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Abstract
We consider the Newtonian dynamics of a massive particle in a one-dimensional
random potential which is a Brownian motion in space. This is the zero-
temperature nondamped Sinai model. As there is no dissipation the particle
oscillates between two turning points where its kinetic energy becomes zero.
The period of oscillation is a random variable fluctuating from sample to sample
of the random potential. We compute the probability distribution of this period
exactly and show that it has a power law tail for large period, P(T ) ∼ T −5/3,
and an essential singularity P(T ) ∼ exp (−1/T ) as T → 0. Our exact results
are confirmed by numerical simulations and also via a simple scaling argument.

PACS numbers: 05.10.Gg, 03.65.-w, 05.60.-k

Transport in random systems is an important and common physical phenomenon. Even small
amounts of disorder in physical systems can dramatically modify their static and dynamical
properties and lead to interesting and complex new physics. In the presence of quenched,
or time-independent, disorder it is necessary to average physical quantities over different
realizations of the disorder. This disorder averaging is often technically very difficult to
carry out and few exact results exist, even in one dimension. In this Letter we study the
zero-temperature frictionless Newtonian dynamics of a particle in a one-dimensional random
potential, which is a Brownian motion in space. Due to the absence of friction, the particle
oscillates back and forth between two turning points where the kinetic energy becomes zero.
The period of this oscillation is a random variable, varying from sample to sample of the
disorder. The main result of this Letter is to present an exact result for the distribution of this
time period.

In general the dynamics of a particle in a one-dimensional force field can be represented
by the Langevin equation

m
d2x

dt2
= −γ

dx

dt
+ F(x) + η(t) (1)

0305-4470/01/490697+06$30.00 © 2001 IOP Publishing Ltd Printed in the UK L697

http://stacks.iop.org/ja/34/L697


L698 Letter to the Editor

where γ is the friction coefficient and η(t) represents a thermal noise with zero mean and a
correlator 〈η(t)η(t ′)〉 = 2γ kBT δ(t − t ′), T being the temperature of the medium. The force
field F(x) = −dφ/dx originates from the background potential φ(x). We shall consider the
case when the potential φ(x) is a Brownian motion in x. This means the force F(x) is simply
a Gaussian white noise in space with zero mean and a correlator 〈F(x)F (x ′)〉 = δ(x − x ′).

The physics of this model is rather different in the two complementary limits, namely the
overdamped and the underdamped case. In the overdamped limit where m = 0, this model
reduces to the celebrated Sinai model [1]. Since its introduction the Sinai model has been
studied extensively over the past two decades [2]. It is well known that the disorder drastically
alters the diffusive behaviour of the system and the mean squared displacement at any nonzero
temperature grows with time as 〈x2

t 〉 ∼ ln4(t) for large t , where the angle brackets here indicate
the thermal average (over η) and the overline indicates the disorder average (over F ).

In the underdamped limit (m > 0) this model represents, in the absence of thermal
fluctuations (T = 0), the deterministic motion of a massive particle in a random medium.
Recently there has been much interest in understanding the dynamics of manifolds in a
random medium [3] where one neglects the thermal fluctuations as a first approximation.
The deterministic limit η = 0 of equation (1) with m > 0 then represents a toy model where
one considers the motion of a zero-dimensional manifold. For nonzero friction γ > 0, the
particle will eventually stop at some distance from the starting point since there is no thermal
noise. Recently Jespersen and Fogedby [4] studied the distribution of this stopping distance
numerically and via simple scaling analysis. In the limit of vanishing friction γ = 0, this
model was earlier studied by Stepanow and Schulz [5] who showed that the particle resumes
normal diffusion in dimensions d > 1 provided it starts with a nonzero initial velocity v0.
However, in one dimension with γ = 0, the particle does not diffuse but oscillates between
two turning points as mentioned before. In this Letter we focus on this limiting case in one
dimension and calculate the distribution of the oscillation period exactly.

We set m = 1 for convenience and study simply the equation

d2x

dt2
= F(x) (2)

where F(x) = −dφ/dx is a white noise with zero mean and a correlator 〈F(x)F (x ′)〉 =
δ(x−x ′). The potential φ(x) = φ0 +

∫ x

0 F(x ′) dx ′ is then a Brownian motion in x which starts
at the value φ(0) = φ0 at x = 0. Without loss of generality we set φ0 = 0. We assume that
the particle starts at t = 0 at x = 0 with an initial velocity v > 0. The particle will move to
the right until it reaches a turning point xc, where φ(xc) = v2/2, and then it will move back
down to the point 0, where its velocity will be −v (see figure 1). We define by T the time
taken to arrive at the point xc starting from x = 0. The particle will then move to the left until
it similarly reaches the left turning point x ′

c; the time taken to do this is T ′. The total period
of oscillation is then given by Tosc = 2(T + T ′). Since φ(x) is a Brownian motion in x, it
follows from its Markov property that φ(x) for x > 0 and x < 0 are completely independent
of each other. Thus T and T ′ are also independent and have the identical distribution which
we compute below. The distribution of Tosc then follows simply as the convolution of the
distribution of 2T with that of 2T ′.

It is easy to express T explicitly in terms of the potential φ(x),

T =
∫ xc

0

dx√
v2 − 2φ(x)

(3)

where we have used φ0 = 0. Since φ(x) is random, the period T is also a random variable
,whose distribution we denote by P(T ). Even though in the physical problem the turning
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Figure 1. Particle in a Brownian potential with initial velocity v. The right/left turning points are

shown as xc and and x′
c respectively where the potential first becomes equal to φ = v2

2 .

time T is given by the formula in equation (3) with φ0 = 0, it is useful to consider the
random variable T in equation (3) as a function of an arbitrary φ0 and compute the distribution
P(T , φ0) that depends on φ0. Eventually the distribution of the physical time T is given by
P(T ) = P(T , 0). We define the Laplace transform

Q(µ, φ0) =
∫ ∞

0
P(T , φ0) exp (−µT ) dT . (4)

Substituting the explicit form of T from equation (3) in the Laplace transform one finds

Q(µ, φ0) = Eφ0

[
exp

(
− µ

∫ xc

0
V (φ(x)) dx

)]
(5)

where Eφ0 denotes the expectation value over Brownian paths starting at φ0 at time x = 0 and

V (φ(x)) = 1√
v2 − 2φ(x)

. (6)

There is a nice probabilistic interpretation of Q(µ, φ0) in equation (5). Consider a
Brownian trajectory {φ(x) : 0 � x � ∞} starting at φ0 at x = 0. If the particle is killed
with probability µV (φ(x)) dx in the time interval [x, x + dx], then Q(µ, φ0) is simply the
probability that the particle is not killed before reaching the level φ = v2

2 . In this interpretation
xc = Hv2

2
, where Ha is the first hitting time at level a, i.e. Ha = infx>0{x : φ(x) = a}.

To calculate Q(µ, φ0) we employ the standard backward Fokker–Planck technique [6, 7]
in the following way. One first evolves the Brownian motion over an infinitesimal time interval
dx from the initial time x = 0. The Brownian path starts at φ0 at x = 0. In time dx it evolves
to a new position φ0 + dφ0. Thus the initial position of the trajectory that starts at time dx is
φ0 + dφ0. As a result of this infinitesimal change the function Q(µ, φ0) evolves as

Q(µ, φ0) = (1 − µV (φ0) dx)Edφ0 [Q(µ, φ0 + dφ0)] . (7)

The equation (7) follows from the fact that the particle survives in the interval [0, dx] with
probability (1 − µV (φ0) dx) and then restarts its trajectory from the point φ0 + dφ0 at time
dx. Of course the variable dφ0 is random and one needs to sum over all histories of evolution
in the interval [0, dx], which is denoted by the expectation Edφ0 in equation (7). Using the Ito
prescription we average over dφ0 to first order in dx and then equating the terms of order dx
yields the time-independent Schrödinger equation

1

2

d2

dφ2
0

Q(µ, φ0) − µV (φ0)Q(µ, φ0) = 0 (8)

where V (φ) is given by equation (6). The function Q satisfies the following boundary
conditions. (i)Q(µ, v2/2) = 1. This follows from the fact that ifφ0 = v2/2, then by definition
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the hitting time Hv2
2

= 0 and subsequently xc = 0 in equation (5). (ii) Q(µ,−∞) = 0, as

if φ(0) → −∞, the hitting time Hv2
2

→ ∞ implying xc → ∞. Subsequently the integral in

equation (5) diverges since V (φ(x)) > 0 even when x → ∞ and one obtains this boundary
condition.

Making the change of variables y =
√
v2 − 2φ0 in equation (8) we obtain

d2Q

dy2
− 1

y

dQ

dy
− 2µyQ = 0. (9)

The general solution to this equation is [8]

Q(y) = AyK2/3




√
8µy3

9


 + ByI2/3




√
8µy3

9


 (10)

where A and B are constants and Kν(z) and Iν(z) are modified Bessel functions of index ν.
As φ0 → −∞, y → ∞. In this limit the boundary condition (ii) implies the constant B = 0
since Iν(z) diverges for large argument. The boundary condition (i) implies that as y → 0,
Q(y) → 1, which fixes the constant A = 24/3µ1/3/"(2/3)32/3. Changing back to the φ0

variable, we then have the exact expression for Q(µ, φ0)

Q(µ, φ0) = 2
4
3 µ

1
3

"( 2
3 )3

2
3

√
v2 − 2φ0K2/3




√
8µ(v2 − 2φ0)3/2

9


 . (11)

The distribution P(T , φ0) is then obtained by inverting the Laplace transform in equation (11),
which fortunately can be done exactly [8]. Setting φ0 = 0 we finally obtain

P(T ) = 2
2
3 v2

3
4
3 "( 2

3 )
T − 5

3 exp

[
−2v3

9T

]
. (12)

One can easily check that this distribution is normalized. In terms of the scaled variable τ = 9T
2v3

we find that the probability density p(τ) = P(T ) dT/dτ of τ becomes independent of v and
is given by the simple expression

p(τ) = 1

"( 2
3 )

τ− 5
3 exp

(
− 1

τ

)
(13)

which is valid for all t � 0. In particular for large τ , p(τ) ∼ τ−α decays as a power law with
the exponent α = 5

3 . Thus none of the integer moments of the distribution exist and there are
periods of all sizes extending up to infinity. The distribution P(T ) has a unique maximum at
T = Tm = 2

15v
3, indicating the existence of a most probable turning time Tm.

The exponent α = 5/3 can also be derived by an intuitive scaling argument. From the
energy conservation it follows that φ(xc) − φ(x0) = (dx0/dt)2/2, where xc is the turning
point, x0 is any other reference point and dx0/dt is the velocity at x0. For large |xc − x0|,
clearly φ(xc)− φ(x0) typically scales as ∼√|xc − x0| since φ(x) is a Brownian motion. This
indicates dx0/dt ∼ |xc − x0|1/4 and hence |xc − x0| ∼ t4/3 for large t . The distribution of xc

behaves as ρ(xc) ∼ x
−3/2
c for large xc since xc is simply the first passage time to the level v2/2

of a Brownian walker starting at the origin. It then follows that the distribution of the turning
time t ∼ |xc − x0|3/4 has a power law tail t−α with α = 5/3. In fact this scaling argument
can be generalized to an arbitrary random potential with a surface roughness exponent χ , such
that φ(x) ∼ xχ (χ = 1/2 for the Brownian case). The distribution of the first passage time in
general has a power law decay, ρ(xc) ∼ x−1−θs

c , where θs is the spatial persistence exponent [9].
Following the same argument as in the Brownian case, one finds that the distribution of turning
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Figure 2. Histogram of τ (circles) generated from 5 × 105 samples, with initial velocity v = 1
and with temporal cutoff T ∗ = 5000; the bin size is 0.1. Also shown is the analytical prediction.

(This figure is in colour only in the electronic version)

time has a power law tail with an exponent α = 1 + 2θs/(2 −χ). For the Brownian case where
χ = 1/2 and θs = 1/2, one recovers α = 5/3.

The distribution (13) has a rather remarkable link with the original (overdamped) Sinai
model in the interval [0,∞], in the presence of an external force Fext = −f0 in the interval
[0,∞]. Here the partition function in the canonical ensemble is given by

Z =
∫ ∞

0
exp [−β(φ(x) + f0x)] dx (14)

where β is the inverse temperature. For f0 > 0 the distribution ρ(Z) of Z exists, can be
computed exactly [10] and is given by

ρ(Z) = β2

2"( 2f0

β
)

(
2

β2Z

)1+ 2f0
β

exp

(
− 2

β2Z

)
. (15)

Hence, when f0 = β/3 the partition function Z (up to a constant multiplicative factor) for the
statics of the Sinai model in the presence of a constant force −f0 (towards the origin) has the
same distribution as the turning time T in our model.

We have also verified our exact results via the numerical integration of equation (3). We
chose a discretization of the integral as follows:

T (i + 1) = T (i) +
-x√

v2 − 2φ(i)
(16)

φ(i + 1) = φ(i) + σi

√
-x. (17)

Here the σi are independent Gaussian variables of mean zero and variance one. The Brownian
limit is clearly approached when -x → 0. This system is integrated up until the point i where
φ(i + 1) > v2

2 and the value of T (i) recorded. This is done for 5×105 realizations to construct
the histogram of the T . The fact that T has a broad distribution implies that the number of
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integration steps required for a given sample can become very large. Therefore a temporal
cutoff T ∗ is placed on the values of T measured. This means we discard those samples where
T exceeds a large fixed value T ∗. Thus the numerical histogram, once normalized, has the
distribution

P(T , T ∗) = P(T )θ(T ∗ − T )∫ T ∗
0 P(S) dS

. (18)

In the limit when T ∗ is large, P(T , T ∗) → P(T ). We first compute P(T , T ∗) analytically
from equation (18) using the exact form of P(T ) from equation (12). We then compare this
analytical result with the numerically obtained P(T , T ∗) in figure (2) using the scaled variable
τ = 9T/2v3 with the choice v = 1 and T ∗ = 5000. The agreement is evidently excellent.
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