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A Toy Model of the Rat Race
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We introduce a toy model of the “rat race” in which individuals try to better themselves relative
to the rest of the population. An individual is characterized by a real-valued fitness and each
advances at a constant rate by an amount that depends on its standing in the population. The
leader advances to remain ahead of its nearest neighbor, while all others advance by an amount that
is set by the distance to the leader. A rich dynamics occurs as a function of the mean jump size
of the trailing particles. For small jumps, the leader maintains its position, while for large jumps,
there are long periods of stasis that are punctuated by episodes of explosive advancement and many
lead changes. Intermediate to these two regimes, in a typical realization of the system, agents reach
a common fitness and evolution grinds to a halt.

PACS numbers: 87.23.Kg, 01.50.Rt, 02.50.-r, 05.40.-a

I. INTRODUCTION

A basic fact of life is competition. In evolution, only
the fittest survive; in the workplace, we compete for pro-
fessional advancement; in social events, we compete for
attention; in sports, its very purpose is to excel in com-
petition. Idealized models of social competition have re-
cently been proposed in which the status of each indi-
vidual is determined by competitive success [1, 2, 3, 4].
In this spirit, we introduce a simple “rate-race” model
that embodies the struggle for advancement in a com-
petitive environment. Because everyone is engaged in
the same perpetual rat race, one’s relative standing may
change slowly or not at all, even though the population
as a whole may be advancing. When the competition
favors the strong, the leader runs away from the rest of
the population. As the competition becomes more eq-
uitable, in any typical realization of the system, every-
one reaches the same fitness and the population become
static. When the leader is easily overtaken, the mean
fitness undergoes periods of near stasis and explosive ad-
vancement that qualitatively mirrors the phenomenon of
punctuated evolution [5].

Empirical motivations for our model come from evo-
lution and from sports. In evolution, large-scale species
extinctions occur during sudden spurts, with much slower
development during the intervening periods [5, 6]. These
periods of near stasis characterize many sports, where it
is not possible to maintain a long-term competitive ad-
vantage. If one finds such a winning strategy, competi-
tors will eventually find a counter-strategy so that any
advantage is lost. Conversely, a consistent loser will be
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replaced by a more competent individual so that losing
strategies also do not persist.

A famous example of the latter idea comes from base-
ball, where the mythic achievement of a .400 hitter, an
exceptional player who gets a hit in more than 40% of
his turns at bat, occurred multiple times during the early
years of the sport—25 times from 1871 to 1941 (last ac-
complished by the .406 batting average of Ted Williams
of the Boston Red Sox in 1941)—but none since then. An
appealing explanation for this phenomenon, proposed by
S. J. Gould [7], is that the increasing competitiveness
as the sport has developed makes outliers less likely to
occur. To illustrate this point, Gould found that the dis-
persion in the batting averages of all regular players de-
creased systematically from 1875 until 1980, even though
year-to-year fluctuations in their mean batting average
are larger than the systematic decrease in the disper-
sion. Thus outliers become rarer and exceptional achieve-
ments, such as a season batting average over .400, or a
consecutive-game hitting streak longer than 56 achieved
by Joe DiMaggio also in 1941, should not recur.

In the next section, we define the rat race model and
then we analytically determine its dynamical features for
a two-agent system in Sec. III. In Sec. IV, we investigate
many agents in the framework of an almost deterministic
version of the rat race. Simulation results for the evolu-
tionary behavior of the model are given in Sec. V, and
we conclude in Sec. VI.

II. RAT RACE MODEL

In our rat race model, each individual i = 0, 1, 2, . . .
possesses a real-valued fitness xi, with larger xi repre-
senting higher fitness (Fig. 1). An individual attempts
to improve with respect to the competition by advanc-
ing to larger x. Advancement events occur one at a time
and each individual has the same rate of advancing; i.e.,
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we consider serial dynamics in which a randomly-selected
competitor advances. The leader, located at x0, advances
by an amount that is drawn from a uniform distribution
of width x0 − x1. That is, the leader is aware only of
the next strongest individual and attempts to maintain
its lead by advancing by an amount that is of the order
of the separation to this nearest neighbor. On the other
hand, all other individuals seek to overtake the leader.
The ith agent, with fitness xi, moves a distance that is
uniformly distributed in the range m(x0 − xi). Here m
is the fundamental parameter—the “catch-up” factor—
that quantifies the severity of the competition. When
m < 1, the leader maintains the lead forever, while for
m > 1 the leader can be overtaken.

x1xk x0x2

FIG. 1: Stochastic rat race model. Each particle has a fitness
xk. The leader can advance by an amount that is uniformly
distributed in the range x0−x1. The kth particle can advance
by an amount that is uniformly distributed in m(x0 − xk).

In the context of competition, it would be more real-
istic to eliminate laggards and replace them by typical
individuals. However, our model mimics precisely this
situation, as a laggard typically moves toward the aver-
age fitness. A lazy population is characterized by a small
value of m for which the leader maintains the lead on the
rest of the pack. For a sufficiently large value of m, how-
ever, the lead changes often and by large amounts so that
the width of the fitness distribution increases after each
advancement event. Between these two extremes there is
an intermediate regime of stasis where the spread of the
pack shrinks to zero and the population stops advancing.

III. TWO COMPETITORS

We begin by studying the case of two agents with fit-
nesses x0 and x1 < x0 and gap g = x0 − x1. The fitness
of the leader increases by an amount that is uniformly
distributed in [0, g] to try to maintain its lead. Similarly,
the laggard advances by a distance that is uniformly dis-
tributed in the range [0, mg]. For m < 1 the agents al-
ways maintain their order, while for m > 1 lead changes
can occur. We now determine the evolution of the gap
length for any m.

The gap length undergoes a random multiplicative pro-
cess because each advancement step leads to a multiplica-
tive change. Thus we expect that the distribution of gap
lengths for an ensemble of two-agent systems will have
a log-normal form. Additionally, over a suitable range
for the catch-up factor m we also expect large fluctua-
tions between different realizations of the process, as is
well-known to occur in random multiplicative processes
[8].

g

(a)

(b)

(c)

(d)

(e)

FIG. 2: Advancement events that contribute to the change in
the gap length for a two-particle rat race. Gaps of length g
are lost by the first two process, while the latter three lead to
a gain of gaps of length g. The last process is a lead-changing
event.

A. Gap Evolution

The gap evolution is completely described by P (g, t),
the probability for a gap of length g at time t. For the
case m < 1 (no lead changes), the evolution of P is de-
scribed the master equation

Ṗ (g) = −P (g) +
1

2

∫ g

g

2

P (g′)

g′
dg′

+
1

2m

∫
g

1−m

g

P (g′)

g′
dg′ ,

(1)

where the overdot denotes time derivative. The first term
on the right accounts for the loss of gaps of length g be-
cause of the hopping of either particle ((a), (b) in Fig. 2).
The second term accounts for the creation of a gap of
length g due to the leader advancing from a previous gap
of length g′ < g (Fig. 2(c)). The length g′ of this previous
gap must be in the range [g/2, g] so that a gap of length g
can be created and the factor 1/g′ accounts for the hop-
ping distance being uniformly distributed in [0, g′]. The
last term accounts for the laggard advancing to create a
gap of length g (Fig. 2(d)). Here, the previous gap length
g′ must be in the range [g, g/(1 − m)] and the hopping
probability then equals 1/(mg′).

Similarly, the master equation for P (g) for m > 1 is:

Ṗ (g) = −P (g) +
1

2

∫ g

g

2

P (g′)

g′
dg′

+
1

2m

∫ ∞

g

P (g′)

g′
dg′ +

1

2m

∫ ∞

g

m−1

P (g′)

g′
dg′ .

(2)

The third term on the right accounts for events in which
the laggard remains the laggard (Fig. 2(d)), while the
last term accounts for overtaking events (Fig. 2(e)).

For both m < 1 and m > 1, it is straightforward to
check that these equations conserve the total probability,
∫ ∞

0 Ṗ (g) dg = 0. For this purpose, we need to compute

∫ ∞

0

Ṗ (g) dg =

∫ ∞

0

[

· · · ] dg (3)
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where [· · · ] denotes the right-hand side of Eq. (1) or
Eq. (2). To perform this type of integral, we merely
interchange the order of the g and g′ integrations. We il-
lustrate this calculation for the second term on the right-
hand side of Eq. (1). The interchange of integration order
in this term gives

∫ ∞

0

dg
1

2

∫ g

g/2

P (g′)

g′
dg′ =

1

2

∫ ∞

0

dg′
∫ 2g′

g′

P (g′)

g′
dg

The integration over g merely gives g′ and then the g′

integral becomes simply 1
2

∫ ∞

0 P (g′) dg′ = 1
2 . The same

manipulation works for all the other terms in the master
equation and we thus verify that

∫

P (g) dg is conserved.

B. Moments of the Gap Length

The equation of motion for the moments of the gap-
length distribution is

Ṁk ≡
〈

dgk

dt

〉

=

∫ ∞

0

gkṖ (g) dg =

∫ ∞

0

gk
[

· · · ] dg , (4)

where [· · · ] again denotes the right-hand side of Eq. (1) or
Eq. (2). Employing the same interchange of integration
order as illustrated above, the integrals can be evaluated
straightforwardly to yield the following closed equations
for the moments:

Ṁk = Mk×























−1 +
2k+1−1

2(k + 1)
+

1 − (1−m)k+1

2m(k + 1)
m < 1;

−1 +
2k+1−1

2(k + 1)
+

(m−1)k+1 + 1

2m(k + 1)
m > 1.

(5)

For m < 1, the first few moments obey:

Ṁ0 = 0

Ṁ1 = M1

(

1 − m

4

)

Ṁ2 = M2

(

3 − 2m + m2

6m

)

(6)

etc. All positive integer moments increase in time for
m < 1 because the leader hops further than the laggard,
on average, in every single event. Conversely, for m > 1
the corresponding moment equations are:

Ṁ0 = 0

Ṁ1 = M1

[

(m − 1)(m − 2)

4m

]

Ṁ2 = M2

[

(m − 1)3 + m + 1

6m

]

(7)

etc. Curiously, different moments can have opposite time
dependences. For m < 1 the laggard trails further and
further behind after each step and the average separation

grows, while for m > 2, overtaking events are so drastic
in character that the average separation between the two
agents also grows. Conversely, for 1 < m < 2, the first
moment decreases in time. In spite of the differing be-
haviors for the first moment as a function of m, higher
moments grow for any m > 1 (Eq. (7)).

Why does this dichotomy between moments of differ-
ent order arise? The source is the multiplicative process
that underlies the gap dynamics. This multiplicativity
leads to the very broad log-normal distribution of gap
sizes (to be derived in the next section), for which the
time dependence of moments of different order can be
quite different [8]. In a random multiplicative process,
extreme realizations with an exponentially small proba-
bility, make an exponentially large contribution to the
moment of a given order. For m < 1 or m > 2, the inter-
play between these two extremes leads to a first moment
that grows with time when summing over all realizations.
In simulations, however, we study only a small fraction
of all realizations and thus can observe only the very dif-
ferent most probable behavior.

The most probable gap gmp = e〈ln g〉 (the geometric

average of g) may be obtained by computing Ẋ ≡ 〈 ˙lng〉,
using the same approach that leads from Eq. (4) to (5).
We thereby find that X = At with

A =



















ln 2 − 1 +
(m − 1) ln(1 − m)

2m
m < 1;

ln 2 − 1 +
(m − 1) ln(m − 1)

2m
m > 1.

(8)

Setting A = 0 gives the transition at which the most
probable gap length does not change. Again there are
two transitions; from the first line of (8), the condition
A = 0 gives a transcendental equation for m with solution
m∗

1 = 0.596754 . . .. Similarly, from the second line of (8),
the condition A = 0 gives the threshold m∗

2 = 3.38846 . . ..
The most probable gap length gmp thus increases with
time for m < m∗

1 and m > m∗
2, while gmp shrinks to zero

in a finite time for m∗
1 < m < m∗

2. Comparing Eqs. (7)
& (8), there exists a range of m for which the average
gap grows while the most probable gap shrinks. Again,
the interplay between exponentially unlikely events that
have exponentially large contributions to an observable
gives seemingly contradictory results that are natural
outcomes of a random multiplicative process [8].

C. The Gap Length Distribution

We now compute the asymptotic tails of the gap length
distribution itself. Our approach to determine this distri-
bution is to write the moments of the gap length distri-
bution in Eqs. (5) as a Fourier transform and then invert
this transform.

Thus we write
∫ ∞

0

P (g, t) gk dg = eln[Mk(t)] .



4

Now define X = ln g and make an analytic continuation
from k to ik to give

∫ ∞

−∞

P (X, t) eikX dX = eln[Mik(t)] .

The left-hand side is just the Fourier transform of
P (X, t). Inverting this Fourier transform, we obtain

P (X, t) =
1

2π

∫ ∞

−∞

dk e−ikX eln[Mik(t)] .

To derive the asymptotic distribution for large X , we
need the small-k behavior of lnMik. Using (5), we ex-
pand lnMik for small k and then invert the Fourier trans-
form to obtain a Gaussian distribution for X , i.e., a log-
normal distribution for g. The final result is

P (X, t) ∼ 1√
2πBt

e−(X−At)2/2Bt , (9)

where A is given by Eq. (8) and

B =











C − m−1
2m

[

2 ln(1 − m) − ln2(1 − m)
]

m < 1

C − m−1
2m

[

2 ln(m − 1) − ln2(m − 1)
]

m > 1,

(10)

with C = 2 − 2 ln 2 + (ln 2)2. We again emphasize that
while the distribution of X = ln g extends over range
that grows as

√
t, the distribution of g itself is extremely

broad so that it cannot be characterized by any individual
moment.

IV. DETERMINISTIC MODEL

It is not clear how to adapt the theory given above in
an analytically-tractable way to treat more than 2 parti-
cles. We therefore introduce an nearly-deterministic ver-
sion of the model that mimics the advancement steps in
the stochastic rat race model by defining the length of
each jump to be exactly one half of the total possible
range. We again consider serial dynamics in which one
of the competitors, chosen at random, advances. The or-
der in which competitors are selected is the only source
of stochasticity in this version of the model.

A. Two Particles

There are two possibilities for particle movement, de-
pending on the value of the catch-up factor m:

• For m < 2, if the leader moves, the gap g → (3/2)g,
while if the laggard moves, the gap g → βg, where
β = 1 − (m/2).

• For m > 2 the laggard overtakes the leader. If
the leader moves, again g → (3/2)g, while if the
laggard moves g → βg, where β = (m/2) − 1.

Since either particle is selected with probability 1/2 at
each step, after t steps the gap could assume any of the
values (3/2)τβt−τ , τ = 0, 1, . . . , t (assuming an initial
gap length g = 1). After t steps, the probability of a gap
of length (3/2)τβt−τ is

pτ =
1

2t

( t

τ

)

.

g

mg

m<2 m>2

mg

FIG. 3: Deterministic rat race. The laggard advances by
mg/2. For m < 2, the order never changes, while for m > 2,
the move of the laggard always leads to passing.

It follows that the kth moment of the gap length is

Mk ≡ 〈gk〉 =
[1

2

(3

2

)k

+
1

2
βk

]t

. (11)

Thus, the large-time behavior of the kth moment depends
on the factor [(3/2)k+βk]/2. If this factor is greater than
1, i.e., β exceeds βc(k) = exp[ln(2 − (3/2)k)/k], the kth

moment diverges as t → ∞. On the other hand, for
β < βc(k), the kth moment vanishes as t → ∞. For
β > βc(0) = 2/3, all positive moments of the gap size,
as well as the most probable gap size, diverge. The value
βc(0) = 2/3 thus marks the transition from convergent
to explosive behavior in the gap size. Notice that this
transition value for β corresponds to the threshold values
m∗

1 = 2/3 and m∗
2 = 10/3, which agree well with the

corresponding thresholds from the stochastic rat race.

B. Many Particles

We study an N + 1-particle system, with N > 1, with
particles located at xi, with i = 0, 1, 2, . . .N . The gap
between particle n and the leader is defined as gn = x0−
xn. We limit ourselves to the case of catch-up factor m >
2, so that any non-leader that jumps always overtakes the
leader. This fact allows us to keep track of the ordering
of the particles and an exact analysis is then possible.
For generality, we assume the leader jumps a distance
αg1 ahead; α = 1/2 corresponds to the case analyzed
previously, while for α = 0 the leader is completely lazy
and never jumps.

If particle n is selected, this results in a re-distribution
of the vector (g1, g2, . . . , gN ) of the gap lengths:

g′ = Ang ,
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where

A0 =













1 + α 0 0 · · · 0
1 − α 1 0 · · · 0
1 − α 0 1 · · · 0

...
...

...
. . .

...
1 − α 0 0 · · · 1













, A1 =













β 0 0 · · · 0
β 1 0 · · · 0
β 0 1 · · · 0
...

...
...

. . .
...

β 0 0 · · · 1













,

A2 =













0 β 0 · · · 0
1 β 0 · · · 0
0 β 1 · · · 0
...

...
...

. . .
...

0 β 0 · · · 1













, . . .AN =













0 0 0 · · · β
1 0 0 · · · β
0 1 0 · · · β
...

...
. . .

...
0 0 · · · 1 β













.

The vector g, after t steps, is the result of the product of
t matrices, drawn at random from among the An. Un-
fortunately, none of the matrices commute, so we cannot
deduce the probability distribution of gap sizes as in the
scalar case of two particles (N = 1). On the other hand,
according to the Oseledec theorem [10] (also known as
the multiplicative ergodic theorem), the growth of g is

determined by the product λ̃0λ̃1 · · · λ̃N , where λ̃n is the
largest eigenvalue of the matrix An (n = 0, 1, 2, . . .N).

More precisely, the product P ≡ ∏N
i=0 λ̃i determines the

largest Lyapunov exponent of the growth of g with N .
Thus explosive growth results if the product P > 1, and
stasis results otherwise. We now derive the critical value
for β at the transition point, where λ̃0λ̃1 · · · λ̃N = 1.

The largest eigenvalue of A0 is clearly λ̃0 = 1 + α. To
determine the largest eigenvalue of An for n > 0, we write
the characteristic equation det(An − λI) = 0, obtained
by expanding the determinant about the column of β’s:

[β(1 + λ + λ2 + · · · + λn−1) − λn](1 − λ)N−n = 0 .

From the second factor on the left-hand side we conclude
that An has N − n eigenvalues λn = 1. We argue, self-
consistently, that for n = 1, 2, . . . , N − 1 these are also
the largest eigenvalues, that is, λ̃n = 1. Indeed, if that
is the case, then the criticality condition dictates λ̃N =
1/(1 + α). Substituting this value into the characteristic
equation for AN we find

β∗ =
α

(1 + α)N+1 − (1 + α)
. (12)

It follows that β∗ ≤ 1/N (with the equality being real-
ized in the limit α → 0). We can now show that our
initial assumption that the remaining eigenvalues of An

(n = 1, 2, . . . , N−1) are not larger than 1 is indeed valid.
From the factor in the square brackets of the character-
istic equation, we see that these eigenvalues satisfy

β =
λn

1 + λ + λ2 + · · · + λn−1
.

The expression on the right-hand side is a monotonically
increasing function of λ, hence if λ > 1 then β > 1/n >
1/N , in contradiction with (12).

For α = 0, namely, the case of a lazy leader that never
advances as long as it leads, the critical value of the catch-
up parameter β is no longer exponential in N , but rather

β∗ =
1

N
, (13)

as can be seen by taking the limit of α → 0 in Eq. (12).

V. SIMULATION RESULTS

For any number of agents, the time dependence of
the fitness of each agent exhibits rich behavior. For
2 agents, simulations clearly show a transition between
a regime where the leader runs away from the laggard
and stasis as m passes through a critical value close to
m∗

1 = 0.596754 . . .. This stasis continues until a second
transition at m ≈ m∗

2 = 3.38846 . . .. For m > m∗
2, there

is explosive growth, with many lead changes between the
two agents. It bears emphasizing that the observed tran-
sitions occur close to the values associated with the most
probable gap size, even though the true transitions occur
at m1 = 1 and m2 = 2, corresponding to the average
gap size. Since simulations reflect the most probable be-
havior, they can provide qualitative information about
the nature of stasis and explosive growth, as well as the
transition between these two regimes, but little else.

Figs. 4 and 5 show typical results for 6 agents. Again,
the existence of two transitions is clearly visible. For
m < m∗

1 ≈ 0.4, the initial leader always maintains
its lead, but the laggards are able to remain relatively
close behind by virtue of the multiplicative nature of
the jumps. Strikingly, large jumps occur with some
frequency so that the population still advances rapidly.
However, for slightly larger m, the distance between the
strongest and weakest eventually disappears and the evo-
lution quickly grinds to a halt (Fig. 4 bottom). Here
lead changes are rare and no longer occur after a short
time. This nearly static behavior continues until m ≈ 1.6
(Fig. 5 top).

For a slightly larger m, this system exhibits periods of
near stasis followed by periods of explosive growth (Fig. 5
bottom). Here lead changes occur at roughly a constant
rate and the total number of lead changes grows linearly
with time. During periods of rapid advancement, the
gap between the strongest and weakest agent is nearly
comparable to the fitness (position) of any agent. Con-
versely, during periods of near stasis, the gap between
the strongest and weakest agent is orders of magnitude
smaller than the typical fitness.

Qualitatively similar behavior occurs for more parti-
cles, except that the critical values of m that separates
leader runaway from stasis and stasis from explosive
growth seem to approach 0 and 1, respectively, as the
number of particles increases.
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FIG. 4: Fitnesses of each agent for a 6-particle system for
m = 0.4 on a linear-log scale (top), and m = 0.44 on a log-
linear scale (bottom).

VI. SUMMARY

We introduced an idealized social competition model
where individuals try to better their fitness (a real-valued
variable) by advancing relative to the rest of the popula-
tion: the leader advances to remain ahead of its closest
pursuer, while others in the pack advance by a random
amount, in proportion to their distance from the leader.
When this proportionality constant is too small or too
large, the fitness of all the agents grows explosively dur-
ing short sporadic bursts. These explosive regimes are
the analog of the rapid growth of new species after mas-
sive die-offs in punctuated evolution. Between these two
extremes there is a window of stasis, where the spread
of the pack shrinks indefinitely and evolution comes to
a stop. Here outliers becomes progressively less likely
and extreme achievements disappear; this situation par-
allels the disappearance of the .400 hitter in baseball
mentioned in the introduction.

Basic features of the model already arise in the simple
limits of just two agents, and in a deterministic model

where agents advance by a fixed multiple of their gap
to the leader. These simplified models allow for an ex-
act analysis, yielding specific expressions for the distri-
bution of gaps in the two-agent model, and for the N -
dependence of the threshold parameters that demarcate
between the regimes of stasis and explosive growth in the

100
time

0

30000

60000

90000

x i(t
)

0 1000 2000 3000 4000 5000
time

10
0

10
5

10
10

10
15

10
20

x i(t
)

FIG. 5: Fitnesses of each agent for a 6-particle system for
m = 1.61 on a log-linear scale (top) and m = 1.64 on a linear-
log scale (bottom). Shown dotted is the distance between the
strongest and weakest agent.

deterministic model. Our simulation results suggest that
similar behavior occurs for a general many-agent system.
A full analytical solution of the general many-agent prob-
lem seems intractable, however, even in the simplified
deterministic version. Thus some basic questions remain
unanswered, such as, for example, what is the distribu-
tion of agents in the pack in the various regimes of explo-
sive growth, stasis, and at the critical transition points.
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