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We consider a discrete time random walk in one dimension. At each time step the walker jumps
by a random distance, independent from step to step, drawn from an arbitrary symmetric density
function. We show that the expected positive maximum E[Mn] of the walk up to n steps behaves

asymptotically for large n as, E[Mn]/σ =
√

2n/π + γ +O(n−1/2), where σ2 is the variance of the
step lengths. While the leading

√
n behavior is universal and easy to derive, the leading correction

term turns out to be a nontrivial constant γ. For the special case of uniform distribution over [−1, 1],
Coffmann et. al. recently computed γ = −0.516068 . . . by exactly enumerating a lengthy double
series. Here we present a closed exact formula for γ valid for arbitrary symmetric distributions. We
also demonstrate how γ appears in the thermodynamic limit as the leading behavior of the difference
variable E[Mn] − E[|xn|] where xn is the position of the walker after n steps. An application of
these results to the equilibrium thermodynamics of a Rouse polymer chain is pointed out. We also
generalize our results to Lévy walks.

PACS numbers: 02.50.-r, 89.75.Hc, 89.20.Ff

I. INTRODUCTION

Brownian motion is perhaps one of the most widely studied subjects in classical physics. A Brownian walker moves
in continuous space and time which leads to a great simplification: one can write down a simple differential equation,
the famous diffusion equation, that governs the time development of the probability density of the position of the
walker. Subsequently, many other involved properties of the Brownian motion, such as its first-passage probability
through a given point, the distribution of the maximum displacement of the walker up to a given time etc. can be
calculated analytically relatively easily [1]. In contrast, the related problem of a random walker that hops only at
discrete time steps in a continuous space is not so straightforward, even in one dimension [2,3]. A classic example of
such a walk can be found in bacterial chemotaxis, where a bacteria, in search of food, jumps from one position to
another at discrete time steps [4]. Another famous example of such a walk occurs in the Rouse model of a polymer
chain that consists of monomers or beads connected by harmonic springs [5]. Many other examples can be found in
Refs. [6–8]. While the asymptotic properties of this discrete hopper, after a sufficiently large number of steps and
given that the variance in step sizes is finite, are correctly described by the continuous time diffusion equation [8],
there are many interesting finite size effects that can not be captured by the diffusion equation. The difficulty that
arises in dealing with a finite number of steps is due to the fact that the probability density of the random hopper
usually satisfies an integral equation which is technically much harder to solve than a differential equation. In this
paper, we study analytically one such finite size effect, namely the behavior of the expected maximum position of a
discrete time hopper in one dimension. We will show that even this relatively simple problem has rather interesting
finite size behavior.

We consider a discrete time random walker moving on a continuous line. The position xn of the walker after n
steps evolves for n ≥ 1 via,

xn = xn−1 + ξn (1)

starting at x0 = 0, where the step lengths ξn’s are independent and identically distributed (i.i.d) random variables
with zero mean and each drawn from the same probability distribution, Prob(ξn ≤ x) =

∫ x

−∞ f(y) dy, f(x) being the
normalized symmetric probability density. Let Mn denote the positive maximum of the random walk up to n steps,

Mn = max(0, x1, x2, . . . , xn). (2)

We are interested in the asymptotic large n behavior of the expected maximum E(Mn).
This question recently arose in the context of a packing problem in two dimensions where n rectangles of variable

sizes are packed in a semi-infinite strip of width one [9,10]. It was shown in Ref. [10] that for the special case of the
uniform jump distribution, f(x) = 1/2 for −1 ≤ x ≤ 1 and f(x) = 0 outside, for large n,
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E[Mn] =

√

2n

3π
− 0.297952 . . . + O(n−1/2). (3)

The leading
√

n behavior is easy to understand and can be derived from the corresponding behavior of a continuous
time Brownian motion after a suitable rescaling [10]. However, the leading finite size correction term turns out to
be a nontrivial constant c = −0.297952 . . . that was computed in Ref. [10] by enumerating a somewhat awkward
double series obtained after a lengthy calculation. This constant c characterizing the leading finite size behavior is
nonuniversal and is expected to depend on the details of the probability density f(x) of the noise. A natural question
is: can one calculate this constant for arbitrary density function f(x)? In this paper we provide an exact formula for
this constant c valid for arbitrary symmetric f(x).

Our results are twofold. First we consider the class of density function f(x) that has a finite second moment,
σ2 =

∫∞
∞ x2f(x)dx. Then σ denotes the characteristic length of a single jump. Since, E[Mn] has the dimension of

length, it is preferable to consider the dimensionless variable E[Mn]/σ. We show that for large n

E(Mn)

σ
=

√

2n

π
+ γ + O

(

1√
n

)

. (4)

The leading
√

n behavior is universal (does not depend on the details of the density function f(x)) and easy to
compute by appropriately rescaling the continuous time Brownian result. Our main new result is to obtain an exact
expression for the nonuniversal constant γ. Our result is best expressed in terms of the characteristic function,

f̂(k) =

∫ ∞

−∞
f(x) eikx dx. (5)

For density functions with a finite second moment, i.e., when f̂(k) = 1 − σ2k2/2 + O(k4) as k → 0, we show that

γ =
1

π
√

2

∫ ∞

0

dk

k2
ln





1 − f̂
(√

2
σ k
)

k2



. (6)

We prove in appendix-A that γ < 0 for arbitrary f(x), a fact not apriori obvious. Let us quote a few examples where
the integral in Eq. (6) can be performed explicitly,

f(x) =
1

2
[δ(x + 1) + δ(x − 1)] ⇒ γ = −1/2 = −0.5 (7)

f(x) =
1

2
e−|x| ⇒ γ = −1/

√
2 = −0.70710 . . . (8)

f(x) =
a2

2
|x| e−a|x| ⇒ γ = −(2

√
3 − 1)/

√
6 = −1.00597 . . . (9)

f(x) =
1

σ
√

2π
e−x2/2σ2 ⇒ γ = ζ(1/2)/

√
2π = −0.58259 . . . . (10)

where ζ(z) is the Riemann zeta function (analytically continued for z < 1). For the uniform distribution over [−1, 1],

our exact formula in Eq. (6) reproduces very simply the result obtained in Ref. [10]. In this case, using f̂(k) = sin k
k

and σ = 1/
√

3 in Eq. (6) one gets

γ =
1

π
√

2

∫ ∞

0

dk

k2
ln





1 − sin(
√

6k)√
6k

k2



 = −0.516068 . . . (11)

where the integral was performed using Mathematica. Note that the constant c = −0.297952 . . . in Eq. (3) is simply
c = γσ with σ = 1/

√
3 for the uniform distribution and γ = −0.516068 . . . given in Eq. (11).

We have also generalized our results to the case of Lévy flights where the second moment diverges and one has
f̂(k) = 1 − |ak|µ + O(k2) as k → 0 with 1 < µ ≤ 2 [11]. Note that a has the dimension of length. The probability
density f(x) of the step lengths has an algebraic tail for large |x|, f(x) ∼ |x|−1−µ. In this case we show that for large
n, the dimensionless expected maximum behaves as

E(Mn)

a
=

µ

π
Γ

(

1 − 1

µ

)

n1/µ + γ + O(n1/µ−1). (12)
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The leading term is again shown to be universal. We show that the leading finite size correction term is again a
constant given by

γ =
1

π

∫ ∞

0

dk

k2
ln

[

1 − f̂
(

k
a

)

kµ

]

. (13)

For example, for the case f̂(k) = exp[−|ak|µ] with 1 < µ ≤ 2, we obtain

γ =
1

π

∫ ∞

0

dk

k2
ln

[

1 − e−kµ

kµ

]

=
ζ(1/µ)

(2π)1/µ sin(π/2µ)
. (14)

The evaluation of the integral is presented in appendix-B.
An interesting fact about the constant γ is that even though it characterises the leading finite size correction to the

expected maximum, it actually shows up even in the thermodynamic limit n → ∞ provided one looks at a behavior
of a suitably defined quantity as follows. Let |xn| denote the absolute value of the position of the walker after n steps.
The distribution of xn, for arbitrary density f(x), can be computed relatively easily (see section-IV) and hence one
can calculate E[|xn|]. We focus here on the case when the variance σ2 =

∫∞
−∞ x2f(x)dx as well as the fourth moment

µ4 =
∫∞
−∞ x4f(x)dx of the jump distribution are finite. In that case, one can show that for large n,

E[|xn|]
σ

=

√

2n

π
− 1

12
√

2π

(µ4

σ4
− 3
) 1√

n
+ O(n−3/2). (15)

Thus the leading term of E[|xn|]/σ for large n is exactly the same as that of the expected maximum E[Mn]/σ in Eq.
(4). However, unlike in the case of the maximum in Eq. (4), the leading finite size correction term in Eq. (15) is of
O(n−1/2) and not a constant. Using Eqs. (4) and (15) one then gets

E[Mn] − E[|xn|]
σ

= γ + O(n−1/2). (16)

Thus the difference between the expected positive maximum up to n steps and the absolute value of the expected
final position of the walker after n steps, in units of σ, tends to a negative constant γ in the thermodynamic limit
n → ∞, a fact that is not apriori obvious.

We end this section by mentioning a simple physical application of the results above. Let us consider the simplest
model of a polymer chain namely the Rouse model [5] where the monomers are connected by harmonic springs. A
configuration of the chain consisting of n monomers is specified by the position vectors {~ri} of the monomers with
i = 0, 1, 2 . . . , n. We assume that one end of the chain is grafted at the origin, ~r0 = 0 while the other end is free. We
assume that the chain is at thermal equilibrium so that the probability of any given chain configuration is given by
its Boltzmann weight,

P [{~ri}] =
1

Zn
exp

[

−βκ

2

n
∑

i=1

(~ri − ~ri−1)
2

]

, (17)

where Zn is the partition function, β = 1/kBT is the inverse temperature and the spring constant κ characterises the
harmonic coupling between neighbouring monomers. Let us now look at the components of the position vectors along
any particular direction, say {xi}, which can also be thought of as a one dimensional Rouse chain. The equilibrium
weight in Eq. (17) indicates that the difference in position between the i-th and (i−1)-th monomer can be represented
by a noise

xi = xi−1 + ξi, (18)

where ξi’s are independent and Gaussian distributed , f(ξ) = e−ξ2/2σ2

/σ
√

2π where σ2 = 1/βκ. Thus Mn in Eq. (2)
refers to the maximum displacement of the polymer chain along x direction and xn denotes the x coordinate of the
end point of the chain (see Fig. 1).
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Mn

xn
x

y

FIG. 1. A typical configuration of the Rouse chain in 2-dimensions. Mn denotes the positive maximum along the x direction
and xn denotes the x co-ordinate of the position of the end point.

Thus, using the result in Eq. (10) in Eq. (16) we find that in the limit of a very long chain (n → ∞) at thermal
equilibrium, the difference between the expected maximum displacement of the chain along a particular direction (say
the x direction) and the absolute end to end displacement along the same direction tends to a nontrivial constant

E[Mn] − E[|xn|]
σ

→ ζ(1/2)√
2π

= −0.58259 . . . . (19)

Note that in the context of the Rouse chain, the expectation E means a thermal equilibrium average over the Bolzmann
weight in Eq. (17). The facts that (a) the difference approaches a constant and (b) that too, a negative constant, are
not apriori obvious for the Rouse chain.

The rest of the paper is organized as follows. In Section II, we set up the basic integral equation for the distribution
of the maximum and provide an exact solution in Section II-A for the special case when the jump density is exponential.
Section III deals with the general jump distribution where we present the Pollaczek-Spitzer formula and extract the
finite size correction term exactly from an asymptotic expansion of this formula. These results are generalized to Lévy
processses in Section III-B. In Section-IV we calculate the expected value of the absolute position of the end point
and demonstrate how the constant γ shows up in the thermodynamic limit. We conclude with a summary and open
problems. Explicit derivations of some of the formulae and integrations are relegated to the two appendices.

II. AN INTEGRAL EQUATION FOR THE DISTRIBUTION OF THE MAXIMUM

In this section we set up an integral equation satisfied by the distribution of the maximum of a random walk for
arbitrary symmetric jump distribution. We consider a random walk starting at x0 = 0 at step n = 0 and evolving
via Eq. (1) where the noise ξn’s are i.i.d. variables drawn from the common symmetric distribution Prob(ξn ≤ x) =
∫ x

−∞ f(y) dy. We would like to compute the distribution of the maximum Mn = max(0, x1, x2, . . . , xn) up to n steps,
i.e., Prob[Mn ≤ y]. To derive this, we first define Qn(x, y) as the probability that, starting at x0 = x, the maximum
of the walk up to n steps is less than or equal to y. Evidently, Prob[Mn ≤ y] = Qn(0, y). Consider the first step
where the particle jumps by an amount x1 − x which occurs with a probability density f(x1 − x) (see Fig. 2).

10 2 3 n

x

y

x
1

FIG. 2. A random walker, starting at x at n = 0, makes a flight to x1 ≤ y at step n = 1.
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It follows, using the Markov property of the walk, that Qn(x, y) satisfies the following recursion relation,

Qn(x, y) =

∫ y

−∞
Qn−1(x1, y) f(x1 − x) dx1 (20)

with the initial condition Q0(x, y) = θ(y − x) where θ(z) is the Heaviside step function. Due to the translational
invariance, it is also clear that Qn(x, y) depends only on the difference z = y−x, i.e., Qn(x, y) = qn(z = y−x) where
z ≥ 0. Making the change of variable, z′ = y − x1 and using the translation invariance, the recursion in Eq. (20)
becomes simpler,

qn(z) =

∫ ∞

0

qn−1(z
′)f(z − z′) dz′, (21)

valid for all z ≥ 0 and starting with q0(z) = θ(z). Thus, if one finds the solution qn(z) of Eq. (21), then the distribution
of the maximum is just Prob[Mn ≤ y] = Qn(0, y) = qn(y). The density of the maximum is q′n(y) = dqn/dy. Hence,
the expected maximum is E[Mn] =

∫∞
0 q′n(y)y dy, the quantity we are after.

The generating function, q̃(z, s) =
∑∞

n=1 qn(z)sn then satisfies an integral equation

q̃(z, s) = s

∫ ∞

0

q̃(z′, s)f(z − z′)dz′ + s

∫ ∞

0

f(z − z′)dz′, (22)

valid for all z ≥ 0. This integral equation is an inhomogeneous Wiener-Hopf equation [12] and in general, for arbitrary
kernel f(z − z′), it is very hard to solve this integral equation. The main source of difficulty is the fact that the limits
of the integral on the right hand side of Eq. (22) are 0 and ∞, as opposed to say −∞ and ∞ [12,2]. However, when
the kernel f(z − z′) is a normalized probability density function we may use the Pollaczek-Spitzer formula [22,21], to
which we will come back to in section III. But, before that, it is instructive to solve Eq. (22) explicitly for special
cases, whenever possible. In Section II-A, we solve Eq. (22) explicitly for the exponential density function.

A. Exponential density function: An exactly solvable case

For the exponential density functon, f(z) = 1
2e−|z|, one can obtain an exact solution of Eq. (22). We first assume

that the integral Eq. (22) is valid for all −∞ ≤ z ≤ ∞, though we are interested only in the solution for z ≥ 0. Next,
we note the identity, f ′′(z) = f(z) − δ(z), where f ′′(z) = d2f/dz2. Differenting twice Eq. (22) and using the above
identity one readily converts the integral equation into the following differential equation,

d2q̃

dz2
= [1 − sθ(z)]q̃ − sθ(z). (23)

For z ≥ 0, the general solution is readily obtained,

q̃(z, s) =
s

1 − s
+ A(s)e−

√
1−s z + B(s)e

√
1−s z, (24)

where A(s) and B(s) are two arbitrary constants (independent of z). Now, in the limit z → ∞, qn(z) → 1 for all n,
since the probability that the particle, starting at z → ∞, will not cross 0 up to any finite step n is 1. Thus, one
expects that as z → ∞, q̃(z, s) → s/(1− s). Using this boundary condition in Eq. (24), one gets B(s) = 0. The other
constant A(s) will be fixed by the matching conditions at z = 0.

Now, for z ≤ 0, the solution of Eq. (23) is given by

q̃(z, s) = C(s) ez, (25)

where we have used the boundary condition, q̃(z → −∞, s) → 0. Now, we are ready to match the solution in Eq.
(24) for z ≥ 0 with that in Eq. (25) for z ≤ 0. The continuity of the solution at z = 0 and also the continuity of the
first derivative at z = 0 fixes the two constants A(s) and C(s) uniquely. We get,

A(s) = −1 −
√

1 − s

1 − s
; C(s) =

1 −
√

1 − s√
1 − s

. (26)

Thus, for z > 0, the exact solution of Eq. (22) is given by
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q̃(z, s) =
s

1 − s
− 1 −

√
1 − s

1 − s
e−

√
1−s z. (27)

The probability density for the maximum then has the generating function,

∞
∑

n=1

q′n(z)sn =
1 −

√
1 − s√

1 − s
e−

√
1−s z . (28)

Subsequently, the generating function for the expected maximum is given by

∞
∑

n=1

E[Mn]sn =

∞
∑

n=1

sn

∫ ∞

0

q′n(z)zdz =
1

(1 − s)3/2
− 1

1 − s
. (29)

Expanding the right hand side of Eq. (29) in powers of n, we get

E[Mn] = −1 +
2√
π

Γ(n + 3/2)

Γ(n + 1)
, (30)

where Γ(x) is the Gamma function. Note that the result in Eq. (30) is valid for all n ≥ 0. The variance of the step
lengths for the exponential density is given by, σ2 =

∫∞
−∞ z2e−|z|dz/2 = 2. Hence, the dimensionless number E[Mn]/σ

is given by

E[Mn]

σ
= − 1√

2
+

√

2

π

Γ(n + 3/2)

Γ(n + 1)

=

√

2n

π
− 1√

2
+ O(n−1/2), (31)

where we have made the asymptotic expansion for large n in the second line. Thus, the result in Eq. (31) is of the
general asymptotic form as in Eq. (4) with the nontrivial constant

γ = − 1√
2
. (32)

III. THE GENERAL CASE: ASYMPTOTIC EXPANSION OF POLLACZEK-SPITZER FORMULA

In this section, we derive the exact asymptotic behavior in Eq. (4) for the expected maximum for an arbitrary,
symmetric jump density function f(z). As mentioned in the previous section, the solution of the integral equation
Eq. (22) is hard to obtain analytically for an arbitrary kernel f(z − z′). However, when f(z) is a probability density
function, Pollaczek derived a general formula giving the Laplace transform of the probability density of ordered partial
sums of random independent variables [22]. In the special case of the distribution of the maximum, this formula was
rederived by Spitzer [21] by a combinatorial approach. In principle, this solves the problem. However, extracting
the precise asymptotic behavior of the first moment of the maximum is still nontrivial and this is what is precisely
achieved in this section. Consider the following Laplace transform,

E
[

e−ρMn

]

=

∫ ∞

0

e−ρzq′n(z)dz, (33)

where q′n(z) = dqn/dz is the probability density of the maximum and qn(z) satisfies the recursion relation in Eq. (21).
The Pollaczek-Spitzer formula for the generating function of the above Laplace transform [13] reads

∞
∑

n=0

snE
[

e−ρMn

]

=
1√

1 − s
φ(s, ρ); where φ(s, ρ) = exp



− ρ

π

∫ ∞

0

ln
(

1 − sf̂(k)
)

ρ2 + k2
dk



 , (34)

where 0 ≤ s ≤ 1 and f(z) is an arbitrary symmetric normalized density function. In Eq. (34), f̂(k) =
∫∞
−∞ f(z)eikz dz

is the Fourier transform of f(z).
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The generating function for the expected maximum can then be obtained by differentiation,

h(s) =

∞
∑

n=0

snE[Mn] = − 1√
1 − s

∂φ(s, ρ)

∂ρ

∣

∣

ρ=0
. (35)

To determine the asymptotic behavior of E[Mn] for large n, we need to know the behavior of h(s) near its principal
singularity s = 1. It then follows from Eq. (35) that we need to know the precise behavior of the function φ(s, ρ) near
s = 1 and ρ = 0. Below we analyse these asymptotic behaviors separately for two cases : (i) For density functions

with a finite second moment, so that f̂(k) → 1 − σ2k2/2 + O(k4) as k → 0 where σ2 is the variance of the jump

lengths and (ii) for Lévy flights where the jump lengths are power law distributed so that f̂(k) → 1 − |ak|µ + O(k2)
as k → 0 where a is a microscopic length and 1 < µ ≤ 2.

A. Jump lengths with a finite variance

In this case, f̂(k) = 1 − σ2k2/2 + O(k4) as k → 0. To analyse φ(s, k) near s = 1 and ρ = 0, it is first necessary to
extract the most singular part of φ(s, k) near s = 1 and ρ = 0. To do this, we first rewrite

ln
(

1 − sf̂(k)
)

= ln

(

1 − s

(

1 − 1

2
σ2k2

))

+ ln

(

1 − sf̂(k)

1 − s
(

1 − 1
2σ2k2

)

)

. (36)

We next substitute Eq. (36) in the expression for φ(s, ρ) in Eq. (34) and subsequently perform the first integral using
the following identity [14]

∫ ∞

0

ln
(

1 − s + sσ2k2/2
)

ρ2 + k2
dk =

π

ρ
ln
(√

1 − s + σρ
√

s/2
)

. (37)

This gives

φ(s, ρ) =
1

[√
1 − s + σρ

√

s/2
] exp

[

− ρ

π

∫ ∞

0

dk

ρ2 + k2
ln

(

1 − sf̂(k)

1 − s + sσ2k2/2

)]

. (38)

The extraction of the most singular part near s = 1 and ρ = 0 gives

φ(s, ρ) ≈ 1
[√

1 − s + σρ/
√

2
] exp

[

− ρ

π

∫ ∞

0

dk

k2
ln

(

1 − f̂(k)

σ2k2/2

)]

, (39)

where ≈ in Eq. (39) means, in the strict mathematical sense, the following identity,

lim
s→1,ρ→0

1

ρ
ln
[(√

1 − s + σρ
√

s/2
)

φ(s, ρ)
]

= − 1

π

∫ ∞

0

dk

k2
ln

(

1 − f̂(k)

σ2k2/2

)

. (40)

Taking the derivative with respect to ρ and putting ρ = 0 one gets from Eqs. (39) and (35), near s = 1

h(s) =
σ√
2

1

(1 − s)3/2
+

1

π(1 − s)

∫ ∞

0

dk

k2
ln

[

2

σ2

(

1 − f̂(k)

k2

)]

+ O

(

1√
1 − s

)

. (41)

Noting that the singular behavior h(s) ∼ (1 − s)−β (β > 0) of the generating function near s = 1 translates into
the estimate E[Mn] ≈ nβ−1/Γ(β) for large n, we get from Eq. (41) the following exact asymptotic behaviors of the
expected maximum,

E[Mn] = σ

√

2n

π
+

1

π

∫ ∞

0

dk

k2
ln

[

2

σ2

(

1 − f̂(k)

k2

)]

+ O(n−1/2). (42)

Dividing by σ yields our main result announced in Eq. (4) with an exact expression for γ given in Eq. (6). As a

check, we find that for the exponential density, f(z) = e−|z|/2, i.e., with f̂(k) = 1/(1 + k2), the formula in Eq. (6)

7



yields γ = −1/
√

2, in agreement with the direct solution in Eq. (32). A few other cases where the integral in Eq. (6)
can be performed explicitly are listed in Eqs. (7)-(10). For the case of uniform density, i.e., f(z) = 1/2 for −1 ≤ z ≤ 1
(and 0 otherwise), we thus obtain an exact closed form expression for γ whose numerical value is in agreement with
the result obtained by Coffmann et. al. by a different method [10]. Our result is evidently more general and holds for
arbitrary symmetric jump density function. In appendix-A, we will prove that γ given by Eq. (6) is always negative
for arbitrary f(z).

B. Lévy distributed jump lengths

We now consider the case when the second moment of the jump distribution diverges. In particular, we consider
Lévy jumps such that the Fourier transform of the density function behaves as f̂(k) = 1 − |ak|µ + O(k2) for small k
with 1 < µ ≤ 2. This indicates that in real space the steps lengths have an algebraic tail, f(x) ∼ |x|−1−µ for large |x|.
Note that the Spitzer’s formula in Eq. (34) is still valid for such processes. However, as we will see, the asymptotic
behavior of E[Mn] is quite different from the case where σ2 is finite.

We proceed as in the previous subsection by extracting the most singular behavior of φ(s, ρ) near s = 1 and ρ = 0.
We first rewrite, for k ≥ 0,

ln
(

1 − sf̂(k)
)

= ln (1 − s (1 − (ak)µ)) + ln

(

1 − sf̂(k)

1 − s (1 − (ak)µ)

)

. (43)

We next substitute Eq. (43) in the expression for φ(s, ρ) in Eq. (34). This gives

φ(s, ρ) = exp [−I1(s, ρ) − I2(s, ρ)] , (44)

where

I1(s, ρ) =
ρ

π

∫ ∞

0

dk

ρ2 + k2
ln (1 − s + s(ak)µ)

=
1

2
ln(1 − s) +

1

π

∫ ∞

0

du

1 + u2
ln

[

1 +
s

1 − s
(aρu)µ

]

, (45)

and

I2(s, ρ) =
ρ

π

∫ ∞

0

dk

ρ2 + k2
ln

[

1 − sf̂(k)

1 − s + s(ak)µ

]

. (46)

Taking the derivative with respect to ρ and keeping only the leading singular terms near s = 1 and ρ = 0, we get

∂φ(s, ρ)

∂ρ

∣

∣

ρ→0
≈ − 1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(

1 − sf̂(k)

(ak)µ

)

− µaµρµ−1

π
√

1 − s

∫ ∞

0

uµ du

(1 + u2)(1 − s + (aρu)µ)
. (47)

The second integral on the right hand side can further be simplified by first making a change of variable ρu = y and
subsequently taking the limit ρ → 0. The resulting integral can be performed in closed form. Putting everything
together, we find the leading singular behavior of h(s) near s = 1 and ρ = 0,

h(s) =

∞
∑

n=0

snE[Mn] =
aB(1/µ, 1 − 1/µ)

π(1 − s)1+1/µ
+

1

π(1 − s)

∫ ∞

0

dk

k2
ln

(

1 − sf̂(k)

(ak)µ

)

+ O

(

1

(1 − s)1/µ

)

. (48)

where B(x, y) is the standard Beta function. Subsequently, one obtains the following large n behavior of E[Mn],

E[Mn] =
aµΓ

(

1 − 1
µ

)

π
n1/µ +

1

π

∫ ∞

0

dk

k2
ln

(

1 − f̂(k)

(ak)µ

)

+ O(n1/µ−1). (49)

Note that for µ = 2 and a = σ/
√

2, Eq. (49) reduces to Eq. (42), as it should. The dimensionless expected maximum
is obtained by dividing Eq. (49) by the microscopic length a and one arrives at the result in Eq. (12) with the
constant γ given by the exact formula in Eq. (13).
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IV. APPEARANCE OF THE CONSTANT γ IN THE THERMODYNAMIC LIMIT

In the previous section, we have demonstrated how the constant γ appears as the leading correction term to the
asymptotic

√
n behavior of the expected maximum E[Mn] for large n. In this section we show how γ appears as the

leading term in the large n limit if one considers the difference (E[Mn] − E[|xn|]) /σ, where E[|xn|] is the expected
absolute end to end distance of the walker after n steps.

The calculation of E[|xn|] is relatively straightforward compared to that of E[Mn]. We start with the random walk
in Eq. (1) where the jump density f(ξ) is symmetric and has a finite second and fourth moment, σ2 =

∫∞
−∞ x2 f(x)dx

and µ4 =
∫∞
−∞ x4 f(x)dx. Let Pn(x) be the probability density for the particle to be between x and x + dx after n

steps, starting from x = 0 at n = 0. Using the Markov property of the walk, it is easy to see that Pn(x) satisfies the
recursion relation

Pn(x) =

∫ ∞

−∞
Pn(y)f(x − y)dy, (50)

starting from the initial condition, P0(x) = δ(x). Note that unlike the recursion relation in Eq. (21), the limits of
the integral in Eq. (50) are respectively −∞ and +∞ and hence Eq. (50) can be easily solved by taking the Fourier

transform, P̃n(k) =
∫∞
−∞ Pn(x)ei k x. One gets P̃n(k) =

[

f̂(k)
]n

. Hence the solution, valid for all n ≥ 0, is obtained

from the inverse Fourier transform,

Pn(x) =
1

2π

∫ ∞

−∞

[

f̂(k)
]n

e−i k x dk. (51)

The large n behavior of Pn(x) can then be obtained by a straightforward scaling analysis of the integral in Eq. (51).
In the large n limit, the most important contributions to the integral will come from the neighbourhood of k = 0
where one can expand f̂(k) = 1 − σ2k2/2 + µ4k

4/24 + O(k6). This gives, near k = 0,

ln
[

f̂(k)
]

= −σ2

2
k2 +

µ4 − 3σ4

24
k4 + O(k6) (52)

Substituting in Eq. (51) and rescaling k
√

n = q and y = x/
√

n one gets

Pn(x) =
1√
n

∫ ∞

−∞

dq

2π
exp

[

−σ2q2

2
+

(µ4 − 3σ4)q4

24n
+ O(q6/n2)

]

e−i q y

=
1√
n

∫ ∞

−∞

dq

2π
e−σ2q2/2−i q y

[

1 +
(µ4 − 3σ4)q4

24n
+ O(q6/n2)

]

, (53)

where we have expanded the exponential for large n holding y = x/
√

n fixed. Using this probability density in Eq.
(53), it is then easy to calculate the expectation E[|xn|] and one gets as n → ∞,

E[|xn|] = σ

√

2n

π
− 1

12
√

2π

[

µ4 − 3σ4

σ3

]

1√
n

+ O(n−3/2), (54)

in agreement with the result obtained by Petrov [23] using a somewhat different method.
Comparing Eq. (54) with Eq. (42), one sees that the leading

√
n term in both E[|xn|] and E[Mn] have the same

coefficient. However, while the next subleading term in E[Mn] is a constant, the one in E[|xn|] decays as n−1/2 for
large n. Taking the difference of Eq. (42) and Eq. (54) and dividing by σ, we obtain Eq. (16). Thus, as n → ∞, the
difference between the two quantities (scaled by σ) approaches a dimensionless constant γ given by Eq. (6). Hence it
is possible to observe the constant γ even in the thermodynamic limit provided one looks at the difference between
two observables.

V. CONCLUSION

In this paper, we have studied analytically the finite size corrections to the asymptotic large n behavior of the
expected maximum E[Mn] of a one dimensional random walk of n steps with arbitrary, symmetric jump distribution.
While the leading

√
n behavior is universal and easy to understand by extrapolating the result of continuous time
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Brownian motion, the leading finite size correction term turns out to be a nonuniversal constant γ which is nontrivial.
In this paper, we have presented an exact formula for this constant, valid for arbitrary symmetric jump distribution.
We have also generalized our results to the case of Lévy processes.

We have also demonstrated how this constant appears even in the n → ∞ limit as the leading behavior of the
difference E[Mn]− E[|xn|], where xn is the position of the walker after n steps. As a nice application, we considered
a Rouse polymer chain consisting of n monomers at thermal equilibrium and showed that the difference between the
expected positive excursion along any direction (say the x direction) and the expected absolute value of the end to
end distance of the chain approaches a negative constant in the thermodynamic limit

E[Mn] − E|xn|
σ

→ ζ(1/2)√
2π

= −0.58259 . . . . (55)

where E denotes the thermal average and σ = 1/
√

βκ (β being the inverse temperature and κ being the spring
constant of the chain). The result in Eq. (55) is nontrivial and somewhat counterintuitive.

There are several possible extensions of this work. In this paper, we have only considered the finite size behavior of
the expected maximum. It would be nice to extend this finite size study to higher moments of the maximum, or even
to the full distribution of the maximum. The distribution of the maximum of a set of correlated random variables is a
subject of current interest and several papers have recently studied the distribution of the maximum or related objects
for the continuous time Brownian motion, in the context of fluctuating interfaces [17–19] and also in the context of
convex polygons and queueing theory [20]. For discrete step random walks, the continuous time results (suitably
rescaled) will provide the leading asymptotic behavior of the distribution for large n. It would be interesting to see
if the method presented in this paper can be used to investigate the finite size effect in the maximum distribution in
these systems.

It would also be interesting to extend our results to higher dimensions. For example, is there a leading constant
correction term to E[Mn] for large n, where Mn is the maximal radial distance from the origin of a random walker
of n steps in d-dimensions? If so, it would be interesting to calculate this constant. For this, one needs to develop a
higher dimensional analogue of the Pollaczek-Spitzer formula which would be interesting in its own right.

APPENDIX A: PROOF THAT γ < 0

In this appendix we show that the constant γ that appears in Eq. (6) or Eq. (13) is negative for arbitrary symmetric
jump density function f(x). For convenience, we first rewrite γ = C/σ where

C =
1

π

∫ ∞

0

dk

k2
ln

[

1 − f̂(k)

σ2k2/2

]

, (A1)

where f̂(k) =
∫∞
−∞ f(x)eikxdx. We assume that f(x) is symmetric with a finite second moment σ2. Clearly, the

argument inside the logarithm in Eq. (A1) is positive. To prove that C < 0, it is sufficient to prove that the argument

[1 − f̂(k)]/σ2k2/2 inside the logarithm is less than 1. For symmetric f(x) one can write f̂(k) = 2
∫∞
0 f(x) cos(kx)dx.

The next step is to write the identity

(

1 − f̂(k)
)

σ2k2/2
= 1 − 4

k2σ2

∫ ∞

0

f(x)

[

cos(kx) − 1 +
k2x2

2

]

dx, (A2)

which can be proved by carrying out the integration on the right hand side explicitly and using the definition σ2 =
2
∫∞
0

x2f(x)dx. To prove that the left hand side of Eq. (A2) is less than 1 we need just to prove that the second term
on the right hand side is positive. Using the elementary inequality, cos(kx) − 1 + k2x2/2 ≥ 0 for all x and the fact
that f(x) ≥ 0, it follows immediately that indeed the second term is positive. Thus one has

(

1 − f̂(k)
)

σ2k2/2
< 1, (A3)

which then proves that C < 0 and hence γ < 0. A similar proof can be easily constructed to show that for Lévy
processes as well γ as given in Eq. (13) satisfies the inequality γ < 0.
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APPENDIX B: PROOF OF AN IDENTITY

In this appendix we prove the following identity valid for all 1 < µ ≤ 2,

I =
1

π

∫ ∞

0

dk

k2
ln

[

1 − e−kµ

kµ

]

=
ζ(1/µ)

(2π)1/µ sin(π/2µ)
, (B1)

where ζ(z) =
∑∞

m=1 m−z is the Riemann zeta function which is usually convergent for z > 1. However, it is possible
to analytically continue ζ(z) for z < 1 [15] and one defines

ζ(z) = lim
n→∞

[

n
∑

m=1

m−z − n1−z

1 − z

]

. (B2)

We first make a change of variable kµ = x in the integral in Eq. (B1). This gives

I =
1

µπ

∫ ∞

0

dxx−1−1/µ ln

(

1 − e−x

x

)

. (B3)

Next we make one integration by parts and use the fact that µ > 1. This yields

I =
1

π

∫ ∞

0

[

1

ex − 1
− 1

x

]

x−1/µdx. (B4)

Note that each integral on the right hand side of Eq. (B4) is separately divergent near x = 0, though their difference
is convergent. To make progress, we introduce a small cut-off ǫ and define

I(ǫ) =
1

π

∫ ∞

0

[

1

ex − 1 + ǫ
− 1

x + ǫ

]

x−1/µdx = I1(ǫ) − I2(ǫ). (B5)

Eventually we are intersted in I = I(0). The reason behind introducing this additional cut-off is so that the two
integrals will be separately convergent for finite ǫ and then after performing the two separate integrals, we will
eventually take the ǫ → 0 limit.

The first integral can be written as

I1(ǫ) =
1

π

∫ ∞

0

x−1/µdx

ex − 1 + ǫ
=

1

π
Γ

(

1 − 1

µ

)

Φ

(

1 − ǫ, 1 − 1

µ
, 1

)

, (B6)

where Φ(z, s, v) =
∑∞

n=0(v + n)−szn is the Lerch function [14]. The second integral is elementary and can also be
performed exactly to give

I2(ǫ) =
1

π

∫ ∞

0

x−1/µ dx

x + ǫ
=

ǫ−1/µ

π
B

(

1 − 1

µ
,
1

µ

)

, (B7)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the standard Beta function. Putting these together, we then have

I(ǫ) =
1

π
Γ

(

1 − 1

µ

)[

Φ

(

1 − ǫ, 1 − 1

µ
, 1

)

− Γ

(

1

µ

)

ǫ−1/µ

]

. (B8)

Now, the tricky part is to take the ǫ → 0 limit in Eq. (B8). To do this, we will make use of the following asymptotic
behavior of Φ(z, s, v) as z → 1 [16]

Φ(z, s, v) = Γ(1 − s)[− ln z]s−1z−α + ζ(s, α) (B9)

where ζ(s, α) =
∑∞

n=0(n + α)−s. Putting z = 1 − ǫ in Eq. (B9) and expanding for ǫ, one then finds that as ǫ → 0,
the two leading order terms are given by

Φ

(

1 − ǫ, 1 − 1

µ
, 1

)

→ Γ

(

1

µ

)

ǫ−1/µ + ζ

(

1 − 1

µ
, 1

)

+ O(ǫ1−1/µ). (B10)

Substituting this behavior in Eq. (B8) we get
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I = I(ǫ → 0) =
1

π
Γ

(

1 − 1

µ

)

ζ

(

1 − 1

µ
, 1

)

=
1

π
Γ

(

1 − 1

µ

)

ζ

(

1 − 1

µ

)

, (B11)

where we have used the fact that ζ(z, 1) = ζ(z). One can further rewrite Eq. (B11) by using the identity [14],

ζ(z) = 2(2π)z−1 sin(πz/2)Γ(1 − z)ζ(1 − z). (B12)

Using this identity in Eq. (B11) one readily arrives at the final result in Eq. (B1).
In particular, note that the result in Eq. (B1) is valid even for µ = 2. In that case one gets, I(µ = 2) = ζ(1/2)/

√
π.

Note that when the jump lengths are Gaussian distributed as in Eq. (10), one has f̂(k) = exp[−k2σ2/2]. Hence, from
Eq. (6)

γ =
1

π
√

2

∫ ∞

0

dk

k2
ln

[

1 − e−k2

k2

]

=
I(µ = 2)√

2
=

ζ(1/2)√
2π

= −0.58259 . . . , (B13)

thus proving the result in Eq. (10). The numerical value of ζ(1/2) = −1.46035 can be obtained to arbitrary precision
using Mathematica and was used in Eq. (B13).

Note added in proof: We thank R.M. Ziff for pointing out that the constant c = γσ = −0.297952.. for the uniform
case also appeared in an apparently unrelated three dimensional trapping problem first studied in [Ziff R. M., flux to

a trap, 1991 J. Stat. Phys. 65 1217] where it was evaluated by numerically iterating a set of recurrence relations.
Our Eq. (11) provides an exact expression of this constant.
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