
x

)

. (20)

To connect the mesoscopic fluctuations of the levels before and after the resonant level
is added, we would like, for instance, the joint distribution of both sets of levels. For the
resonant level model, the perturbed energy levels{λα}

N
α=0 are related to the unperturbed

levels{ǫi}Ni=0 through

∑

i>0

|φi(0)|
2

λα − ǫi
=

λα − ǫ0
|v|2

(21)

(recall thatǫ0 is the bare position of the resonance). From this, the joint distribution
function of the{ǫi} and{λα} can be computed [7]:

P ({ǫi}, {λα}) ∝

∏

α≥0

(λα − ǫ0)

∏

i≥1

(ǫi − ǫ0)
1−β/2

∏

i≥1

(ǫ0 − ǫi)
β
×

∏

i>j

(ǫi − ǫj)
∏

α>γ

(λα − λγ)

∏

iα

|ǫi − λα|
1−β/2

× exp

[

−
Nβ

4V 2

(

∑

α>0

λ2
α −

∑

i>0

ǫ2i

)]

, (22)

with in addition the constraint
∑

i>0 ǫi =
∑

α>0 λα.

8 Pramana – J. Phys., Vol. xx, No. xxxxx xxxx
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It is not completely straightforward, however, to deduce from this joint distribution
useful correlation functions involving a few levels, from which we could get an intuitive
sense of how the fluctuations of the unperturbed system affect those of the perturbed one.
Another possible route is, in the spirit of the Wigner surmise for the nearest neighbor
distribution of the classic random matrix ensemble, to start from a simple toy model, in
which a good part of the information is ignored but on the other hand the expressions
obtained are tractable and contain enough of the relevant information to provide a good
first approximation.

To construct such a toy model, first note that Eq. (21) imposesthat there is one and
only one levelλ between two successive levelsǫi andǫi+1. It is reasonable to assume that
it is mainly the fluctuations of these levels and their associated wavefunction amplitudes
ϕi(0) andϕi+1(0) which determine the position ofλ. Second, if we are interested in the
center of the resonance, i.e. states such that the distanceλ − ǫ0 from the resonant level
is significantly smaller than the width of the resonance (which is approximatelyTK), the
right hand side of Eq. (21) can be neglected. Denotingxi = A|ϕi(0)|

2, we therefore get

xα

λ− ǫα
+

xα+1

λ− ǫα+1
= 0 , (23)

with the xi’s fluctuating according to (20). Interestingly, all energyscales beyond the
spacing(ǫα+1 − ǫα) have disappeared from this equation: this toy model predicts a uni-
versal distribution of the ratio(λ − ǫα)/(ǫα+1 − ǫα). A straightforwad calculation gives

PGOE(λ) =
1

πδǫ

1
√

(ǫα+1 − λ)(λ− ǫα)
and PGUE(λ) =

1

δǫ
(24)

for the time reversal symmetric case (GOE,β = 1) and non-symmetric case (GUE,β =
2), respectively.

As a consequence we see that the correlations between the unperturbed energiesǫ and
the perturbed onesλ come from two different mechanisms. On the one hand,on energy
scales larger than∆ the constraints imposed by Eq. (21), in particular the fact that there
can be only one stateλ between two successiveǫ’s, imposes a very strong correlation
between the two sets of levels. On the other handon energy scales smaller than∆, these
correlations depend a lot on the statistics of the wavefunction. Within our toy-model
approach, there is no correlation in the GUE case, while for the GOE theλ’s tend to
cluster (with a square root singularity) near theǫ’s. Numerical simulations with the full
resonant model confirm these latter predictions [7].

6. Conclusion

To conclude this short review, we have seen that studying theKondo problem in the con-
text of quantum dots makes it natural to consider how mesoscopic fluctuations affect
strong correlations. The high temperature regimeT > T 0

K is the simplest to comprehend:
reasoning based on the one-loop renormalization group approach makes it possible to
incorporate all the effects of the mesoscopic fluctuations into those of the Kondo temper-
ature itself, keeping otherwise all quantities universal,with the same universal functions
as for the flat-band bulk. Universality is lost at temperatures belowTK. However, the very
low temperature regimeT,∆ ≪ T 0

K can be tackled in the spirit of Nozières’ Fermi liquid
approach. As a first step, we have developed a slave boson/fermion mean field theory of
this regime and obtained in this way a convincing qualitative description. The crossover
between these two understood limiting cases,T of orderT 0

K, is, as usual, the most difficult
part of the problem, and is still completely open.
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