
ar
X

iv
:c

on
d-

m
at

/0
60

25
64

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  2
3 

Fe
b 

20
06

Factorised Steady States in Mass Transport Models

on an Arbitrary Graph

M. R. Evans1,4, Satya N. Majumdar2, R. K. P. Zia3

1SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9

3JZ, UK
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Abstract.

We study a general mass transport model on an arbitrary graph consisting of L

nodes each carrying a continuous mass. The graph also has a set of directed links

between pairs of nodes through which a stochastic portion of mass, chosen from a

site-dependent distribution, is transported between the nodes at each time step. The

dynamics conserves the total mass and the system eventually reaches a steady state.

This general model includes as special cases various previously studied models such

as the Zero-range process and the Asymmetric random average process. We derive a

general condition on the stochastic mass transport rules, valid for arbitrary graph and

for both parallel and random sequential dynamics, that is sufficient to guarantee that

the steady state is factorisable. We demonstrate how this condition can be achieved

in several examples. We show that our generalized result contains as a special case

the recent results derived by Greenblatt and Lebowitz for d-dimensional hypercubic

lattices with random sequential dynamics.
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1. Introduction

Diverse physical phenomena such as traffic flow [1], force propagation in granular

media [2, 3], clustering of buses [4], aggregation and fragmentation of clusters [5],

phase separation dynamics [6], shaken granular gases [7, 8] and sandpile dynamics [9]

share one common feature–their microscopic dynamics involves stochastic transport of

‘mass’, or some conserved quantity, from one point in space to another. To simplify

analysis, continuous space is typically replaced by (or “binned” into) discrete sites.

Several such lattice models of stochastic mass transport have been introduced and

studied, most notably the Zero-Range Process (ZRP) [10, 11, 12], and the Asymmetric

Random Average Process (ARAP) [13, 14]. These models are defined by specifying

the microscopic dynamics, i.e. the basic stochastic rules for mass transport. Given the

dynamics, there are two principal theoretical issues: (i) to identify the steady state if

there is any, i.e. to find the invariant measure and (ii) once the steady state is known,

to understand various physical properties in the steady state, e.g. the phenomenon of

‘condensation’ that happens when a finite fraction of the total mass condenses onto a

single site [15].

It turns out that the step (i) itself is often very difficult and the exact steady state

is known in only very few cases [11]. In many of these known cases, the steady state is

factorisable. This means that the steady state probability P ({mi}) of finding the system

with mass m1 at site 1, mass m2 at site 2 etc is given by a product of (scalar) factors

f(mi) — one factor for each of the L sites of the system — e.g. for a homogeneous

system where all sites i have equivalent connectivities

P ({mi}) = Z(M, L)−1

L
∏

i=1

f(mi) δ

(

L
∑

i=1

mi − M

)

, (1)

where Z(M, L) is a normalisation which ensures that the integral of the probability

distribution over all configurations containing total mass M is unity, hence

Z(M, L) =
L
∏

i=1

[
∫ ∞

0

dmif(mi)

]

δ

(

L
∑

i=1

mi − M

)

. (2)

Here, the δ-function has been introduced to guarantee that we only include those

configurations containing mass M in the integral. The single-site weights, f(m) are

determined by the details of the mass transfer rules and for a heterogeneous system

may depend on the site i.

The advantage of having a factorisable steady state is that the step (ii) mentioned

above is often easier to carry out explicitly. This has been demonstrated recently by an

exact analysis of the condensation phenomenon that occurs in a general class of mass

transport models [15, 16]. This raises a natural question: when does the steady state in

these mass transport models factorise? This issue was recently addressed in the context

of a sufficiently general ‘mass transport model’ in one dimension, that includes, as special

cases, the previously studied ZRP, ARAP and the chipping model [5]. In this model

a mass mi resides at each site i of a one dimensional lattice with periodic boundary
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conditions. At each time, a stochastic portion, m̃i ≤ mi of the mass mi at site i, chosen

from a distribution ϕ(m̃i|mi), is chipped off to site i + 1. The distribution ϕ(m̃|m)

was called the chipping kernel and by choosing its form appropriately one can recover

the ZRP, the ARAP and the chipping model of [5]. Even though the model above is

defined in discrete time where all sites are updated in parallel, by appropriately choosing

the chipping kernel it is easy to study the continuous time limit, which corresponds to

a random sequential update sequence, as a special case [17]. Similarly, one can also

recover, as a special case, the model with only discrete masses as in ZRP. Thus the

discrete time dynamics generalises continuous time dynamics but a continuous mass

variable generalises discrete mass.

A natural question, first addressed in [17], is what should be form of the chipping

kernel ϕ(m̃|m) for the the final steady state to be factorisable. In that study, it was

proved that the necessary and sufficient condition for a factorised steady state in the

one dimensional directed case defined above is that the chipping kernel is of the form

ϕ(m̃|m) =
u(m̃) v(m − m̃)

∫ m

0
dm̃ u(m̃) v(m− m̃)

(3)

where u(z) and v(z) are arbitrary non-negative functions. Then the single-site weight

in Eq. (1) is given by

f(m) =

∫ m

0

dm̃ u(m̃) v(m− m̃). (4)

Furthermore, given a chipping kernel ϕ(m̃|m), sometimes it is hard to verify explicitly

that it is of the form (3) and thereby to identify the functions u(m) and v(m) in order

to construct the weight f(m) in Eq. (4). This problem was circumvented by devising a

test [18] to check if a given explicit ϕ(m̃|m) satisfies the condition (3) or not. Further, if

it “passes this test,” the weight f(m) can be found explicitly by a simple quadrature [18].

Finally, for any desired function f(m), one can construct dynamical rules (i.e., ϕ) that

will yield f(m) in a factorised steady state.

It was further demonstrated in Ref. [17] that the corresponding necessary and

sufficient condition in the case of random sequential dynamics in continuous time can be

easily obtained, by taking a suitable limit, from the condition for the parallel dynamics

manifest in Eq. (3). This is done by choosing the chipping kernel as

ϕ(m̃|m) =

[

1 − dt

∫ m

0

α(m̃|m) dm̃

]

δ(m̃) + α(m̃|m) dt (5)

for small time increment dt and δ(z) is the Dirac delta function. The function α(m̃|m)

denotes the ‘rate’ at which a mass m̃ is transferred from a site with mass m to its right

neighbour. Note that the form in Eq. (5) ensures the normalization,
∫ m

0
ϕ(m̃|m) dm̃ = 1.

Then, the necessary and the sufficient condition for factorisable steady state, derived

from the more general condition in Eq. (3), is that the rate α(m̃|m) must be of the

following form [17]

α(m̃|m) =
x(m̃) v(m− m̃)

v(m)
, (6)
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where x(z) and v(z) are arbitrary non-negative functions. The corresponding steady

state weight is then simply, f(m) = v(m).

The condition (3) for factorisability in the mass transport model was derived only

in one dimension and also only for unidirectional mass transport (from site i to site

i + 1). A natural question, therefore, is whether one can generalise this condition to

higher dimensional lattices, or to arbitrary graphs where mass transport can take place,

in general, between any pair of sites i and j. Recently, Greenblatt and Lebowitz were

able to derive a sufficiency condition [19] for factorisability in the mass transport model

with nearest neighbour mass transport on a regular d-dimensional lattice with periodic

boundary conditions, but considered only the case of random sequential dynamics. They

showed that if αq(m̃|m) dt is the probability of mass m̃ ≤ m being chipped off a site with

mass m to a nearest neighbour in the direction q (there being 2d nearest neighbours on

a hypercubic lattice in d dimensions), then the sufficient condition for factorisability is

a direct generalization of the condition in Eq. (6), namely that the rate function must

be of the form

αq(m̃|m) =
xq(m̃)v(m − m̃)

v(m)
(7)

for each q, where xq(z) for each q and v(z) are arbitrary functions. The steady state

weight is simple, f(m) = v(m). However, it was not possible to prove that the condition

(7) is also necessary [19], except in the case of generalized Zero-range processes.

The purpose of this paper is to derive a more general sufficiency condition, valid for

arbitrary graphs where the mass transport takes place not necessarily between nearest

neighbours and for the more general case of parallel dynamics. Our results boil down

to equations (29) and (31). The former yields a sufficiency condition and the latter an

additional consistency condition which must be satisfied.

In the special case of random sequential dynamics on a regular hypercubic lattice

with nearest neighbour mass transport, our sufficiency condition reduces to the one

derived by Greenblatt and Lebowitz. Our results, however, are considerably more

general.

The paper is organized as follows. In Section 2, we define the mass transport model

on an arbitrary graph. In Section 3, we derive a sufficient condition on the chipping

kernels, valid for parallel dynamics on an arbitrary graph G, that would gaurantee that

the steady state is factorisable. We show that there are some additional consistency

conditions that need to be satisfied in general and we demonstrate explicitly how these

conditions are satisfied in several examples. In Section 4, we extend our approach to

random sequential dynamics on an arbitrary graph. We conclude with a summary and

discussion in Section 5.

2. The Mass Transport Model on an Arbitrary Graph

We consider a fixed arbitrary graph G consisting of L nodes labelled i = 1, 2, 3, · · · , L

and a set of directed links or channels between certain pairs of nodes. At a given time
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t, a node i has mass mi ≥ 0 where mi are continuous variables. We consider discrete

time dynamics where at each step the masses at all the nodes are updated in parallel

according to the following rules. We first define a (L × L) mass-transfer matrix [µ] as

follows. An element µij of the matrix [µ] is identically zero at all times if there is no

directed link from site i to site j on G. If there is a directed link from i to j, then

µij ≥ 0 is a non-negative stochastic variable that represents the mass transferred from

site i to site j during one update. In Fig. 1 we give an example which we refer to for

illustrative purposes throughout this section. The diagonal element µii represents the

mass that stays at site i at the end of the single update. We assume that the dynamics

of mass transport conserves the total mass. Thus if {m1, m2, . . . , mL} represents the

masses before the update, by virtue of mass conservation, the row sums of the matrix

[µ] are given by,
∑

j µij = mi (see Fig. 1). Similarly, the column sum corresponding to

a node i,
∑

j µji = m′
i represents the mass at site i just after the update.

Note that, by definition, some elements of the matrix [µ] are permanently zero

(when there is no directed channel available for mass transfer between a pair of sites).

On the other hand, when there is an available channel from i to j, the matrix element µij

is a stochastic variable which is chosen in the following way. For each node i, we define

a generalized ‘chipping kernel’ ϕi ({µij}|mi) that represents the joint distribution of the

masses transported from site i in a single update. Here the set {µij} runs over only

those sites j which are connected to i via a directed link, and in addition it includes the

diagonal element µii. In other words, {µij} is simply the set of non-zero elements in the

i-th row of the mass-transfer matrix [µ]. For example, in Fig. 1 where we have a graph

of four nodes along with the directed links, we need to define four chipping kernels as

follows: ϕ1 (µ11, µ12, µ14|m1), ϕ2 (µ21, µ22, µ23|m2), ϕ3 (µ31, µ33|m3) and ϕ4 (µ43, µ44|m4)

respectively. The chipping kernels must be normalized to unity at all sites i, i.e.
∫

ϕi ({µij}|mi) δ

(

∑

j

µij − mi

)

∏

j

dµij = 1 (8)

where it is implied that the index j in the sum as well as in the product runs over

all the sites that i feeds into, including i itself. Thus in this model the amount of

mass transported from a given site i in one update depends only on that site i, and

not, e.g. on the destination sites to which the mass is transported. Also, we assume

that the chipping kernels ϕi ({µij}|mi) do not contain the time t explicitly. Note also

that this chipping kernel ϕi ({µij}|mi) generalises that of [17, 18] sufficiently to include

hypercubic lattices[19] or more complicated graphs.

The chipping kernels thus specify the dynamics, i.e. the mass update rules. Given

these kernels, we next ask what is the steady state joint probability distribution of masses

m ≡ {m1, m2, · · · , mL}, i.e. P (m, t → ∞). In particular, our goal is to determine the

properties of the chipping kernels ϕi ({µij}|mi) required in order to guarantee that the

steady state joint probability distribution is factorisable, i.e. of the form

P (m, t → ∞) = Z(M, L)−1

[

L
∏

i=1

fi(mi)

]

δ

(

L
∑

i=1

mi − M

)

(9)
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µ12
µ21

1

2 3

4

µ23

µ31

µ43

µ14

[ µ ]=

µ11 0µ12

µ21 µ22 µ23 0

µ31 0 µ33 0

0 0 µ43 µ44

14µ

MASS−TRANSFER  MATRIX

m
i = = Σ 

j=1

4
µ i j = ROW  SUM

m
i
’ = MASS  AFTER  THE  UPDATE 

MASS  BEFORE  THE  UPDATE 

= Σ µ
j=1

4

j i = COLUMN  SUM

Figure 1. An example graph with four nodes labelled 1, 2, 3 and 4 and directed

links between certain pairs of nodes. The associated (4 × 4) mass-transfer matrix [µ]

is shown, whose element µij denotes the stochastic mass transferred from site i to

site j in one single update, provided there is a directed link between the two sites.

If there is no directed link, the corresponding matrix element is always identically

zero. The diagonal element µii is the amount of mass that stays at site i during the

update. The row sum and the column sum associated with any node i,
∑

j µij = mi

and
∑

j µji = m′

i, represent respectively the mass at i before and after the update.

where the normalization constant is given by

Z(M, L) =

L
∏

i=i

[
∫ ∞

0

dmifi(mi)

]

δ

(

L
∑

i=1

mi − M

)

. (10)

Besides, if the steady state factorises as in Eq. (9), we would also like to know the single-

site weights fi(mi) in terms of the prescribed chipping kernels ϕi ({µij}|mi). Note that

on an arbitrary graph G, the single-site weights fi(mi) are, in general, different from site

to site. Hence there is an additional subscript i in fi(mi). On a homogeneous graph,

where all sites have equivalent connectivities, the weight function f(m) does not depend

on the site i explicitly as in Eq. (1).

3. Factorisable Steady State on an Arbitrary Graph

Since the dynamics conserves the total mass, at any time t we can write P (m, t) ∝

F (m, t)δ (
∑

i mi − M) where M is the total mass and F (m, t) is the unnormalized

weight at time t. Below, we will first write down the general evolution equation of

the weight F (m, t) under the mass transport rules prescribed by the chipping kernels.

While the notations that we will use for a general graph G may seem a bit complicated,

it is instructive to keep the simple example in Fig. 1 in mind and use it as a guide to

the general notations.
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Let us consider a single update from time t to time t+1. Let m ≡ {m1, m2, · · · , mL}

denote the masses at time t before the update and m′ ≡ {m′
1, m

′
2, · · · , m

′
L} denote the

masses at time t + 1 after the update. In terms of the elements of the mass-transfer

matrix [µ], we thus have, mi =
∑

k µik and m′
i =

∑

k µki for all i. The master equation

for the evolution of the weight then reads

F (m′, t + 1) = (11)
L
∏

i=1

[

∫ ∞

0

dmi

∏

j

∫

dµijϕi ({µij}|mi) δ(m′
i −
∑

k

µki)δ(mi −
∑

k

µik)

]

F (m, t)

where the product over j runs over only the sites to which the site i feeds into, i.e., when

there is a directed link between sites i and j (note that this set includes the site i itself).

For other sites that are not connected to i by a directed link, the corresponding matrix

element µij = 0 identically (see Fig. 1) and hence they are not integration variables in

Eq. (11).

Our strategy now is to assume that the steady state factorises and to determine a

sufficent condition for this assumption to hold. First, we take the t → ∞ limit on both

sides of Eq. (11) and assume that the steady state weight factorises

F (m) =
∏

i

fi(mi) (12)

and write

fi(mi)ϕi ({µij}|mi) = Pi({µij})δ(mi −
∑

j

µij) , (13)

thus
L
∏

i=1

fi(m
′
i) =

L
∏

i=1

[

∫ ∞

0

dmi

∏

j

∫

dµijPi({µij})δ(m
′
i −
∑

k

µki)δ(mi −
∑

k

µik)

]

.(14)

Now we Laplace transform this equation to obtain

L
∏

i=1

gi(si) =

L
∏

i=1

[

∫ ∞

0

dmi

∏

j

∫

dµijPi({µij})δ(mi −
∑

k

µik) e−si

∑

k
µki

]

.(15)

where we have defined gi(si) =
∫∞

0
fi(m)e−si mdm. Next we trivially perform the

integration over the mi variables on the rhs of Eq. (15) and rearrange the si to get

L
∏

i=1

gi(si) =

L
∏

i=1

[

∏

j

∫

dµijPi({µij})e
−
∑

k
skµik

]

≡
∏

i

Xi({sk}i) . (16)

where {sk}i indicates that k runs over the sites to which i is connected by a directed

link, including the site i itself. For example, for the graph in Fig. 1, we have

g1(s1)g2(s2)g3(s3)g4(s4) = X1(s1, s2, s4) X2(s1, s2, s3) X3(s1, s3) X4(s3, s4).(17)

One solution (not the most general as we shall discuss in section 5 ) to (16) is

Xi({sk}i) =
∏

j

Kij(sj) (18)
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so that

gi(si) =
∏

j

Kji(si) . (19)

As before, the product in Eq. (18) runs over only those sites j that the site i feeds into

(including itself), whereas in Eq. (19) the product runs over only those sites j that feed

onto i (including the site i). For example, for the graph in Fig. 1, we will have

X1(s1, s2, s4) = K11(s1) K12(s2) K14(s4)

X2(s1, s2, s3) = K21(s1) K22(s2) K23(s3)

X3(s1, s3) = K31(s1) K33(s3)

X4(s3, s4) = K43(s3) K44(s4) (20)

and correspondingly

g1(s1) = K11(s1) K21(s1) K31(s1)

g2(s2) = K12(s2) K22(s2)

g3(s3) = K23(s3) K33(s3) K43(s3)

g4(s4) = K14(s4)K44(s4). (21)

Since the rhs of Eq. (19) is a product of Laplace transforms, its inverse Laplace

transform fi(mi) therefore has the convolution form

fi(m) =

[

∏

∗j

vji

]

(m) (22)

where the notation indicates a product over sites j feeding into i which is a multiple

convolution and the function vji(m) is the inverse Laplace transform of Kji(si), i.e.

Kji(si) =

∫ ∞

0

vji(σ) e−siσdσ (23)

Again, going back to Fig. 1, we will have, for example, by inverting Eq. (21) the

following convolution for the site labelled 1

f1(m1) =

∫

v11(m1 − σ21 − σ31) v21(σ21) v31(σ31)dσ21 dσ31 (24)

and similarly for the sites labelled 2, 3 and 4.

Having obtained the form of fi(m), let us ask what does this imply for the chipping

kernels. To see that, we go back to the definitions of Xi in Eq. (16). Substituting the

ansatz for Xi in Eq. (18) on the rhs of Eq. (16) we see that for each i
∏

j

∫

dµijPi({µij})e
−
∑

k
skµik =

∏

j

Kij(sj) (25)

For example, for the site 1 in Fig. 1, we have
∫

dµ11 dµ12 dµ14 P1(µ11, µ12, µ14) e−s1 µ11−s2 µ12−s4 µ14 = K11(s1) K12(s2) K14(s4), (26)
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and similarly for the sites 2, 3 and 4. Eq. (25) immediately implies for the general case

Pi({µij}) =
∏

j

vij(µij) (27)

where j runs over the sites which site i feeds into and vij is the Laplace inversion of Kij

as in Eq. (23). For example, for the site 1 in Fig. 1 we have

P1(µ11, µ12, µ14) = v11(µ11) v12(µ12) v14(µ14). (28)

Substituting Eq. (27) in Eq. (13) we get the following expression for the chipping kernel

ϕi ({µij}|mi) =

∏

j vij(µij)

[
∏

∗k vki] (mi)
. (29)

In the numerator the product is over sites j which site i feeds into via a directed link

connecting i to j (this includes site i itself), and one has the constraint
∑

j µij = mi.

In the denominator, on the other hand, the product is over sites k feeding into site i

(including once again the site i itself). Going back again to the example in Fig. 1, we

have for the site 1 the following chipping kernel

ϕ1(µ11, µ12, µ14|m1) =
v11(µ11) v12(µ12) v14(µ14)

∫

v11(m1 − σ21 − σ31) v21(σ21) v31(σ31)dσ21 dσ31

(30)

where µ11 + µ12 + µ14 = m1. Similarly one can easily express the chipping kernels for

the other sites 2, 3 and 4 in terms of the functions vij .

However this is not quite the end of the story since the chipping kernel ϕi({µij}|mi)

must obey a key consistency condition, namely its normalization: Eq. (8). This implies

from Eq. (29) that for each site i
[

∏

∗j

vji

]

(m) =

[

∏

∗j

vij

]

(m) (31)

Again, the convolution on the lhs is over sites j feeding into site i but the convolution

on the rhs is over sites j which i feeds into. For example, for the site 1 in Fig. 1, this

consistency condition reads
∫

v11(m1 − σ21 − σ31) v21(σ21) v31(σ31) dσ21 dσ31 =
∫

v11(m1 − µ12 − µ14) v12(µ12) v14(µ14) dµ12 dµ14. (32)

One can write down similar consistency conditions for sites 2, 3 and 4 also.

In summary, a sufficient condition for factorisation is that the chipping kernels

are product form as in Eq. (29) where vij are non-negative functions that satisfy the

consistency conditions in Eq. (31), but otherwise are arbitrary. If this condition holds,

then the steady state will factorise with single-site weight fi(m) given by the convolution

formula in Eq. (22). These conditions form the central result of this paper. The

conditions arise from making the ansatz in Eq. (18) which immediately implies Eq.

(22) for fi(mi) and Eq.(27) for Pi({µij}). These two equations, when substituted in

Eq. (13), gives Eq. (29) for the chipping kernel. Finally, Eq. (31) arises from the

requirement that the chipping kernel in Eq. (29) is normalized to unity.
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Condition (29,31) is certainly a sufficient condition. Whether it is also a necessary

condition remains a non-trivial issue. In the special case of one dimensional graph with

unidirectional transport, it was explicitly proved in Ref. [17] that this is also a necessary

condition. Similarly, this is true (see below) in the case of a complete graph where every

site is connected to every other site. However, it is unlikely, in general, that (29) is

also necessary. In section 5, we provide an explicit example showing solutions to (16)

which are not of the form (29). Although we are unable, for a technical reason to be

discussed later, to prove that this class of solutions are also “legitimate,” we feel that

valid solutions different from (29) should exist. Beyond this simple example, finding the

most general valid solution to Eq. (16) for the arbitrary graph seems to pose significant

challenges.

3.1. Specific Examples

Let us now discuss several special cases where one can directly verify that the consistency

conditions in Eq. (31) are satisfied automatically by the functions vij due to the nature

of the underlying graph G, thereby guaranteeing factorisability provided the chipping

kernels are of the product form as in Eq. (29).

Example 1: Mass transport in one dimension over extended range: Consider

a one dimensional latice with periodic boundary conditions where mass from a given

site can get transported up to a range l to the left or to the right. In this case

ϕi ({µij}|mi) ϕi (µi,j−l . . . µi,j+l|mi) (33)

and we have a translationally invariant chipping kernel i.e. ϕi(·|m) is the same function

of (2l + 1) arguments for each site. Then the consistency condition (31) reads

[vi,i−l∗vi,i−l+1∗· · ·∗vi,i+l−1∗vi,i+l](mi) = [vi−l,i∗vi−l+1,i∗· · ·∗vi+l−1,i∗vi+l,i](mi)(34)

which is automatically satisfied due to the translational invariance vi,i+d(µ) = vi−d,i(µ).

Example 2: Symmetric chipping rule: It is easy to see that if the chipping rules are

symmetric, i.e. vij(µ) = vji(µ), then the consistency condition (31) holds automatically.

Example 3: A more general chipping rule: A more general way to meet the

condition (31) is to assume that the chipping rules are such that at each site i, for every

directed link (i → j) out of site i, there is an incoming directed link (k → i) to i from

some other site k with vij(µ) = vki(µ). For example, in the 1-d example above, this is

achieved through vi,i+d(µ) = vi−d,i(µ). Similarly, one can achieve this on a hypercubic

lattice in arbitrary dimensions and on any graph where the number of links out of a site

equals the number of links into it.

Example 4: Complete graph with permutationally invariant chipping kernel:

So far we have proved that Eq. (29) is a sufficient condition for factorisability on

any arbitrary graph provided we can satisfy the consistency condition (31) for each
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site. As discussed before, to prove that this condition is also necessary seems hard

for a general graph. However, one can prove this for a complete graph where every

site is connected to every other site via a directed link and the chipping kernel is

permutationally invariant. This can be proved as follows. On a complete homogeneous

graph the functions gi(s) = g(s) in Eq. (16) do not depend explicitly on the site index

i. Moreover, since every site is connected to every other sites and using the fact that

the chipping kernel is permutationally invariant Eq. (16) simply becomes

g(s1)g(s2) · · · g(sL) = [X(s1, s2, · · · , sL)]L. (35)

Clearly X(s1, s2, · · · , sL) = K(s1)K(s2) · · ·K(sL) with K(s) arbitrary, is one solution

to Eq. (35) and thereby g(s) = [K(s)]L. As in the general case, this will then lead to

the sufficiency condition (29). To prove that X(s1, s2, · · · , sL) = K(s1)K(s2) · · ·K(sL)

is also the most general form of the solution that one can write down for Eq. (35), we

take logarithm on both sides of Eq. (35) and then take derivatives with respect to si

and sj with i 6= j. This gives

∂2 ln X

∂si∂sj

= 0, (36)

for any i 6= j. It is then easy to see that the most general solution of the partial

differential equation (36) is of the form, X(s1, s2, · · · , sL) = K1(s1) K2(s2) · · ·KL(sL)

where Ki(s) are arbitrary functions. Since the graph is homogeneous, we also

have Ki(s) = K(s) independent on the site index i. Thus X(s1, s2, · · · , sL) =

K(s1) K(s2) · · ·K(sL) with K(s) being an arbitrary function, is the only solution of

Eq. (35) that respects homogeneity. Since this solution finally leads to the sufficiency

condition, the uniqueness of its form guarantees then that Eq. (29) is both necessary

and sufficient. Note that the consistency condition (31) is automatically satisfied in this

case.

4. Random Sequential Dynamics

The sufficiency condition in Eq. (29) and the associated consistency condition in

Eq. (31), derived above for parallel update dynamics in discrete time, can be easily

extended to the case of random sequential dynamics. This can be achieved by letting

the probability of the chipping event in a time step ∝ dt so that, to leading order in dt for

small dt, at most one chipping event can occur in the whole graph G per update, i.e. the

chipping events occur sequentially one per update. In addition, taking dt → 0 one can

obtain the continuous time limit where chipping events occur with ‘rates’ per unit time.

Thus, the corresponding sufficiency condition for the random sequential dynamics will

be specified in terms of the chipping ‘rate’ kernels, rather than the chipping probablity

kernels ϕi in parallel dynamics. To translate the sufficiency condition in Eq. (29) valid

for the probability kernels into one that is valid for ‘rate’ kernels, we first redefine the

functions vij(µij), for all i 6= j, in the following way

vij(µij) = δ(µij) + xij(µij)dt (37)
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where xij(µij) are arbitrary functions. The diagonal functions vii(µii) are left unchanged.

With this re-definition of vij, the steady state weight in Eq. (22) becomes

fi(m) = vii(m) + dt

[

∑

j 6=i

∫ m

0

vii(m − µji) xji(µji) dµji

]

+ O(dt2) (38)

where the sum over j in the second term runs over all sites j 6= i that feed into

site i on G. Using the re-defined vij in Eq. (37) one can similarly rewrite the

chipping kernels in Eq. (29). Since the diagonal elements play a special role, it is

convenient to redefine the chipping kernel only in terms of non-diagonal elements, i.e.,

ϕi ({µij}|mi) ≡ ϕi ({µij}
′|mi) where {µij}

′ denotes the set of matrix elements in the row

i without the diagonal element µii. We are allowed to get rid of the diagonal element

using the row sum,
∑

j µij = mi. For example, for the graph in Fig. 1, we will rewrite,

ϕ1(µ11, µ12, µ14|m1) ≡ ϕ1(µ12, µ14|m1). Substituting Eq. (37) in Eq. (29) and taking

the limit dt → 0, one gets

ϕi ({µij}
′|mi) =

[

1 −
dt

vii(mi)

∑

j 6=i

[xji ∗ vii](mi)

]

∏

j 6=i

δ(µij) +

+ dt

[

∑

j 6=i

xij(µij) vii(mi − µij)

vii(mi)

∏

k 6=j

δ(µik)

]

+ O(dt2) (39)

where [x ∗ y](m) =
∫ m

0
x(σ)y(m − σ)dσ denotes the convolution integral. The notation

in Eq. (39) may look a bit complicated, but actually it’s rather simple. For example,

for the graph in Fig. 1, the kernel in Eq. (39) for the site labelled 1 reads,

ϕ1(µ12, µ14|m1) = (40)
[

1 −
dt

v11(m1)
([v11 ∗ x31](m1) + [v11 ∗ x21](m1))

]

δ(µ12) δ(µ14) +

+ dt

[

x12(µ12)v11(m1 − µ12)

v11(m1)
δ(µ14) +

x14(µ14)v11(m1 − µ14)

v11(m1)
δ(µ12)

]

.

Taking dt → 0 limit in Eq. (39) we then obtain the continuous time limit where a

portion µij gets chipped off the site i with mass mi, to another site j which is connected

to i by a directed link from i to j on G, with a rate xij(µij)vii(mi − µij)/vii(mi). Also,

we notice that in the limit dt → 0, the steady state weight fi(mi) is given simply from

Eq. (38)

fi(mi) = vii(mi). (41)

However, as in the case of parallel update, we need the functions xij to satisfy certain

additional consistency conditions. This is because the chipping kernel ϕi ({µij}
′|mi),

when integrated over its arguments {µij}
′ must give unity. Integrating Eq. (39) then

gives the required consistency condition that must be satisfied for each node i,
∑

j 6=i

[xij ∗ vii](mi) =
∑

j 6=i

[xji ∗ vii](mi), (42)
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where the sum on the lhs runs over all sites j that the site i feeds into (excluding the

site i itself), but on the rhs the sum runs over all sites j that feed into site i (excluding

the site i itself). As an example of this condition for the site labelled 1 in Fig. 1, we

have

[x12 ∗ v11](m1) + [x14 ∗ v11](m1) = [x21 ∗ v11](m1) + [x31 ∗ v11](m1). (43)

Similar consistency conditions can be wriiten down for sites 2, 3 and 4 in Fig. 1.

Thus, in summary, for the mass transport model on an arbitrary graph G with

random sequential dynamics specified by the rates αij(µ|mi) of mass µ to be transferred

from site i to site j (provided there is a directed link between i and j on G), a sufficiency

condition for the steady state to be factorisable with weights fi(mi) is that αij(µ|mi) is

of the form

αij(µ|mi) =
xij(µ)vii(mi − µ)

vii(mi)
(44)

for all i, where xij and vii are functions that must satisfy the consistency conditions in

Eq. (42), but otherwise arbitrary. Also, the corresponding steady state weight is then

given simply by fi(mi) = vii(mi). Note that though formally Eq. (44) looks like a direct

generalization of the one dimensional condition in Eq. (6), the additional consistency

conditions in Eq. (42) are nontrivial to satisfy. For the one dimensional example in

Eq. (6), the corresponding consistency condition, [xi,i+1 ∗ vi](mi) = [xi−1,i ∗ vi](mi) is

automatically satisfied due to the translational invariance, xi−1,i(µ) = xi,i+1(µ).

4.1. Specific example of hypercubic lattice

It is easy to verify that the consistency condition in Eq. (42) is automatically satisfied in

the four example cases of section 3.1 (as it should be since random sequential dynamics

is just a limit of the discrete time case). Let us do this explicitly for the case where

the graph G is a homogeneous hypercubic lattice with periodic boundary conditions and

mass transfer takes place only between nearest neighbours. For a hypercubic lattice,

from each site i there are 2d outgoing links to the 2d nearest neighbours of i. Similarly,

there are exactly 2d incoming links to site i from its nearest neighbours. Then the

sufficiency condition in Eq. (44) can be written in a simplified notation

αi,q(µ|mi) =
xi,q(µ)vii(mi − µ)

vii(mi)
(45)

where the index q = ±1 runs over the 2d directions {±e1,±e2, · · · ,±ed}, αi,q(µ|mi)

denotes the rate of transfer of mass µ from site i with mass mi in the direction q and

xi,q denotes the function associated with the link (i, i+q). Similarly, the the consistency

condition in Eq. (42) can be rewritten as
∑

q

[xi,q ∗ vii](mi) =
∑

j∈neighbours of i

[xj,−q ∗ vii](mi). (46)

We next use the fact that the lattice is homogeneous, i.e. it is translationally

invariant in all directions. Clearly then xi−q,q(z) = xi,i+q = gq(z) due to translational
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invariance in the q-th direction. In that case the condition in Eq. (46) is clearly satisfied

at all i. Also, due to the translational invariance, the rate function αi,q(µ|mi) = αq(µ|mi)

does not depend on the site index i. By the same requirement, vii(mi) = v(mi). Thus,

the sufficiency condition in Eq. (44) simply reads,

αq(µ|mi) =
gq(µ)v(mi − µ)

v(mi)
(47)

where gq(z) and v(z) are arbitrary non-negative functions. The consistency conditions

are automatically satisfied as proved above. The steady state single site weight f(mi) is

simply, f(mi) = v(mi), and naturally it does not depend on the site index i explicitly.

The condition in Eq. (47) is precisely that derived by Greenblatt and Lebowitz. Thus,

our general sufficiency condition, valid for an aribtrary graph G, recovers this special

case when G is a homogeneous hypercubic lattice with nearest neighbour mass transport.

4.2. ZRP on arbitrary graph

We can also check that the steady state for the continuous time zero-range process on

an arbitrary graph is recovered. The zero-range process involves discrete masses and is

specified by the rates for a a unit of mass to hop from site i to j. In the case where

these rates are given by

αij(1|mi) = yijwi(mi) , (48)

where wi(mi) is the total rate for the unit mass leaving site i and yij is the probability

that the random destination for a hop from site i is j, the steady state factorises with

single-site weight

fi(mi) =
pmi

i
∏mi

n=1 wi(n)
(49)

where pi =
∑

j 6=i yjipj is the steady state probability of a single random walker moving

from site i to j with probability yij [11, 12].

To make the connection between the forms (48) and (44) we identify

xij(1) = yijpi and wi(mi) =
pivii(mi − 1)

vii(mi)
. (50)

Inverting the latter equality to express vii(mi) in terms of wi yields, by virtue of (41),

the single-site weight (49). Finally the consistency condition (42) becomes
∑

j 6=i

xij(1)vii(m − 1) =
∑

j 6=i

xji(1)vii(m − 1), (51)

and is satisfied with xij(1) = yijpi since we have
∑

j 6=i

xij(1) =
∑

j 6=i

xji(1) . (52)
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5. Conclusion

In this work we have derived the sufficent condition (29) along with a consistency

condition (31) for factorisation of the general (discrete time, continuous mass) mass

transport model on an arbitrary graph. In this case the single-site weight is given

by (22). We gave in section 3.1 specific examples of geometries where the additional

consistency condition associated with the sufficient condition is automatically fulfilled.

Moreover on a complete graph with permutationally invariant chipping functions we

showed that the sufficent condition is, in fact, also necessary.

Of course a significant improvement would be to generalize condition (29,31) to a

necessary and sufficient condition. To illustrate the challenges involved in accomplishing

this task, we offer another simple example where we can derive a condition that is both

necessary and sufficient.

This example, a seemingly trivial generalization of the one in [17, 18], involves a

one-dimensional lattice with chipping to both nearest neighbour sites and we also assume

that the chipping kernel is translationally invariant (l = 1 in Example 1 of section 3.1).

Then, due to the translational invariance, (16) becomes
∏

i

g(si) =
∏

i

X(si−1, si, si+1) . (53)

Using a similar procedure to that employed in Example 4 of section 3.1 — taking the

logarithm of (53) then successive derivatives with respect to si and sj — we find that

the general solution to (53) is

X(si−1, si, si+1) = Kii−1(si−1)Kii(si)Kii+1(si+1)
H(si−1, si)

H(si, si+1)
. (54)

where Kii−1, Kii, Kii+1 and H are arbitrary functions, independent of i. Inverting

the Laplace transforms to give P(µii−1, µii, µii+1) would yield a considerably more

complicated form for the chipping kernel ϕ(µii−1, µii, µii+1) than (29). In principle,

therefore, there could be a whole family of chipping kernels, generated by the choice of

H , which give rise to the same steady state (i.e. the same single-site weight f(m)) as

that for H = 1. Thus, H could be thought of as a “gauge function”.

In addition, for each choice of H , one has to ensure the consistency condition,

namely that

ϕ(µii−1, µii, µii+1) =
P(µii−1, µii, µii+1)

f(mi)
δ(mi − (µii−1 + µii + µii+1)) (55)

is correctly normalized to unity. On the face of it, it may appear that this imposes a

formidable constraint on the choice of H . However, we now show that this consistency

condition does not impose any additional constraint on H . In other words, if the

consistency condition is ensured for H = 1, then it is automatically satisfied for all

other choices of H . To see this, consider the expression of the chipping kernel (55).

Now, the denominator f(mi) is, of course, independent of the choice of H . So, to prove
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that the consistency condition of normalization of ϕ does not impose any additional

constraint on H , one has to prove that the integral

I (m) ≡

∫

dµii−1dµiidµii+1P(µii−1, µii, µii+1)δ (m − µii−1 − µii − µii+1) (56)

is independent of the choice of H . Now, taking the Laplace transform of Eq. (56) one

obtains
∫

dme−smI (m) =

∫

dµii−1dµiidµii+1e
−s(µii−1+µii+µii+1)P(µii−1, µii, µii+1)

= X(s, s, s)

= Kii−1(s)Kii(s)Kii+1(s) (57)

where we have used definition (16) in going from the first line to the second and Eq.

(54) in going from the second line to the third. But this expression on the rhs does not

contain the “gauge function” H thereby proving that the integral of P is independent of

the choice of H . Thus the consistency condition is automatically fulfilled for arbitrary

choices of H as long as it is ensured for H = 1, which is indeed the case as shown in

Sec. 3.1 Example 1.

A more serious constraint on H is that the inverse Laplace transform of (54) must be

non-negative. The case H = 1 in (54) obviously imposes the trivial constraint that the

inverse Laplace transform of the K’s be non-negative. It remains to be shown whether

there is also a class of H 6= 1 which lead to valid chipping kernels. If it could be shown

that this class is non-empty, the one-dimensional l = 1 example we have discussed would

show explicitly that it is not necessary for ϕ to be of the form (29). Mapping the extent

of this class of H (if indeed it is non-empty) remains a daunting task.

For an arbitrary graph, we have made some in-roads with similar considerations.

Unfortunately, the most general solution to (16) remains difficult to formulate.

Finally we note that having a factorised steady state opens the door for the study of

condensation as in [15, 16]. Thus one should be able to analyse condensation in various

geometries or even on scale-free networks [20].
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