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Phase transition of a Bose gas in a harmonic potential
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PACS. 03.75Fi – Phase coherent atomic ensemble (Bose condensation).
PACS. 05.30Jp – Boson systems.
PACS. 32.80Pj – Optical cooling of atoms; trapping.

Abstract. – We consider a Bose gas confined by a harmonic potential. We define an appropri-
ate thermodynamic limit and analyze the properties of the phases and phase transition in this
limit. Critical properties in the presence of the potential are found to be different from, though
simply related to, those in the usual translationally invariant case. We argue that the properties
of magnetically trapped rubidium and sodium gases (in which Bose-Einstein condensation has
recently been observed) are well approximated by our thermodynamic limit except in a narrow
window of temperature around the critical temperature. We also consider the effect of the
confining potential on the non-equilibrium dynamics following a rapid quench to the ordered
side and give a scaling description of the late-time universal dynamics.

Much excitement has been generated in the last few months by the observation of Bose-
Einstein condensation (BEC) in magnetically trapped alkali atoms [1]. Since the original
observation of BEC in rubidium atoms, two other groups have reported evidence for the same
in lithium [2] and sodium [3] atoms. A key feature of these experiments is the presence of a
confining harmonic potential that the atoms feel. In this paper, we study the effects of such
a confining potential on the statistical mechanics of ideal and interacting Bose systems (we
confine our attention to repulsive interactions —so our results are not directly applicable to
the lithium experiment). In particular, we study the effects of this confining potential on the
equilibrium critical properties of the finite-temperature phase transition at which the Bose
condensate first appears. We show how to define a sensible thermodynamic limit in which
the critical singularities are present; the experiments are, of course, in finite systems —this
is accounted for by finite-size scaling crossover functions which smooth out the singularites,
in a manner quite analogous to that for familiar phase transitions in translationally invariant
systems placed in a finite box. We will find that the exponents of the critical singularities
are related, but not identical, to those of translationally invariant systems. The finite-size
scaling crossover functions are expected to be new and not simply related to known crossover
functions. We also consider the non-equilibrium dynamics associated with the establishment
of long-range order following a rapid quench to the superfluid phase. We argue that recent
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results [4] obtained for the case of a translationally invariant system placed in a finite box may
be used to understand the effects of the confining potential on this dynamics.

On general grounds, there is no true phase transition to a Bose condensed phase in the
presence of a confining potential for a finite number of particles. Such a transition is expected
to appear only in a suitable “thermodynamic” limit; we will argue here that the experimentally
appropriate limit is one in which the frequency, ω, of the confining potential goes to zero,
and the number of particles, N , to infinity, while keeping Nω3, the interaction strength,
and the temperature (T ) fixed. We will show that the critical properties in this limit can
be understood by an application of the “local density approximation” of Oliva [5]. In this
approximation, the system is viewed as a collection of homogenous semi-macroscopic blocks,
each with its own local chemical potential. Each of these blocks can be treated independently
of the others, and have properties characteristic of large uniform systems. The properties of the
system with the confining potential can then be related to the corresponding properties of the
usual translationally invariant systems. Many aspects of our general discussion below can be
checked explicitly in a Hartree-Fock calculation [6]. We thus obtain a complete understanding
of the properties of the system in the thermodynamic limit. (In earlier treatments [5], [7],
this approach was used for an approximate treatment of the non-critical properties of the
inhomogenous Bose gases, but the importance of the thermodynamic limit in justifying it
was not noted.) For the phase transition, we estimate by the usual Ginzburg criterion (1)[8]
that the system crosses over to the critical non-ideal regime only at small deviations from
criticality (|T − Tc|/Tc ' 10−3 for the existing experimental systems); some properties of the
system in this regime are quite significantly modified by the presence of the potential. Further,
we show that the experimental systems are quite accurately described by our thermodynamic
limit except in a narrow window of temperatures near the critical temperature, where finite-
size crossovers need to be considered. However, this window is somewhat bigger than the
temperature range for non-ideal behaviour; thus the crossover to non-ideal critical behaviour
will be complicated by the presence of finite-size effects.

We will describe our results using the Hamiltonian (in second-quantized notation)

H =
∫

d3x

[
h̄2

2m
|∇ψ|2 +

(
1
2
mω2(x2 + y2 + λ2z2)− µ

)
|ψ|2 +

u

2
|ψ|4

]
, (1)

where m is the mass of the bosons, the interaction strength u is related to the scattering length
a by u = 4πh̄2a/m, and λ is the anisotropy in the harmonic potential. When ω is finite, the
system is confined to a finite region and will not have a true phase transition to a phase
with long-range order. We expect “thermodynamic” behaviour to emerge only in the limit in
which ω is sent to zero and the number of particles to infinity. In the usual case of a system
confined in a box, this is achieved by keeping the density constant while sending the box size
to infinity. For the oscillator case, this suggests that we scale the number of particles N with
the volume over which the system is confined. This can be estimated at high temperatures
(where interactions and quantum effects may be neglected) to be ' (kBT/mω

2)
3
2 . Thus, we

guess that the thermodynamic limit is defined by sending ω to zero while keeping Nω3 fixed.
As shown below, this does turn out to be a perfectly sensible limit in which there is a true
phase transition at a finite non-zero temperature and the free energy per particle is finite (2).

First consider the system in its high-temperature phase. As ω goes to zero, the potential
varies over a macroscopic length scale ∼ 1/ω. Divide the system up into blocks, such that

(1) The Ginzburg criterion measures when mean-field results for a phase transition breakdown by
estimating the magnitude of fluctuation corrections; see ref. [8] for more details.

(2) This thermodynamic limit has been discussed earlier for the case of an ideal Bose gas by Masut
et al. [9].
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the potential does not vary significantly across any block. Each of these blocks is macroscopic
in size and uniform. The correlation length in any block is some microscopic number (much
smaller than the size of the block) determined by the local chemical potential. The different
blocks can therefore be treated independently of each other. Furthermore, the properties of any
block are well approximated by the thermodynamic behaviour of the corresponding uniform
system. Extensive quantities such as the free energy are then a sum over the free energies of
the individual blocks. For the total free energy F we thus have

F =
∑

blocks

Fblock =
∫

d3rF(r), (2)

where F(r) is the free-energy density of a block of size d3r centered at the point labelled by r.
Note that we have replaced the sum over blocks by an integral, as the free-energy density varies
slowly from one block to another. The only r- and ω-dependence of F(r) is through the local
chemical potential µ(r) = µ − 1

2mω
2(x2 + y2 + λ2z2) and, therefore, F(r) = f(ωx, ωy, ωλz).

Thus

F =
1
λω3

∫
d3r̃f(r̃) , (3)

where x̃ = ωx, ỹ = ωy and z̃ = λωz. Note that the function f(r̃) has no ω-dependence. We
immediately see that the free energy per particle F/N is finite in the limit N → ∞, ω → 0,
Nω3 fixed. Thus the properties of the high-temperature phase are related trivially to the
corresponding properties of the uniform system.

This approach will fail if the correlation length in some of the blocks becomes bigger than
the block size. For a small but non-zero ω, this would happen close enough to a critical point.
The true thermodynamic behaviour is accessed by first sending ω to zero and then approaching
the critical point. When the limits are taken in this order, the block sizes can always be taken
larger than the correlation lengths and so eqs. (2) and (3) remain valid all the way up to a
critical point. It is now easy to see that there is indeed a phase transition at a finite non-zero
value of the temperature. As we have already seen, at high enough temperature there is a
well-defined disordered phase; now consider the system at low enough temperature —there will
always be some blocks with density bigger than the threshold value required for condensation
at that temperature. These blocks will then become superfluid. Thus below a certain non-zero
finite critical temperature the disordered phase is unstable to superfluid ordering.

The properties of the system in the critical regime can be obtained straightforwardly from
equations like (2) and (3). The singular part of the free-energy density at point r satisfies the
hyperscaling relation (3) F(r) = C/(ξ(r))3, where ξ(r) is the correlation length in the block
centered at r and C is a constant. For µ(r) sufficiently close to µc, the critical point of the
uniform system, the correlation length diverges as ξ(r) ∼ (µc−µ(r))−ν , where ν ' 0.67 is the
correlation length exponent of the three-dimensional XY universality class [8]. The total free
energy is given by

F =
∫

d3r
C

(ξ(r))3
+ . . . ∼ (µc − µ)3(ν+

1
2 ) + . . . . (4)

The integral is up to a value of r which is of the order of, but smaller than
√
kBT/mω2, and

the ellipses denote terms regular in µ− µc. Note the extra factor of 3
2 in the exponent. This

is a consequence of the quadratic potential in the system and leads to a violation of naive
hyperscaling. Now, at fixed density, T − Tc is analytic in µc − µ (4) and hence the singular

(3) This is the statement that the free energy is of order kBT per correlation volume [8].
(4) This is generally the case when the specific-heat exponent is negative, as happens here. See [10].
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of F as a function of T is similar (F ∼ (T − Tc)3(ν+
1
2 )), and the specific exponent, obtained

by taking two derivatives of F with T , is 2− 3(ν + 1
2 ) ' −1.52. This very weak singularity is

likely to be masked by analytic background terms even if one could access the critical region.
The order parameter correlation function for two points separated by ~x, in a block labelled

by r, for x À ξ(r), is G(r;x) ∼ exp[−x/ξ(r)]/x1+η, where η, the anomalous dimension,
is approximately 0.03 in this case [8]. The order parameter susceptibility is given by the
integral of the correlation function over both its arguments. The singular part of the order
parameter susceptibility, χ (which is of physical importance in magnetic systems) varies
as (T − Tc)

3
2−ν(2−η). This exponent is positive (approximately 0.18), implying that the

susceptibility is finite at the transition (even though there is a divergent correlation length
associated with the transition) in contrast to the uniform case.

We now consider the ordered phase. This phase is characterised by a non-zero expectation
value for the Bose field Ψ . The magnitude of this order parameter will be spatially inhomoge-
nous (due to the confining potential), while its phase will be constant. First, we argue that
there is indeed a well-defined ordered phase in the thermodynamic limit defined above. Again,
we imagine that the entire system is divided into semi-macroscopic blocks as before. We expect
that both the density and the magnitude of the order parameter have short-range correlations
and hence their values in each block are determined by the local chemical potential (5). This
immediately implies that the total number of particles scales as 1/ω3. Similarly, we also expect
the free-energy density to be determined just by the local chemical potential, and hence the
total free energy also scales as 1/ω3. Thus the free energy per particle is again finite in the
thermodynamic limit.

Since the local chemical potential is a maximum at the center of the trap, the magnitude
of the order parameter will be the largest at the center and will decrease as one moves away
from the center. It eventually becomes zero when the local chemical potential becomes smaller
than µc. The position of this edge, denoted by rc, is given by µ(rc) = µc. Near the edge,
|〈Ψ〉| ∼ (µ(r) − µc)β ∼ (rc − r)β , where β ' 0.34 is the usual order parameter exponent for
the uniform system [8]. This is an important point as it may be possible to study critical
properties of the system by studying it close to the edge of the condensate in the ordered
phase.

The fraction of particles in the k = 0 mode, n(k = 0) (which is of direct experimental signif-
icance) is proportional to (ω3

∫
d3r|〈Ψ(r)〉|)2 in the thermodynamic limit. As one approaches

the critical point from the ordered phase, the spatial extent of the condensed region shrinks
to zero as (µ− µc)

1
2 ∼ (Tc − T )

1
2 . The maximum value of the order parameter (i.e. at r = 0)

vanishes as (µ−µc)β ∼ (Tc−T )β . This implies that n(k = 0) ∼ (Tc−T )2(β+ 3
2 ) ∼ (Tc−T )3.68.

An explicit calculation of the order parameter profile at T = 0 within a Hartree-Fock ap-
proximation was performed in ref. [11]. Note that the “Thomas-Fermi” approximation used
there becomes exact away from the origin in the thermodynamic limit we have discussed. An
extension of such a calculation to the critical regime [6] provides an illustration of the general
discussion above (see also ref. [12]).

As before, the free energy is determined completely once the free-energy density of the
uniform system is known as a function of µ. Thus the low-temperature specific heat is
proportional to T 3, as in the uniform case, though the prefactor will be different.

The phase of the order parameter, of course, has long-range correlations. Associated with
slow variations of this phase, we have the usual sound wave. The character of this mode is not
different from the uniform case as long as the wavelength is small compared to a typical block

(5) For this to be true, we must require that the size of any block is much bigger than the local
Josephson correlation length.
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size. The sound wave velocity will be determined in the usual way by the local superfluid
density and compressibility. This spatial variation will cause the wave to be “refracted” as it
propogates.

The critical behaviour described above will become observable only in a window around
TC which is given by the Ginzburg criterion [8] (see footnote (1)). This predicts that the
system crosses over to the critical regime when ξ ∼ λT

2/a, where λT = (h̄2/2mkBT )
1
2

is the thermal de Broglie wavelength and a is the scattering length. This corresponds to
|(T − Tc)/Tc| ∼ (a/λT)2 ∼ 10−3–10−4 for the Rb [1] and Na [3] experiments. Outside of this
window in the high-temperature phase, the behaviour of the system can be well approximated
by the thermodynamic limit of the ideal Bose gas in a harmonic potential and the calculations
of [13] are expected to apply.

A small but non-zero value of ω leads to deviations from the theory described above, which is
valid in the thermodynamic limit. “Finite-size” corrections are most significant near the critical
point where the non-zero ω rounds off any singular behaviour of physical quantities. A crude
estimate of the width of this region where finite-size effects are important may be obtained as
follows: Near the bottom of the well, the correlation length varies appreciably over a length
r ∼

√
(µc − µ)/(mω2). Finite-size effects will be negligible so long as this length is much

larger than ξ(r = 0). In the high-temperature phase, by using the ideal Bose gas expression
for ξ(r = 0), this can be converted to the condition (T−Tc)/Tc < h̄ω/(kBTc) ∼ 10−2. A similar
estimate is expected to hold below Tc as well. Note that this window is at least an order of
magnitude bigger than the temperature range where the system crosses over to the critical
regime. Thus “finite-size” effects will prohibit observation of the true critical behaviour in the
current range of experimental parameters. Increasing the scattering length and/or decreasing
the frequency of the trap will enhance the possibility of measuring critical properties.

So far we have restricted ourselves to the equilibrium properties of the system. However, an
interesting question which may also be experimentally relevant [1] is: How does the condensate
grow in time to its final equilibrium value after a rapid quench in temperature from above Tc

to below? This non-equilibrium question has been addressed recently [4] for a translationally
invariant Bose gas. It was shown that the standard phenomenology of phase-ordering kin-
etics [14] (which predicts, at late times, the existence of a single time-dependent length scale
∼ t 1

z ) can be used to obtain a scaling form for the equal-time correlation function of the boson
field Ψ :

G(r, r′, t, L) ≡ 〈ψ∗(r, t)ψ(r′, t)〉 = |〈ψ〉|2F
(
|r − r′|
L

,
ct

Lz

)
, (5)

where L is the linear size of the system, c is a scale factor that depends on the final temperature
(or equivalently, the final chemical potential), 〈ψ〉 is the equilibrium order parameter at that
temperature and |r − r′| is much larger than all microscopic scales in the problem. The value
of z was numerically estimated to be close to 1 and it was argued that z should be exactly
equal to 1 [4].

We now consider the effect of the confining potential on this dynamics. Imagine, as before,
splitting the system up into many blocks (of size l ∼ 1/ω) such that the potential does not
vary significantly within any block. As long as t

1
z ≤ l, the equal-time correlation function

within each block scales as

G(r, r′, t, ω) = |〈ψ(Rω)〉|2H(|r − r′|ω, c′(Rω)tωz) , (6)

where R is the coordinate of the center of the block, c′ is a scale factor that depends on the
local chemical potential and the value of z is unchanged from the translationally invariant
case. Motivated by this, we can now make the following ansatz for the scaling form valid for
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arbitrarily large values of t and |r− r′| (in particular, r and r′ may belong to different blocks):

G = P (rω, r′ω, tωz) , (7)

where z is the same as before. Note that as t→∞ P must reduce to 〈ψ(r)〉〈ψ∗(r′)〉 which is
consistent as 〈ψ(r)〉 depends on r only through µ(ωr).

The total number of particles in the k = 0 mode is proportional to ω3
∫

d3r
∫

d3r′ P and
thus satisfies the scaling form

n(k = 0, t) = ω−3f(tωz) . (8)

The fraction of particles in the k = 0 mode is given as n(k = 0, t)/N = (1/(Nω3))f(tωz). The
function f , of course, depends on the value of temperature we quench to and the value of the
anisotropy λ. We thus conclude that the time dependence of n(k = 0)/N for fixed T , Nω3 and
λ but different values of ω should exhibit scaling collapse at late times. For small values of its
argument f(x) ∼ x

3
z . For small enough ω (i.e. for a large enough system) it may be possible

to observe a corresponding window in time in which the condensate fraction has power law
growth n(k = 0, t)/N ∼ t 3

z .
In summary, we have presented a rather complete understanding of the effects of the

confining potential on the equilibrium properties of a Bose gas. In particular, we have
demonstrated that the critical properties of the system in a confining potential are different
from but simply related to the uniform case. We have also provided a scaling description for
the late-time universal dynamics following a rapid quench to the ordered phase.
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