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Persistence of a Rouse polymer chain under transverse shear flow
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We consider a single Rouse polymer chain in two dimensions in presence of a transverse shear
flow along the x direction and calculate the persistence probability P0(t) that the x coordinate of
a bead in the bulk of the chain does not return to its initial position up to time t. We show that
the persistence decays at late times as a power law, P0(t) ∼ t−θ with a nontrivial exponent θ.
The analytical estimate of θ = 0.359... obtained using an independent interval approximation is in
excellent agreement with the numerical value θ ≈ 0.360 ± 0.001.

PACS numbers: 83.80.Rs, 02.50.-r

I. INTRODUCTION

Polymer dynamics plays a central role in material sci-
ence and biology. In particular, dynamics of an indi-
vidual flexible or semi-flexible polymer under a suitable
shear force has been of great interest [1, 2, 3, 4, 5, 6, 7].
Shear force comes into play when a fluid flows past a
surface. Substantial effort has been undertaken to in-
vestigate the motion of polymers in shear field. Pre-
viously, studies were done on bulk samples using light-
scattering and birefringence experiments. Recently, the
dynamics of a single polymer has also been investigated
using video-microscopy. Under a shear stress, such a
polymer shows tumbling in addition to a longitudinal
stretching [2, 3]. If one takes a tethered polymer, whose
one point is made immobile, then tumbling leads to a
cyclic motion of the spatially constrained polymer about
a mean position [4]. Also statistics of polymer orien-
tation angles has been of interest [6, 7]. These proper-
ties studied both experimentally and theoretically can be
classified as long-time transport phenomena. In contrast,
in this paper we explore the persistence or the survival
probability behaviour of a flexible polymer chain under
transverse shear flow within the paradigm of the simple
Rouse model where the polymer chain consists of beads
or monomers connected by harmonic springs [8]. We will
show that even in this simple model, the persistence at
late times decays as a power law characterized by a non-
trivial exponent.

The survival/persistence probability P0(t) that a
stochastic process X(t) does not cross zero upto time
t is a quantity of long standing interest in probability
theory and with many practical applications [9]. The
derivative F (t) = −dP0(t)/dt is the first-passage proba-
bility [10]. In many nonequilibrium many body systems,
the persistence has been found to decay as a power law
at late times, P0(t) ∼ t−θ. The exponent θ is called the
persistence exponent and has been a subject of much
theoretical, numerical and experimental studies in re-
cent times [11]. The exponent θ is often nontrivial and
is generally hard to calculate analytically even in sim-

ple systems such as the linear diffusion equation start-
ing from random initial conditions [12]. The reason for
this difficulty can be traced back to the fact that the
spatial interactions in these extended systems makes the
local stochastic field X(t) a ‘non-Markovian’ process in
time [11].

In this paper we study the persistence properties of a
Rouse chain in 2-dimensions in presence of a transverse
shear velocity field which is non-random. We show that
the persistence probability in this system decays at late
times as a power law with a nontrivial persistence expo-
nent θ ≈ 0.36 that we compute numerically as well as an-
alytically within an independent interval approximation
(IIA). We note, that the current problem is in contrast to
similar problems considered in “random” flow fields ear-
lier. For example, for a Rouse chain [8] of infinite length,
the transport properties [13, 14, 15] and the persistence
properties [16] in a quenched random velocity flow field
have been studied.

The paper is organized as follows. In Section II, we de-
fine the model precisely and summarize our main results.
In Section-III we present exact calculations of the two-
time correlation functions in our model. These results
are used next in Section IV to calculate the persistence
exponent analytically within the IIA. Sections V and VI
describe details of the numerical methods and finally we
conclude in Section VII.

II. THE MODEL AND MAIN RESULTS

We consider a Rouse polymer chain embedded in a
2-dimensional plane. The chain consists of beads con-
nected by harmonic springs [8]. In addition, the chain
is advected by shear velocity flow field. Let [xn(t), yn(t)]
denote the coordinates of the n-th bead at time t which
evolve with time according to the following equations of
motion

dyn

dt
= Γ (yn+1 + yn−1 − 2 yn) + η1(n, t) (1)

dxn

dt
= Γ (xn+1 + xn−1 − 2 xn) + v (yn(t)) + η2(n, t),(2)
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where Γ denotes the strength of the harmonic interaction
between nearest neighbour beads, η1(n, t) and η2(n, t)
represent the thermal white noises along the y and x
directions respectively that are uncorrelated. The trans-
verse shear velocity field v(y) is linear

v(y) = y. (3)

For a finite chain with N beads, Eqs. (1) and (2) are
valid only for the (N −2) interior beads. The two bound-
ary beads will have slightly different equations of motion.
However, for an infinitely large chain (N → ∞), the
translational invariance along the length of the chain is
restored since the boundary conditions become irrelevant
for late time dynamics. Since we are mostly interested in
the late time properties, one can make further simplifi-
cations by replacing the discrete index n of the beads by
a continuous variable s and subsequently replace the dis-
crete Laplacian by a continuous second derivative along
the s direction. The coarse grained versions of the evo-
lution equations (2) then become

∂y(s, t)

∂t
= Γ

∂2y(s, t)

∂s2
+ η1(s, t), (4)

∂x(s, t)

∂t
= Γ

∂2x(s, t)

∂s2
+ y(s, t). (5)

Note that we have also dropped the η2(s, t) term in the
second equation. This is simply because one can easily
show that the noise term η2(s, t) becomes insignificant
compared to the shear force term y(s, t) at late times.
Hence for late time asymptotic properties we can ignore
the noise η2(s, t).

In the absence of harmonic interactions (Γ = 0), the
beads become independent and the coordinates of any
(say the n-th) bead represents a two-dimensional Brown-
ian walker in a shear flow[17]. Equivalently , in this limit,
the x coordinate of the walker evolves as d2xn/dt2 =
η1(n, t), i.e., it represents a randomly accelerated parti-
cle. The persistence probability of the x-coordinate, i.e.,
the probability that the x coordinate does not cross zero
up to time t is known to decay as ∼ t−1/4 [18]. Re-
cently, the persistence of a single random walker for var-
ious other deterministic velocity functions v(y) has also
been studied [19, 20]. Interestingly it has been shown
that for all odd functions v(y) survival probability de-
cays as t−1/4 [19]. It turns out that the same t−1/4 decay
also holds in the case when v(y) is not a deterministic
function, but represents a quenched random transverse
velocity field with short-range correlations [21, 22]. This
model of a single random walker in presence of a random
transverse velocity field is known as the Matheron-de-
Marsily model[23] whose transport properties had been
studied earlier extensively[24], but the studies of persis-
tence properties are relatively new[21, 22, 25].

In this paper we study the persistence probability of
the x coordinate of the n-th bead in the presence of har-
monic interaction Γ 6= 0. Due to the translational invari-
ance along the length of the chain in the bulk, the per-
sistence probability is independent of the label n of the

bead. We also absorb the factor Γ by properly rescaling
the time. Note that the continuum equation (4) for the
y coordinate is precisely the Edwards-Wilkinson equa-
tion of one dimensional interface [26] and its persistence
properties are known, both theoretically [27, 28] and also
experimentally [29]. Here we focus on the x coordinate
and define the persistence as follows

P0(t) = Prob[x(s, t′) 6= x(s, 0)

for all t′ : 0 ≤ t′ ≤ t], (6)

i.e., P0(t) is the probability that the x coordinate of any
bead does not return to its initial position within the
time interval [0, t].

The initial conditions for the chain coordinates do not
play any role in the persistence probability. This is due
to the fact that the evolution equations are linear, so we
can redefine the change in positions x(s, t) − x(s, 0) and
y(s, t) − y(s, 0) as the relevant coordinates which satisfy
the same evolutions equations. Hence, for the evolution
equations (4) and (5) we can set the initial conditions
x(s, 0) = 0 and y(s, 0) = 0 without any loss of generali-
ties.

Our main results can be summarized as follows. We
show that P0(t) ∼ t−θ at late times t where the persis-
tence exponent θ has a nontrivial value. The numerical
value θ ≃ 0.360 ± 0.001, is in excellent agreement with
the analytical value θ = 0.359... obtained within the IIA
method. Thus as one switches on the harmonic interac-
tion Γ 6= 0 between the beads, the exponent θ ≃ 0.36
increases from its value θ = 1/4 for Γ = 0. Thus the
x coordinate of a bead survives less in presence of har-
monic interactions, i.e., the interaction enhances the re-
turn probability.

III. CALCULATION OF EXACT TWO-TIME

CORRELATION FUNCTIONS

The stochastic processes x(s, t) and y(s, t) evolving via
Eqs. (4) and (5) are both Gaussian at late times since
the evolution equations are linear. A Gaussian process is
completely specified by its two-time correlation function.
More detailed quantities such as the persistence prob-
ability, in principle, is a complicated functional of the
two-time correlation function. In this section we com-
pute the two-time correlation functions exactly and use
these functions later for computing the persistence prob-
ability in Section IV.

To begin with, we Fourier transform Eq. 4. We de-

fine ỹ(k, t) =
∫ +∞

−∞
y(s, t) exp(−isk)ds, and η̃1(k, t) =

∫ +∞

−∞
η1(s, t) exp(−isk)ds. This implies,

∂ỹ(k, t)

∂t
= −k2ỹ(k, t) + η̃1(k, t) (7)

Assuming flat initial condition (i.e., y(s, t) = 0), Eq. (7)
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gives

ỹ(k, t) = exp(−k2t)

∫ t

0

η̃1(k, t′) exp(k2t′)dt′, (8)

which in turn implies the correlation function

〈ỹ(k1, t
′)ỹ(k2, t

′′)〉 =

δ(k1 + k2)

2k1
2 [exp(−k1

2|t′ − t′′|) − exp(−k1
2(t′ + t′′))].

(9)

For Eq. (5), defining x̃(k, t) =
∫ +∞

−∞
x(s, t) exp(−isk)ds and again considering flat

initial condition (i.e., x(s, 0) = 0), we get

x̃(k, t) = exp(−k2t)

∫ t

0

ỹ(k, t′) exp(k2t′)dt′, (10)

which further implies,

〈x̃(k1, t1)x̃(k2, t2)〉 = exp(−k1
2t1 − k2

2t2) ×
∫ t1

0

dt′
∫ t2

0

dt′′〈ỹ(k1, t
′)ỹ(k2, t

′′)〉 exp(k2
1t

′ + k2
2t

′′).

(11)

Substituting Eq. (9) in Eq. (11), we get

〈x̃(k1, t1)x̃(k2, t2)〉

= δ(k1 + k2)

∫ t1

0

dt′
∫ t2

0

dt′′ ×

exp(−k1
2(t1 + t2 − 2 min(t′, t′′))) − exp(−k1

2(t1 + t2))

2k1
2 .

(12)

By inverting the Fourier transform above, we obtain the
correlation function

C(t1, t2) = 〈x(s, t1)x(s, t2)〉

=

∫ t1

0

dt′
∫ t2

0

dt′′
∫ +∞

−∞

dk1

∫ +∞

−∞

dk2

exp(i(k1 + k2)s) 〈x̃(k1, t
′

)x̃(k2, t
′′

)〉

=

∫ t1

0

dt
′

∫ t2

0

dt
′′

∫ +∞

−∞

dk1

[

1 − exp(−k1
2(t1 + t2))

2k1
2 − 1 − exp(−k1

2(t1 + t2 − t̃))

2k1
2

]

,

(13)

where t̃ = 2 min(t′, t′′). After some algebra, Eq. (13)
leads to,

C(t1, t2) =

B

[

t1t2
√

t1 + t2 −
1

5
{(t1 + t2)

5/2 + |t2 − t1|5/2}
]

,

(14)

where B is an unimportant constant.
Note that due to the translational invariance in the

bulk, the correlator of the process x(s, t) does not depend
on the location s of the bead along the chain. Thus, for
simplicity of notations, we can now drop the label s and
consider x(t) as the relevant Gaussian process with the
correlator C(t1, t2) = 〈x(t1)x(t2)〉 as given in Eq. (14).
Clearly the process x(t) is non-stationary since its two-
time correlator in Eq. (14) depends on both t1 and t2
and not just on their difference. One can however define
a logarithmic time T = ln t and consider the normalized
process X(T ) = x(t)/

√

〈x(t)2〉 in T [31]. The survival or
no zero crossing probability is clearly the same for both
the normalized process X(T ) and the original unnormal-
ized processs x(t). It then follows from Eq. (14) that
the autocorrelation function of this normalized Gaussian
process X(T ) is stationary in the T variable and is given
by

A(T ) =
C(t1, t2)

√

C(t1, t1)C(t2, t2)
,

=
5√
2

exp(
5

4
T ) [exp(−T )

√

1 + exp(−T )

−1

5
(1 + exp(−T ))

5/2
+

1

5
(1 − exp(−T ))

5/2
].

(15)

This form of the stationary autocorrelator will be used in
the next section to compute the persistence probability.

IV. CALCULATION OF THE PERSISTENCE

EXPONENT θ

We have thus mapped our problem to a Gaussian sta-
tionary process in T = ln t variable with a prescribed
correlator A(T ) and we want to calculate the probability
P0(T ) that the process does not cross zero up to time T .
For a general correlator A(T ), the computation of P0(T )
is very hard [9, 11, 32]. However, some general results
are known for the late time behavior of P0(T ). For ex-
ample, it is known [9, 11, 32] that when A(T ) decays
faster than 1/T for large T , the persistence probability
P0(T ) decays exponentially, P0(T ) ∼ exp(−θT ). Since,
in our case, A(T ) is Eq. (15) decays faster than 1/T for
large T , we expect P0(T ) ∼ exp(−θT ). In terms of the
original time variable, t = eT , this would signify a power
law decay of the persistence P0(t) ∼ t−θ for large t. Thus
the inverse decay rate θ in the T variable is precisely the
exponent of the algebraic decay in the real time t.

While we were not able to compute the exponent θ
exactly, one can obtain a very accurate analytical es-
timate of θ using the IIA method that was first used
in the context of persistence in diffusion equation [12].
This method works reasonably well only for smooth Gaus-
sian stationary processes. A process is smooth if A(T ) =
1 − aT 2 + . . . for small T . In that case, the process has
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a finite mean density ρ =
√

−A′′(0)/π [33] of zero cross-
ings. For our process, the correlator in Eq. (15) can be
expanded for small T

A(T → 0) = 1 − 15

16
T 2 +

1√
2
T 5/2, (16)

indicating a = 15/16 and thus proving that the process
is smooth.

In the IIA, applicable only to smooth processes, one as-
sumes that the intervals between successive zero crossings
of a Gaussian stationary process are statistically indepen-
dent. Within this approximation, one can then express
the distribution P (T ) of the intervals between successive
zero crossings in terms of the correlation function A(T )
in the Laplace space [12]

P̃ (s) =
1 − (〈T 〉/2)s[1 − sÃ(s)]

1 + (〈T 〉/2)s[1 − sÃ(s)]
. (17)

Here P̃ (s) and Ã(s) are the Laplace transforms of P (T )

and A(T ) respectively and 〈T 〉 = 1/ρ = π/
√

−A′′(0) is
the mean interval size.

Using the exact expression of A(T ) from Eq. (15),
we can find P (T ) from the above formula. The persis-
tence probability P0(T ) is simply related to the inter-
val distribution [12], d2P0(T )/dT 2 = P (T )/〈T 〉. Since
we expect P0(T ) to decay exponentially at late times T ,
i.e. P0(T ) ∼ exp(−θT ), it follow that the interval dis-
tribution P (T ) will also have the same late time decay,
P (T ) ∼ exp(−θT ) with identical exponent θ. This means

that the Laplace transform P̃ (s) must have a simple pole
at s = −θ. In other words the denominator in Eq. (17)
must have a root at s = −θ. Substituting s = −θ, the
denominator reads

G(θ) = 1 − (θ/2)(
π√
2a

)
[

1 + θ Ã(−θ)
]

, (18)

where we have put 〈T 〉 = π/
√

2a with a = 15/16 and θ
is given by the smallest positive root of G(θ) = 0.

To determine the root of G(θ) = 0 accurately, it is
convenient to switch variables and define x = exp(−T ),
such that

A(x) =
x3/4

√

2(1 + x)

[

2 +
2x − 1

1 +
√

1 − x2
− x +

√

1 − x2

]

,

(19)
and then Eq. (18) becomes,

G(θ) =
1√
2

∫ 1

0

dx
x−(θ+1/4)

1 + x
×

[

2 − x +
√

1 − x2 +
2x − 1

1 +
√

1 − x2

]

= 0.

(20)

Solving Eq. (20) numerically gives

θIIA = 0.359.... (21)

Thus the persistence probability P0(t) ∼ t−θ decays al-
gebraically for large time t with a nontrivial exponent,
whose analytical value within the IIA is θIIA = 0.359...

10-2

10-1
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0(
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0.7 t(-0.36)
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N=2000

N=10000

FIG. 1: Persistence probability P0(t) versus t, simulated for
the polymer chain length N = 1000, 2000 and 10000. The
fitted power law t−0.360 is shown by plotting a thick line above
the data.

V. SIMULATION OF DISCRETISED

LANGEVIN EQUATIONS

In this section we describe simulation of the Rouse
chain evolving via Eqs. (1) and (2) and further discre-
tised in time t as

yn(tm+1) = yn(tm) + ∆t[yn+1(tm) + yn−1(tm)

− 2 yn(tm)] +
√

∆t ζ1(n, tm), (22)

xn(tm+1) = xn(tm) + ∆t[xn+1(tm) + xn−1(tm)

− 2 xn(tm)] + ∆t yn(tm), (23)

where tm = m∆t. For the boundary points n = 1 and
n = N , we use free boundary conditions, i.e., we hold
x0 = x1, y0 = y1, xN = xN+1 and yN = yN+1 for all
times tm. We choose ∆t = 0.1 in our simulations [27],
and used chain lengths of size N = 1000 − 10000. The
variable ζ1(n, tm) is an independent Gaussian variable
for all n and tm and distributed with zero mean and unit
variance.

The persistence probability for xn upto time tm was
obtained by keeping track of the fraction of xn’s that have
sgn[xn(tm)] same as sgn[xn(1)] for all times starting from
1 to tm. The data are shown in fig. 1. Typically each
data curve in fig. 1 was obtained by averaging over 500
thermal histories. We find that P0(t) decays as a power
law ∼ t−θ with θ ≃ 0.360 ± 0.001. The latter value is in
good agreement with the IIA estimate in Eq. (21).

VI. SIMULATION OF THE GAUSSIAN

PROCESS

Since a Gaussian stationary process X(T ) is com-
pletely specified by its stationary correlator A(T ),
one can simulate the process by constructing a time-
series with the same correlator. In the frequency do-



5
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P
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)

T

0.7T-0.355

 

FIG. 2: The graph (dashed line) shows P (T ) vs. T from the
simulation of the Gaussian process X(T ). The upper short
thick line goes as 0.7 exp(−0.355T ).

main (Fourier space) the corresponding correlator is

〈X̃(ω1)X̃(ω2)〉 = 2πÃ(ω1)δ(ω1 + ω2), where Ã(ω) =
∫

dteiωT A(T ) is the Fourier transform of A(T ). The lat-
ter formula allows us to easily generate stochastic pro-
cesses

X̃(ω) = η̃(ω)

√

ÃS0(ω), (24)

where η̃(ω) is a Gaussian white noise with 〈η̃(ω1)η̃(ω2)〉 =
2πδ(ω1 + ω2)).

We performed simulations following the above route by
first constructing random functions X̃(ω) as per Eq. (24)
for discrete ω’s. Then we did a discrete inverse Fourier
transform to obtain the times series X(T ) [27]. After
generating 106 such random time-series of X(T ), we used
them to calculate the probability density function P (T )
of intervals between two consecutive zero-crossings. In
the calculation, the time-step size used was δT = 1, and

Tmax = 50 as we found that A(T ) almost vanishes for
T > 50. As stated earlier, in terms of the variable T ,
both P (T ) and P0(T ) decay as ∼ exp(−θT ). Hence,
from the decay of P (T ) ∼ exp(−θT ), we estimated θ. In
Fig. 2, we have shown P (T ) versus T , and we find the
decay constant θ ≈ 0.355. The latter value is slightly
smaller than the θ obtained from IIA and the Langevin
simulation, because the step-size δT = 1 was a bit large
and we missed some intervals smaller than that.

VII. CONCLUSION

In summary, we have studied the persistence probabil-
ity of the x coordinate of a bead in the bulk of a Rouse
polymer chain advected by a shear flow field. We have
shown that the persistence probability decays as a power
law in time at late times and the associated persistence
exponent θ ≈ 0.36 is nontrivial. We have computed this
exponent analytically within an independent interval ap-
proximation and also determined it numerically by two
different methods. The analytical result is in excellent
agreement with the numerical simulations.

There are several directions in which our work can be
extended. Here we have considered the Rouse chain em-
bedded in two spatial dimensions. It should be relatively
straightforward to extend our method to calculate the
persistence properties of the Rouse chain in higher di-
mensions in presence of a transverse shear flow. It would
also be of interest to study the persistence properties of
the polymer chain in a more realistic setting going beyond
the simple Rouse model, e.g, in presence of excluded vol-
ume interactions.
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