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Level Density of a Bose Gas and Extreme Value Statistics
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We establish a connection between the level density of a fjasre-interacting bosons and the theory of
extreme value statistics. Depending on the exponent trercterizes the growth of the underlying single—
particle spectrum, we show that at a given excitation engérgylimiting distribution function for the number
of excited particles follows the three universal distribotlaws of extreme value statistics, namely Gumbel,
Weibull and Fréchet. Implications of this result, as weallgeneral properties of the level density at different
energies, are discussed.
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The level density is an essential quantity in determiningnite number of bosond on the level density. In this regime,
the thermodynamic properties of closed quantum systems. lim a given configuration of excitation enerdy, only a frac-
interacting many—body (MB) systems its computation is intion of the particles contribute t&, the rest remain in the
general a difficult problem. The most common frameworkground—state. However, the ground—state occupancy and con
is a mean—field approximation, where a gas of independersequently the number of excited bosons fluctuate among dif-
(quasi-)particles moves in an average self—consistemnpot ferent configurations belonging to the same excitationgner
tial. In this case, the energy of the gas is expressed as th8. These fluctuations may be small or anomalously large de-
sum of the occupied single—particle (SP) energies. The conpending on the SP spectrum. To obtain a quantitative estimat
putation of the MB level density thus reduces to a combinaof these fluctuations, we compute explicitly the distribatof
torial problem: counting the number of ways into which thethe number of excited particles for a fixed (but large) We
energy can be distributed among the particles. The level derwill show that the fraction of configurations at excitatiom e
sity has been extensively studied in fermionic systemsyahe ergy E withV or less excited bosons, among all possible con-
detailed experimental data exists at different excitatioar-  figurations belonging to the levél, has a limiting distribution
gies and quantum numbers (see, for some recent progresqd@gen suitably scaled) for larg€ and largels. Depending on
in this field, Refsl[1|2]). In spite of the experimental tkea the indexv that controls the growth of the SP number of states
throughs of the 90’s and of the many interesting development(cf Eq. {3) below), we show that three limiting distribution
that followed, the case of bosonic systems is much less knowmmerge, namely Gumbel, Weibull and Fréchet distributions
Studies of the spectral properties have concentrated dowhe Interestingly, precisely the same three limiting disttibos
energy range of the spectrum of the condensate phase, whasearacterize the EVS of independent random variables [3], a
collective effects and interactions play a crucial role. field that has seen a recent resurgence of interests [4].

Our aim here is to compute, within an independent—particle Our work thus provides a link between these two a priori
approximation, the asymptotic properties of the MB level-de unrelated fields, namely the combinatorial problem assedia
sity pws (F/, N') of a Bose gas as a function of the excitation en-with a non—interacting Bose gas and the EVS. We believe that
ergy E and the particle numbe¥. We will first consider two  this link is of interest in different branches of physicsdlsu
extreme regimes that correspond to the degenerate quantuas in the computation of black hole entropy [5]), mathemat-
and the classical limits of the gas. The level density inehesics and computer science. For instance, it is well known that
two extreme cases behaves quite differently as a function dhe computation of the level density of a Bose gas in a one—
energy. In the former case, where one takes\he: oo limit dimensional (1D) harmonic potential (equidistant SP spec-
first keeping the energ¥ finite, the level densityy: (E, 00) trum) is directly related to the theory of partitions of an in
increases with energy in a stretched-exponential manmer fdeger [6,L7]. The theory of partitions has given rise to deep
largeE. In contrast, in the classical limit where one keéps and fundamental results in mathematics, some of them celate
finite and takes the largE limit, the level density increases to unique developments by their originality and importance
with energy in a power-law fashion. This leads to a natural8]. Hence our results also provide a link between the number
guestion: what happens in between these two extreme regimpartitioning problem and the EVS, generalizing a theorem of
where bothE and N are large but finite? The main result of Erdds and Lehnell[9] (see also[10] 11]) which states thet th
this Letter is to show that in this intermediate regime tvele number of summands in a random partition of an integer is
density displays a rich variety of scaling behaviors dejprgnd asymptotically distributed with the Gumbel law.
on the SP spectrum and has an interesting connection to thewe consider non—interacting bosons confined by some
extreme value statistics (EVS) of independent random varisingle—particle potential whose energy levels ajej =
ables. 0,1,2,.... We setey = 0 without loss of generality. Each

To explore this intermediate regime, we stay close to theonfiguration{n;} of the gas is characterized by an excita-
degenerate gas limit and compute explicitly the effect of a fi tion energyEl = Z;‘;l n;e; and a total number of particles
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N = Z;io n;, wheren; =0, 1,2, ...isthe occupation num- levelse; is ignored ang(e) is replaced by a smooth function.
ber of thej-th SP level in that configuration. The level density We assume moreover that the high energy growth of the in-
at excitation energy’ of a gas ofV bosons is given by tegrated density of states is well approximated, on average

by

pMB(E,N)Z5<Einjej)5(Ninj) . N(e) =~ €. 9
j=1 =0

{ns} (1) Heree is an adimensional energy. To recover dimensional

The number of excited bosons is simpl, = N — ng — guantities in the formulas below, all energies must be mul-
S22 n;. Sinceng > 0, it follows thatNeXX<_N. Thuos _if iplied by some appropriate facter The indexv is a real
on]e:jlus% keeps track of only the excited bosons. it is an easgesitive number that can take arbitrary values depending on

exercise to show that,(E, N) in Eq. (1) can alternately be e confining potential. For instance, if the gas is trappedl i

Y * —di 1 1 ;S
interpreted as the number of configurations with endf@nd one—dimensional potential whose energy levgls- J f[hen
With Nox < N. Thus, whenN — oo, pus(E, 00) simply v = 1/:9. In contrast, When the confining potentlal is a D-
countsetxhe_tota.l number of configurati(,)nsME;it e7ne*igy dimensional harmonic oscillator, then = D, while when

. : it is a D—dimensional box (hard wall cavity potential), then
Vefxsgol_rglgglceen;tr\;vr?gfé?rsxpress Bgl (1) is by means of an in v = D/2 (and, for instances = (V/672)2/3(2m/h?) when

D = 3, whereV is the volume of the cavity anch the mass
1 aico btico of the particle).
pue(E,N) = (2—2/ g do €SP | (2) In the approximation[{9) the weight in the sul (8) of the
mi)? Ja—ios b=ioo SP ground-state is effectively fixed to zero. Under these con
where ditions,&(«, 8) (andE) represent the excitation energy of the
gas, measured with respect to the ground-state energy where
S(a, B) = —pQa, B) + BE — aN (3)  all particles are in thg = 0 state. FotN(«, 3) (andN) a
. problem appears far > 1, when condensation may happen.
is the entropy, In this case, Eq[]8) takes into account only the thermaldtiou
(o) If needed, we will explicitly incorporate the ground—state
(4) cupancies in the calculations.
From Eqsl(#) andd8), usin@l(9) and consequepth) =
the grand potential of the gas, and ve’~1, the energy and grand potential are simply related by
E(a, B) = —v Q(a, B). The entropyl(B) may thus be written,
N(e) = /E p(e)de 5) taking into account the conditiofal(8),

S(a,)=(141/v)BE —aN . (10)

Na, ) =~ | de a7

the integrated density of states expressed in terms of the SP . . . .
density of statep(e) = >, (¢ — ¢;). In Eq. @),aandbare ~ Forany finiteN, o is easily seen from ECX7) to be negative.

real parameters such that all the poles of the integrancbare £ Standard series expansion of the denominator in Egs. () an

the left of the integration path. @) in terms ofz = exp(a), where0 < z < 1, allows to
A saddle point approximation with respect to the auxiliaryW”tev_ in the continuous approximation, the two saddle poin
parameters: and/3 of the integrals in Eq{2) yield5[12] conditions as
I'v+1) .
pus(E, N) = 5@ / 27, /|D(ax, B)] (6) N(a, ) = %Lzu(@ =N, (11)
whereD(a, §) is the determinant of the second derivatives (0, B) = vIl(v + 1>Liy+1(z) s (12)

of S(a,3). The dependence oN and F in Eq. [B) arises

from the saddle point conditions that determine implicitig ) o ko ) .
values ofn and3 in terms of N' and E whereLi,(z) = > ,_, 2°/k" is the polylogarithm function
andr is Euler function.

p(€) Eg. (1) shows thatV'(a, 3) is an increasing function of
Nl(a,p) = /deeﬁef(a 1 N, (M .. Therefore whenV inc(reas)es at a fixed temperatife=
: e ple) 871, z needs to increase to satisfy the equality. Ms— oo,
E(a,B) = /deﬁeTl =F, (8) 2z — 1. In that limit, the energy is easy to obtain and we get
e £(0,8) = v [;° dee” /(exp(fBe) — 1) = 6, /B"+", where

whereN (o, 3) and&(w, §) are the particle number and en- _
ergy functions of the gas, respectively. We will work here in Oy =vI(v+1)¢(v +1) (13)
the leading order approximatign.(E, N) ~ ¢5(*%), and  (¢(2) = Li;(z) is the Riemann zeta function). From EGI(12),

thus ignore the prefactorin EqI1(6). o we get the following relation between inverse temperatack a
In Egs.[T) and[{8) all the non—trivial information is con- gxcitation energy,

tained in the SP level densip(e). We use here the continu-
ous approximation, in which the discreteness of the SP gnerg B =p,=10,/E"0+) (14)
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Using this expression fof and settingr = 0 in Eq. (I0), case only a finite fraction of the total number of particles-co
we get to leading order in a high energy expansion (i.e.glargtribute to the excitation energy (the remaining particles a
energies compared to the spacing between SP energy leveldh the ground state). To have a better understanding, in the
latter case, of the distribution of the number of excited par
pus(E, 00) = exp [(1 + 1/u)(9uE”)1/(”+1)} . (15) ticles among all the configurations of enerfy and to gain
some insight about the transition between the two extreme
For v = 1 this equation reproduces the well known asymp-regimes, we now compute, starting from the degenerate-gas
totic result for an equidistant spectrumn= j (1D harmonic  limit z — 1, finite N corrections.

potential), pus (E, 00) = o2V/™E/6 obtained by Hardy and We are interested in particular in computing the relative
Ramanujan in the partition problein [13] . It was generalized€NSity F'(E, N) = pus(E, N)/pus(E, 00). This quantity

to arbitrary 1-D potentials; « j'/* (partitions into non- 9ives, among all t_he possible states of energy bet\@and
integral powers of integers) ifi_[14]. In the present context£ + dE, the fraction of those whose number of excited par-
Eq. (IB) is valid for any system whose average counting funclicles does not exceed. Interestingly, we find three distinct

tion behaves (asymptotically) like Em (9) (see also Rd!)[.l behavi(_)rs fOl’F(E‘7 N), depending on the value of In terms
For instance, it holds for a 3-D harmonic potentiak 3), or of a suitable rescaled variahiethat depends oV, £ andv

a 2-D box of arbitrary shape (or billiard), & 1). (cf below), the fraction”(E, N) behaves as
Equation[[Ib) describes the density in the limit of an inéinit

number of particles for a large but finite excitation enekyy v=1:F(E,N) = exp(—exp(=)), (18)
In the opposite limit, of a large excitation energy at a fixed . _J0 x<0
number of particles, the density behaves quite differentlyo<l/<1 HF(E,N) = exp[—2z~"/(=Y] x>0 (19)
This is the Maxwell-Boltzmann limit, where the gas behaves exp(—|z[") <0
classically. From EqLT11), keepiry fixed and increasingthe v >1: F(E,N) = { 1 »>0. 20

temperature (e.g., decreasifiy it follows thatz — 0 to sat-

isfy the equality. Therli, (z) ~ > for anyw, and the station- | ¢ |atter case, the indexdepends on the precise value of

ary phase condltlonﬂllllﬂlz) become= I'(v +1)z/5”  (see Eq[2AR)). These three distributions are known as Gum-

andE = vI'(v+1)z/3"". The relation between temperature o) Frachet and Weibull, respectively. They are the thrée

and excitation energy now is versal limit distributions well known in the theory of extne
E—uNT. (16) value statistics of uncorrelated random variables [3].oBel

we outline the main steps in the derivation of Hgd.(1I8)-(20)

This simple equation generalizes, to an arbitrary confininddetails will be published elsewhere).

potential, the well-known equipartition of energy validrfo ~ To prove Eqs[(lI8)E{20) one needs to compute from

quadratic Hamiltonians. It provides a precise relatiomieen ~ Eqs.[I1) and{DI2x(E, N) and3(E, N), and to replace them

a quantum spectral property (the indexand the partition in the expressiori.{10). This is done for large but finite value

of energy in the classical limit. From the previous form of of the particle numbetV, i.e. in the limitz = e™" — 1,

the stationary phase conditions when— 0 we also get Wwheren = —a is a small positive parameter. Mathematically,

a = log(f*N/T(v + 1)). Using this relation foro and  this requires the computation of the leading order behavior

Eq. [IB) fors in Eq. [ID), the many—body level density now whenn — 0%, of the polylogarithmic functionLi, (e=").

takes the form This can be achieved either by a direct computation of thee int
N grals, or by relying on existing resulis [16]. Once this indp
(B N) = {F(V +1) E 1} SN 17) F(E, N) is obtained by dividing the density by, (E, o) in
vy Nvt Eq. (I5).

. . o Casel: v = 1. We find that the appropriate scaling variable
In contrast to Eq[(15), in the classical limit the level dgns o the limiting distribution Eq.[T8) is
has a power—law dependence on the excitation energy (simila

results in some particular cases were obtained.in [15],gusin  ,, — 1 . z =0 N +logB, (21)
different methods). Whe® > N > 1, using Stirling’s

approximation this equation may be written@s(E, N) = whereg, = (r2/6E)!/? was defined in EqLT14). It follows

Ce+DV E Under this form. this result coincides for from Eq. [I8) that the asymptotic value for the typical numbe
Nt vN ) ' of excited bosons for states of eneryis 5; ' log 57 *. In

v = 1 with the result obtained in Refi[6] for the asymptotic the case of an equidistant spectram= j, this result repro-

behavior of the partition of integers with a maximum numberduces the one obtained by Erdds and Lehner in Ref. [9] for the

of summands (see alsa [9]). partition problem.

So far, we have derived two distinct behaviors of the level Casell: 0 < v < 1. From the procedure described above,
density with excitation energy: a stretched-exponengbly-  now we obtain folF’(E, N) the Fréchet distribution, EQ.{[L9),
ior in the quantum-degenerate gas limit, and a power—law begith the rescaled variable given by
havior in the high temperature classical limit. In the cleais
limit, in any typical configuration of energ¥ all the parti- N

cles of the gas are excited, while in the quantum-degenerate O<v<l: T BV (22)
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where ¢, = [1 — v)/V]=/¥0AQ + »)I(Q1 — The connection to the number partitioning problem be-
W)/ /YY) Note that in Eq. [[19) the exponent COmes evident if one chooses = j and £ to be a pos-
v/(1 — v) is positive in the corresponding range:af This  itive integer.  The relation = 3°7°, n;j then corre-

distribution implies that the typical number of excited bns ~ SPonds to partitioning” into non-zero integers anicx =

for states of energ¥ is ¢, EY/(1+¥) /2. However, note that Z?; n; corresponds to the number of terms or summands

the distribution is strongly asymmetric, with a power-law in a given configuration of partition. The ratil(£, N) =

decay (toward 1) foiV much larger than the typical value.  pue(E, NV)/pue (E, o00) then represents the probability that the
Caselll: v > 1. This case is slightly more complicated number of summands in a random partition of integeis

than the previous ones, because of the presence of a phdsgs than or equal t&V. The corresponding limiting Gum-

transition. In contrast with the previous casesNamcreases bel law for F'(E, N) was first proved by Erdds and Lehner

andz — 1in Eq. (1) at fixed3, the functionLi, (z) tendsto by rigorous methods [9]. Our results provide a generaliza-

a finite value. At constant temperature, there is thus acatiti tion of this theorem to an arbitrary set of summands charac-

numberN, = I'(1 + v)¢(v)/B" of bosons that can be hosted terized by the growth law E[X9). The particular cage-= j°

by the thermal cloud, above which a Bose-Einstein condensavith s > 0 corresponds to partitioning an integér into

tion starts. We find that the relevant variable in this casmts sums ofs-th powers of non-zero integers. For example, for

N but the differenceéV — N,. The behavior of the distribution s = 2, the integer5 can be partitioned into sums of squares

is different according to whethe¥ is smaller or larger than asb = 2% 4+ 12 = 12 + 1% + 12 + 1% 4+ 12. We have shown

N.. WhenN < N, the exponent and the rescaled variable that while fors = 1 we recover the Gumbel law, the limiting

x in Eq. [20) depend on the precise valueofThree different  distribution of (&, N) is Fréchet fors > 1 (or0 < v < 1)

regimes are found, summarized as follows and Weibull fors < 1 (orv > 1).
In conclusion, we have shown that the density of states of a
levecime -2 0 Bu(N — Ne) system of independent bosons is described in a suitable scal
iy = ;x = (23) 2> o
v—1 (v — 1DT(2 — )|/ ing limit by the three limiting laws of extreme value theory.
8 /v 1/2 This result has a universal character since it depends anly o
v=2:y=2; 1= { - }(N — N,.) (24) asingle parameter that governs the large energy asymptotic
log[(By (Ne = N)/v)] average behavior of the SP energy spectrum (and is indepen-
5/2(]\[ — N,) dent, for instance, of the fluctuation properties of the S&sp
v>2iy=2gz= [T(v+ 1)C(v—1)]/? (25) trum). The derivative of the fractiofr'(E, A) is related to

the probability density of the number of excited particl@sir
where 3, is given in Eq.[[T8). Finally, for any > 1 and  generalresults should allow to recover the moments of the di
N > N, (that corresponds to > 0), a macroscopic fraction tribution of the ground state occupation numbers computed i
of the particles is in the ground state. These particles do n&.g., Refs.L[7]. A probabilistic interpretation of our résun
contribute to the excitation energy, and their precise nermb the light of [17] may shed further light on the connectiontwit
is unimportant. The behavior of the system is thus identaal extreme value theory.

that of theN — oo limit, implying F(E, N) = 1for N > N, This work was supported by grants ACI Nanoscience 201,
(orz > 0). This completes the demonstration of the Weibull ANR NT05-2-42103, ANR-05-Nano-008-02 and the IFRAF
distribution, Eq.[ZD). Institute.
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