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Level Density of a Bose Gas and Extreme Value Statistics
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We establish a connection between the level density of a gas of non–interacting bosons and the theory of
extreme value statistics. Depending on the exponent that characterizes the growth of the underlying single–
particle spectrum, we show that at a given excitation energythe limiting distribution function for the number
of excited particles follows the three universal distribution laws of extreme value statistics, namely Gumbel,
Weibull and Fréchet. Implications of this result, as well as general properties of the level density at different
energies, are discussed.
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The level density is an essential quantity in determining
the thermodynamic properties of closed quantum systems. In
interacting many–body (MB) systems its computation is in
general a difficult problem. The most common framework
is a mean–field approximation, where a gas of independent
(quasi-)particles moves in an average self–consistent poten-
tial. In this case, the energy of the gas is expressed as the
sum of the occupied single–particle (SP) energies. The com-
putation of the MB level density thus reduces to a combina-
torial problem: counting the number of ways into which the
energy can be distributed among the particles. The level den-
sity has been extensively studied in fermionic systems, where
detailed experimental data exists at different excitationener-
gies and quantum numbers (see, for some recent progresses
in this field, Refs.[1, 2]). In spite of the experimental break-
throughs of the 90’s and of the many interesting developments
that followed, the case of bosonic systems is much less known.
Studies of the spectral properties have concentrated on thelow
energy range of the spectrum of the condensate phase, where
collective effects and interactions play a crucial role.

Our aim here is to compute, within an independent–particle
approximation, the asymptotic properties of the MB level den-
sity ρMB(E, N) of a Bose gas as a function of the excitation en-
ergyE and the particle numberN . We will first consider two
extreme regimes that correspond to the degenerate quantum
and the classical limits of the gas. The level density in these
two extreme cases behaves quite differently as a function of
energy. In the former case, where one takes theN → ∞ limit
first keeping the energyE finite, the level densityρMB(E,∞)
increases with energy in a stretched-exponential manner for
largeE. In contrast, in the classical limit where one keepsN
finite and takes the largeE limit, the level density increases
with energy in a power-law fashion. This leads to a natural
question: what happens in between these two extreme regimes
where bothE andN are large but finite? The main result of
this Letter is to show that in this intermediate regime the level
density displays a rich variety of scaling behaviors depending
on the SP spectrum and has an interesting connection to the
extreme value statistics (EVS) of independent random vari-
ables.

To explore this intermediate regime, we stay close to the
degenerate gas limit and compute explicitly the effect of a fi-

nite number of bosonsN on the level density. In this regime,
in a given configuration of excitation energyE, only a frac-
tion of the particles contribute toE, the rest remain in the
ground–state. However, the ground–state occupancy and con-
sequently the number of excited bosons fluctuate among dif-
ferent configurations belonging to the same excitation energy
E. These fluctuations may be small or anomalously large de-
pending on the SP spectrum. To obtain a quantitative estimate
of these fluctuations, we compute explicitly the distribution of
the number of excited particles for a fixed (but large)E. We
will show that the fraction of configurations at excitation en-
ergy E withN or less excited bosons, among all possible con-
figurations belonging to the levelE, has a limiting distribution
(when suitably scaled) for largeN and largeE. Depending on
the indexν that controls the growth of the SP number of states
(cf Eq. (9) below), we show that three limiting distributions
emerge, namely Gumbel, Weibull and Fréchet distributions.
Interestingly, precisely the same three limiting distributions
characterize the EVS of independent random variables [3], a
field that has seen a recent resurgence of interests [4].

Our work thus provides a link between these two a priori
unrelated fields, namely the combinatorial problem associated
with a non–interacting Bose gas and the EVS. We believe that
this link is of interest in different branches of physics (such
as in the computation of black hole entropy [5]), mathemat-
ics and computer science. For instance, it is well known that
the computation of the level density of a Bose gas in a one–
dimensional (1D) harmonic potential (equidistant SP spec-
trum) is directly related to the theory of partitions of an in-
teger [6, 7]. The theory of partitions has given rise to deep
and fundamental results in mathematics, some of them related
to unique developments by their originality and importance
[8]. Hence our results also provide a link between the number
partitioning problem and the EVS, generalizing a theorem of
Erdös and Lehner [9] (see also [10, 11]) which states that the
number of summands in a random partition of an integer is
asymptotically distributed with the Gumbel law.

We consider non–interacting bosons confined by some
single–particle potential whose energy levels areǫj , j =
0, 1, 2, . . .. We setǫ0 = 0 without loss of generality. Each
configuration{nj} of the gas is characterized by an excita-
tion energyE =

∑∞
j=1 njǫj and a total number of particles
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N =
∑∞

j=0 nj , wherenj = 0, 1, 2, . . . is the occupation num-
ber of thej-th SP level in that configuration. The level density
at excitation energyE of a gas ofN bosons is given by

ρMB(E, N) =
∑

{nj}

δ



E −
∞
∑

j=1

njǫj



 δ



N −
∞
∑

j=0

nj



 .

(1)
The number of excited bosons is simplyNex = N − n0 =
∑∞

j=1 nj. Sincen0 ≥ 0, it follows thatNex ≤ N . Thus, if
one just keeps track of only the excited bosons, it is an easy
exercise to show thatρMB(E, N) in Eq. (1) can alternately be
interpreted as the number of configurations with energyE and
with Nex ≤ N . Thus, whenN → ∞, ρMB(E,∞) simply
counts the total number of configurations at energyE.

A convenient way to express Eq. (1) is by means of an in-
verse Laplace transform

ρMB(E, N) =
1

(2πi)2

∫ a+i∞

a−i∞

dβ

∫ b+i∞

b−i∞

dα eS(α,β) , (2)

where

S(α, β) = −βΩ(α, β) + βE − αN (3)

is the entropy,

Ω(α, β) = −
∫

dǫ
N (ǫ)

eβǫ−α − 1
(4)

the grand potential of the gas, and

N (ǫ) =

∫ ε

ρ(ε)dε (5)

the integrated density of states expressed in terms of the SP
density of statesρ(ǫ) =

∑

j δ(ǫ − ǫj). In Eq. (2),a andb are
real parameters such that all the poles of the integrand are to
the left of the integration path.

A saddle point approximation with respect to the auxiliary
parametersα andβ of the integrals in Eq. (2) yields [12]

ρMB(E, N) = eS(α,β)/ 2π
√

|D(α, β)| (6)

whereD(α, β) is the determinant of the second derivatives
of S(α, β). The dependence onN andE in Eq. (6) arises
from the saddle point conditions that determine implicitlythe
values ofα andβ in terms ofN andE

N (α, β) =

∫

dǫ
ρ(ǫ)

eβǫ−α − 1
= N , (7)

E(α, β) =

∫

dǫ
ǫ ρ(ǫ)

eβǫ−α − 1
= E , (8)

whereN (α, β) andE(α, β) are the particle number and en-
ergy functions of the gas, respectively. We will work here in
the leading order approximationρMB(E, N) ≈ eS(α,β), and
thus ignore the prefactor in Eq. (6).

In Eqs.(7) and (8) all the non–trivial information is con-
tained in the SP level densityρ(ǫ). We use here the continu-
ous approximation, in which the discreteness of the SP energy

levelsǫj is ignored andρ(ǫ) is replaced by a smooth function.
We assume moreover that the high energy growth of the in-
tegrated density of states is well approximated, on average,
by

N (ǫ) ≈ ǫν . (9)

Here ǫ is an adimensional energy. To recover dimensional
quantities in the formulas below, all energies must be mul-
tiplied by some appropriate factorκ. The indexν is a real
positive number that can take arbitrary values depending on
the confining potential. For instance, if the gas is trapped in a
one–dimensional potential whose energy levelsǫj = js, then
ν = 1/s. In contrast, when the confining potential is a D–
dimensional harmonic oscillator, thenν = D, while when
it is a D–dimensional box (hard wall cavity potential), then
ν = D/2 (and, for instance,κ = (V/6π2)2/3(2m/~

2) when
D = 3, whereV is the volume of the cavity andm the mass
of the particle).

In the approximation (9) the weight in the sum (8) of the
SP ground–state is effectively fixed to zero. Under these con-
ditions,E(α, β) (andE) represent the excitation energy of the
gas, measured with respect to the ground–state energy where
all particles are in thej = 0 state. ForN (α, β) (andN ) a
problem appears forν > 1, when condensation may happen.
In this case, Eq. (8) takes into account only the thermal cloud.
If needed, we will explicitly incorporate the ground–stateoc-
cupancies in the calculations.

From Eqs.(4) and (8), using (9) and consequentlyρ(ǫ) =
νǫν−1, the energy and grand potential are simply related by
E(α, β) = −ν Ω(α, β). The entropy (3) may thus be written,
taking into account the condition (8),

S(α, β) = (1 + 1/ν)βE − αN . (10)

For any finiteN , α is easily seen from Eq. (7) to be negative.
A standard series expansion of the denominator in Eqs.(7) and
(8) in terms ofz = exp(α), where0 < z < 1, allows to
write, in the continuous approximation, the two saddle point
conditions as

N (α, β) =
Γ(ν + 1)

βν
Liν(z) = N , (11)

E(α, β) =
νΓ(ν + 1)

βν+1
Liν+1(z) = E , (12)

whereLiν(z) =
∑∞

k=1 zk/kν is the polylogarithm function
andΓ is Euler function.

Eq. (11) shows thatN (α, β) is an increasing function of
z. Therefore whenN increases at a fixed temperatureT =
β−1, z needs to increase to satisfy the equality. AsN → ∞,
z → 1. In that limit, the energy is easy to obtain and we get
E(0, β) = ν

∫ ∞

0 dǫǫν/(exp(βǫ) − 1) = θν/βν+1, where

θν = νΓ(ν + 1)ζ(ν + 1) (13)

(ζ(z) = Li1(z) is the Riemann zeta function). From Eq. (12),
we get the following relation between inverse temperature and
excitation energy,

β = βν = [θν/E]1/(1+ν) . (14)
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Using this expression forβ and settingα = 0 in Eq. (10),
we get to leading order in a high energy expansion (i.e., large
energies compared to the spacing between SP energy levels)

ρMB(E,∞) = exp
[

(1 + 1/ν)(θνEν)1/(ν+1)
]

. (15)

For ν = 1 this equation reproduces the well known asymp-
totic result for an equidistant spectrumǫj = j (1D harmonic

potential),ρMB(E,∞) = e2
√

π2E/6, obtained by Hardy and
Ramanujan in the partition problem [13] . It was generalized
to arbitrary 1-D potentialsǫj ∝ j1/ν (partitions into non-
integral powers of integers) in [14]. In the present context,
Eq. (15) is valid for any system whose average counting func-
tion behaves (asymptotically) like Eq. (9) (see also Ref.[11]).
For instance, it holds for a 3-D harmonic potential (ν = 3), or
a 2-D box of arbitrary shape (or billiard), (ν = 1).

Equation (15) describes the density in the limit of an infinite
number of particles for a large but finite excitation energyE.
In the opposite limit, of a large excitation energy at a fixed
number of particles, the density behaves quite differently.
This is the Maxwell-Boltzmann limit, where the gas behaves
classically. From Eq. (11), keepingN fixed and increasing the
temperature (e.g., decreasingβ), it follows thatz → 0 to sat-
isfy the equality. ThenLiν(z) ≈ z for anyν, and the station-
ary phase conditions (11)–(12) becomeN = Γ(ν + 1)z/βν

andE = νΓ(ν+1)z/βν+1. The relation between temperature
and excitation energy now is

E = νNT . (16)

This simple equation generalizes, to an arbitrary confining
potential, the well-known equipartition of energy valid for
quadratic Hamiltonians. It provides a precise relation between
a quantum spectral property (the indexν) and the partition
of energy in the classical limit. From the previous form of
the stationary phase conditions whenz → 0 we also get
α = log(βνN/Γ(ν + 1)). Using this relation forα and
Eq. (16) forβ in Eq. (10), the many–body level density now
takes the form

ρMB(E, N) =

[

Γ(ν + 1)

νν

Eν

Nν+1

]N

e(ν+1)N . (17)

In contrast to Eq. (15), in the classical limit the level density
has a power–law dependence on the excitation energy (similar
results in some particular cases were obtained in [15], using
different methods). WhenE ≫ N ≫ 1, using Stirling’s
approximation this equation may be written asρMB(E, N) =

[Γ(ν+1)]N

N !

(

E
νN

)

. Under this form, this result coincides for

ν = 1 with the result obtained in Ref.[6] for the asymptotic
behavior of the partition of integers with a maximum number
of summands (see also [9]).

So far, we have derived two distinct behaviors of the level
density with excitation energy: a stretched-exponential behav-
ior in the quantum-degenerate gas limit, and a power–law be-
havior in the high temperature classical limit. In the classical
limit, in any typical configuration of energyE all the parti-
cles of the gas are excited, while in the quantum-degenerate

case only a finite fraction of the total number of particles con-
tribute to the excitation energy (the remaining particles are
in the ground state). To have a better understanding, in the
latter case, of the distribution of the number of excited par-
ticles among all the configurations of energyE, and to gain
some insight about the transition between the two extreme
regimes, we now compute, starting from the degenerate-gas
limit z → 1, finite N corrections.

We are interested in particular in computing the relative
densityF (E, N) = ρMB(E, N)/ρMB(E,∞). This quantity
gives, among all the possible states of energy betweenE and
E + dE, the fraction of those whose number of excited par-
ticles does not exceedN . Interestingly, we find three distinct
behaviors forF (E, N), depending on the value ofν. In terms
of a suitable rescaled variablex that depends onN , E andν
(cf below), the fractionF (E, N) behaves as

ν = 1 : F (E, N) = exp(− exp(−x)) , (18)

0<ν <1 : F (E, N) =

{

0 x 6 0
exp[−x−ν/(1−ν)] x > 0

(19)

ν > 1 : F (E, N) =

{

exp(−|x|γ) x 6 0
1 x > 0 .

(20)

In the latter case, the indexγ depends on the precise value of
ν (see Eq. (23)). These three distributions are known as Gum-
bel, Fréchet and Weibull, respectively. They are the threeuni-
versal limit distributions well known in the theory of extreme
value statistics of uncorrelated random variables [3]. Below
we outline the main steps in the derivation of Eqs.(18)–(20)
(details will be published elsewhere).

To prove Eqs.(18)–(20) one needs to compute from
Eqs.(11) and (12)α(E, N) andβ(E, N), and to replace them
in the expression (10). This is done for large but finite values
of the particle numberN , i.e. in the limit z = e−η → 1,
whereη = −α is a small positive parameter. Mathematically,
this requires the computation of the leading order behavior,
when η → 0+, of the polylogarithmic functionLiν(e−η).
This can be achieved either by a direct computation of the inte-
grals, or by relying on existing results [16]. Once this is done,
F (E, N) is obtained by dividing the density byρMB(E,∞) in
Eq. (15).

Case I: ν = 1. We find that the appropriate scaling variable
for the limiting distribution Eq. (18) is

ν = 1 : x = β1 N + log β1 , (21)

whereβ1 = (π2/6E)1/2 was defined in Eq. (14). It follows
from Eq. (18) that the asymptotic value for the typical number
of excited bosons for states of energyE is β−1

1 log β−1
1 . In

the case of an equidistant spectrumǫj = j, this result repro-
duces the one obtained by Erdös and Lehner in Ref. [9] for the
partition problem.

Case II: 0 < ν < 1. From the procedure described above,
now we obtain forF (E, N) the Fréchet distribution, Eq. (19),
with the rescaled variable given by

0 < ν < 1 : x =
N

cνE1/(1+ν)
, (22)
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where cν = [(1 − ν)/ν](1−ν)/ν [Γ(1 + ν)Γ(1 −
ν)]1/ν/θ

1/(1+ν)
ν . Note that in Eq. (19) the exponent

ν/(1 − ν) is positive in the corresponding range ofν. This
distribution implies that the typical number of excited bosons
for states of energyE is cνE1/(1+ν)/2. However, note that
the distribution is strongly asymmetric, with a power-law
decay (toward 1) forN much larger than the typical value.

Case III: ν > 1. This case is slightly more complicated
than the previous ones, because of the presence of a phase
transition. In contrast with the previous cases, asN increases
andz → 1 in Eq. (11) at fixedβ, the functionLiν(z) tends to
a finite value. At constant temperature, there is thus a critical
numberNc = Γ(1 + ν)ζ(ν)/βν of bosons that can be hosted
by the thermal cloud, above which a Bose-Einstein condensa-
tion starts. We find that the relevant variable in this case isnot
N but the differenceN −Nc. The behavior of the distribution
is different according to whetherN is smaller or larger than
Nc. WhenN 6 Nc, the exponentγ and the rescaled variable
x in Eq. (20) depend on the precise value ofν. Three different
regimes are found, summarized as follows

1<ν <2 : γ =
ν

ν − 1
; x =

βν(N − Nc)

[νΓ(ν − 1)Γ(2 − ν)]1/ν
(23)

ν = 2 : γ = 2; x =

{

βν
ν /ν

log[(βν
ν (Nc − N)/ν)]

}1/2

(N − Nc) (24)

ν > 2 : γ = 2; x =
β

ν/2
ν (N − Nc)

[Γ(ν + 1)ζ(ν − 1)]1/2
(25)

whereβν is given in Eq. (14). Finally, for anyν > 1 and
N > Nc (that corresponds tox > 0), a macroscopic fraction
of the particles is in the ground state. These particles do not
contribute to the excitation energy, and their precise number
is unimportant. The behavior of the system is thus identicalto
that of theN → ∞ limit, implying F (E, N) = 1 for N > Nc

(or x > 0). This completes the demonstration of the Weibull
distribution, Eq. (20).

The connection to the number partitioning problem be-
comes evident if one choosesǫj = j and E to be a pos-
itive integer. The relationE =

∑∞
j=1 njj then corre-

sponds to partitioningE into non-zero integers andNex =
∑∞

j=1 nj corresponds to the number of terms or summands
in a given configuration of partition. The ratioF (E, N) =
ρMB(E, N)/ρMB(E,∞) then represents the probability that the
number of summands in a random partition of integerE is
less than or equal toN . The corresponding limiting Gum-
bel law for F (E, N) was first proved by Erdös and Lehner
by rigorous methods [9]. Our results provide a generaliza-
tion of this theorem to an arbitrary set of summands charac-
terized by the growth law Eq. (9). The particular caseǫj = js

with s > 0 corresponds to partitioning an integerE into
sums ofs-th powers of non-zero integers. For example, for
s = 2, the integer5 can be partitioned into sums of squares
as5 = 22 + 12 = 12 + 12 + 12 + 12 + 12. We have shown
that while fors = 1 we recover the Gumbel law, the limiting
distribution ofF (E, N) is Fréchet fors > 1 (or 0 < ν < 1)
and Weibull fors < 1 (or ν > 1).

In conclusion, we have shown that the density of states of a
system of independent bosons is described in a suitable scal-
ing limit by the three limiting laws of extreme value theory.
This result has a universal character since it depends only on
a single parameterν that governs the large energy asymptotic
average behavior of the SP energy spectrum (and is indepen-
dent, for instance, of the fluctuation properties of the SP spec-
trum). The derivative of the fractionF (E, A) is related to
the probability density of the number of excited particles.Our
general results should allow to recover the moments of the dis-
tribution of the ground state occupation numbers computed in,
e.g., Refs. [7]. A probabilistic interpretation of our results in
the light of [17] may shed further light on the connection with
extreme value theory.

This work was supported by grants ACI Nanoscience 201,
ANR NT05-2-42103, ANR-05-Nano-008-02 and the IFRAF
Institute.
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