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The longest excursion of stochastic processes in nonequilibrium systems
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We consider the excursions, i.e. the intervals between consecutive zeros, of stochastic processes
that arise in a variety of nonequilibrium systems and study the temporal growth of the longest one
Imax(t) up to time ¢. For smooth processes, we find a universal linear growth (Imax(t)) ~ Qoo t with a
model dependent amplitude Q. In contrast, for non-smooth processes with a persistence exponent
0, we show that (Imax(t)) has a linear growth if 0 < 0. while (Imax (t)) ~ t1=¥if @ > 0.. The amplitude
(D and the exponent 1 are novel quantities associated to nonequilibrium dynamics. These behaviors
are obtained by exact analytical calculations for renewal and multiplicative processes and numerical
simulations for other systems such as the coarsening dynamics in Ising model as well as the diffusion

equation with random initial conditions.

PACS numbers:

Introduction. Nonequilibrium dynamics in many-body
systems keep offering new challenges despite several
decades of research. An example of such a system,
among others, is the Ising model undergoing phase or-
dering after a rapid quench in temperature ﬁ] In such
systems, the relevant stochastic process X (¢) that rep-
resents, at a fixed point in space, the evolving spin in
the Ising model (or e.g., the field in the diffusion equa-
tion) is generically a complex one with nontrivial history
dependence. Traditional two-time correlation function
(X (t1)X (t2)) is typically not sufficient to characterize
the complex temporal history of such a process. One
simple measure of this history dependence that has at-
tracted much attention in the recent past, both theo-
retically |2, 3] and experimentally [4], is the persistence
p(t1,t2) defined as the probability that the process X (¢),
adjusted to have zero mean, has not changed sign in the
interval [t1,?2]. In several such nonequilibrium systems
persistence p(tg,t), for t > to, decays as a power law,
po(t) = p(to,t > ty) ~ t~?, with a nontrivial persistence
exponent 6 [3].

A stochastic process X(t) (depicted schematically in
Fig. 1) evidently does not change sign between two con-
secutive zero crossings. The persistence po(t) is simply
related to the probability distribution of time intervals
(or excursions) between successive zeros and is clearly
one, but not the only one, possible characterization of
the history dependence of X (¢). In this Letter we pro-
pose an alternative yet simply measurable characteristic
of the history of X (t) via an extreme observable that elu-
cidates, in a natural way, the important role played by
extreme value statistics in such nonequilibrium systems.
In particular, our results illustrate the universal features
of extreme statistics in generic many-body nonequilib-
rium systems and provides, in addition, interesting con-
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FIG. 1: Intervals between zero-crossings (excursions) of a
stochastic process X (t).

nections with the theory of records that attracted much
interest recently in the context of random walksd@], grow-
ing networks ﬂé], and pinned elastic manifolds [7].

For a typical realization of a generic process X (¢) with
N = N(t) zeros in the fized time interval [0, ¢] (see Fig.[]),
let {71, 72, - ,7n} denote the interval lengths between
successive zeros and A(t) denote the length (or age) of
the last unfinished excursion. Our proposed ezxtreme ob-
servable is the length of the longest excursion up to ¢

Imax(t) = max(7y, 72, , 7N, A(t)) . (1)

Let us first summarize our main results. We find
rather rich universal late time behavior of the average
(Imax(t)) for generic stochastic processes X (t) arising in
nonequilibrium systems. Such processes typically belong
to two broad classes [3]: smooth (i.c., with a finite den-
sity of zeros) and non-smooth (with infinite density of
zeros). While persistence typically decays algebraically,
po(t) ~ t=% irrespective of the smoothness of the pro-
cess, (lmax(t)), in contrast, turns out to be sensitive to
the smoothness of X (). For smooth processes, (Imax(t))
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always grows linearly with time
(lmax(t)) ~ Qo T, (2)

albeit with a model dependent prefactor Qo > 0. In con-
trast, for non-smooth processes, it grows either as in (2,
or as

<lmax(t)> ~ Y ) (3)

where the exponent 0 < ¢ < 1 (sublinear growth), de-
pending on whether the associated persistence exponent
6 of the process is less (6 < 6.) or greater (f > 6.) than a
critical value 6.. We establish these behaviors via exact
analytical calculations for two simple models, one corre-
sponding to each class: multiplicative (smooth) and re-
newal (non-smooth) processes. In addition, we perform
extensive numerical simulations in a variety of nonequi-
librium systems, including the diffusion equation with
random initial conditions and coarsening dynamics of the
Ising model both below and exactly at the critical tem-
perature T' = T,. For the latter case, our results (2] B
provide new universal quantities associated to nonequi-
librium critical dynamics.

The full knowledge of the distribution of lyx [8] allows
in particular the computation of its average. However,
here we compute (lnax(t)) by using the relationship

d(lmax (1)) /dt = Q(1) , (4)

where Q(t) denotes the probability that the last excursion
in [0,¢], A(t) in Fig. [0 is the longest one

Q(t) = Probllmax(t) = A(t)] . (5)

Thus Q(t) is the rate at which the “record” length of an
excursion is broken at time ¢. Indeed, if the total interval
increases from ¢ to t + dt, the random variable lyax(t)
either increases by dt (if the last excursion happens to be
the longest one and the probability for this event is Q(t))
or stays the same (with probability 1 — Q(¢)). Taking
average gives (). Henceforth we focus on Q(t), rather
than (Imax(t)) directly.

Renewal processes. Let X (t) be a renewal process with
successive interval lengths 7;’s being independent random
variables, each distributed according to a Lévy law with
parameter 0, p(t) ~ 77179 for large 7 [9]. The per-
sistence is simply po(t) = [ drp(r) ~ t=%. The joint
distribution gy (71,72, - , 7N, A(t); t) of the intervals de-
picted in Fig. dlis then

qn (71, 7N A(L)s ) = p(Ta)p(72) -+ - p(Tv)Po(A(t))
X(S(T1+T2+-'-+TN+A(t)—t), (6)

where the 0 function ensures that the total interval length
is t. For the last interval to be the longest, the others
must be shorter than it implying that Q(¢) in Eq. (@) is

00 0o b b
Q(t) = NZ_O/O db/o dTl.../O dTNQN(7—17"' 7TN,b;t) )
(7)

Taking Laplace transform of Eq. (@) gives a simple form
for Q(s) = [,° dte™*'Q(¢) :
po(b) e_Sb

Q(s)z/o dbl—f;’dTp(T)e—w .

Using p(7) = —p((7) in an integration by part, followed
by change of variables b = x/s and 7 = y/s, lead to an
expression convenient for late time asymptotic analysis

(®)

s = 2 [ e po(z/s)e””
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For # < 1, one can take the limit s — 0 directly
in Eq. @), using po(t) ~ (to/t)? for large t with some
non-universal microscopic time scale to. Interestingly, to
cancels between the numerator and the denominator in
Eq. (@), yielding Q(s) ~ QF /s and thus Q(t) — QF
for large t (the superscript R refers to renewal process),
as announced in Eq. (@) with a universal constant that
depends only on 0 (and not on other details)

e dx
R _ AR
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A special case of this general result, § = 1/2, corre-

sponds to Brownian motion if one considers only “large”
excursions, i.e. 7;’s in Fig. [l larger than some cut-off
.. This recovers in a simple way the result QX (1/2) =
0.626508..., derived previously by mathematicians [10]
using rather complicated, albeit rigorous, method. Note
that Q% (0) in Eq. (I0) vanishes as § — 1. A plot of
QE () vs. 6 is shown in Fig. Bd.

In contrast, for # > 1, the naive substitution of py(t =
y/s) ~ (to/t)? in the integral in the denominator of Eq.
@) is problematic since the integral diverges. Instead
a careful analysis shows that [ dypo(y/s)e™ o () s
as s — 0 where (1) = [ dr7p(7). This yields, after
simple algebra, Q(s) ~ s~/¢ and thus Q(t) ~ t~1+1/¢,
as announced in Eq. ([@]), with

Y=1-1/6. (11)

Thus for renewal processes the change of behavior of
(Imax(t)) happens at § = 6. = 1. Qualitatively this tran-
sition can be understood by simple scaling arguments
combining extreme value statistics with the behavior of
the sum of independent Lévy variables []]. The fact
that the asymptotics of (lymax(t)) for Brownian motion, a
highly “non-smooth” process with infinite density of zero-
crossings, corresponds to a special case (§ = 1/2) of the
renewal process suggests that the latter might qualita-
tively lead to a good approximation of (Iyax(¢)) for other
non-smooth processes such as the coarsening dynamics
of the Ising model, and leads us to hypothesise that this
change of asymptotic behavior of (Inax(t)) at a certain 6,
might be generic for non-smooth processes. Such an ap-
proximation of the phase ordering of the Ising model by



a renewal process is also useful for other observables [11]].
However, for generic non-smooth processes with 6 > 6.,
the scaling relation ¢ = 1 — 1/6 obtained under renewal
approximation is in general not valid and ¥ seems to be
a new exponent. Numerical results indeed support this
hypothesis.

Multiplicative processes. A process X (t) is multiplica-
tive if the locations of its zeros {t1,t2,- -} are such that
the successive ratios Uy = ti—1/t are independent ran-
dom variables, each distributed over U € [0, 1] with den-
sity p(U). While the calculation of Q(t) is difficult for
arbitrary p(U), it turns out that for the special family of
density parametrized by 0, p(U) = U1, one can use
recent results of Ref. [6] to show that Q(t) — QY (where
M refers to multiplicative process), leading to a linear
growth of (lax(t)) as in Eq. @) with

QM = QM) = /OOO dse s0F() (12)

where E(s) = [ dre ®/z. In particular, for uni-
form distribution, Q* (1) = 0.624329..., the Golomb-
Dickman constant that also describes the asymptotic lin-
ear growth of the longest cycle of a random permuta-
tion [12]. In Fig.Bd we show a plot of QY (). At variance
with renewal processes, (lmax(t)) ~ QM (6)t for all 6.

To appreciate this result in a more general context, we
note that a multiplicative process X (t) is non-stationary
by construction. However, when plotted as a function
of T = In(t), the process becomes a stationary renewal
process in T since the successive intervals on the T axis
Ty, — Tx—1 become statistically independent. Similarly, it
turns out that for many nonequilibrium processes (e.g,
diffusion equation with random initial condition), the
original non-stationary process in real time ¢ becomes
stationary in T = In(¢) |3] and then the renewal ap-
proximation is precisely equivalent to the Independent
Interval Approximation (ITA) |13], known to be a very
good one for smooth processes [3]. For such smooth pro-
cesses then, multiplicative process is a good approxima-
tion in real time ¢. Within the ITA, the interval distri-
bution in log-time T decays as ~ exp[—0T| for large T
where 6 is the associated persistence exponent. In real
time ¢, this then corresponds to a multiplicative process
with p(U) ~ OU?~! for small U. If one assumes fur-
ther that this power law form of 5(U) holds over the full
range of U € [0,1] one arrives precisely at the model
studied above with the parameter 6 being the persis-
tence exponent. Thus, the multiplicative process with
p(U) = 0U%1 seems to be qualitatively a good repre-
sentative of generic smooth processes, leading to the hy-
pothesis of the asymptotic linear growth of (I;max(t)) for
such smooth processes. This hypothesis is supported by
numerical simulations.

Numerical results. We have computed Q(t) for various
processes for which the persistence exponent 6 is known
either exactly or numerically. Guided by our analytical

results, we have considered both non-smooth and smooth
processes and the numerical results are consistent with
the two broad behaviors announced in Eqgs. @) and (3]).
In the first case, Q(t) — Qo as in Eq. (@), as shown in
Fig. Zh while in the second case, Q(t) ~ t~¥ as in Eq. (3],
as shown in Fig. 2b.

As a prototype of non-smooth processes, we have stud-
ied the magnetization in the coarsening dynamics of a
d-dimensional ferromagnetic Ising system of linear size L
consisting of L? spins o; = 1, with periodic boundary
conditions (pbc). Starting from a random initial condi-
tion, the spins evolve via Glauber dynamics with nearest
neighbour Ising Hamiltonian Higng = — Z@-J—) 0;05. Our
results are summarized below:

e In d = 1 and at zero temperature, we have computed
Q(t) for the local magnetization X (t) = o;(¢), for which
6 = 3/8 [14]. Fig. b shows a plot of Q(t) vs. ¢ for
L = 128 and 256. These data show that Q(t) — Qo
with Qoo = 0.725(5), which is very close to the analytical
value obtained for a renewal process in Eq. (I0) with
6 = 3/8, for which Q£ (3/8) = 0.726531.. (while for a
multiplicative process one has QY (3/8) = 0.80338...),
see Fig. k.

e We obtained a similar behavior, ie. Q(t) — Qo
for the global magnetization M(t) = L=¢>". 0;(t) both
ind=1atT =0 (for which § = 1/4 [15]) and in d = 2
at the critical point T' = T (for which 8 = 0.237(3) [15]).
These results are shown in Fig. k. Note that for the
global magnetization, the agreement between the numer-
ical value of Qo and the corresponding Q% () is only
qualitative.

e The exact solution obtained for renewal processes
shows that if 6 is large enough (in that case 6 > 1), Q(¥)
decays to zero as a power law Q(t) ~ ¢t~% @ M. Re-
cently, it was shown that for critical dynamics of Ising
systems starting from a completely ordered state, the
persistence exponent associated to X (t) = M (t) — (M (t))
where M (t) is the global magnetization can be large, for
instance § = 1.7(1) in 2d [16]. Unfortunately, the nu-
merical computation of Q(¢) is quite difficult in that case
because the exponent ¢ is seemingly positive but very
small. Alternatively, starting from a fully magnetized
state, one can instead consider, as in Ref. |[17], the process
X(t) = Mi(t) — (M (t)) where M;(t) is the magnetization
of a line, for which the persistence exponent is even larger
6 ~ 3.3 |18]. In Fig. Bb, we show a plot of Q(t) for this
process for two different system sizes L = 64,128. This
plot is compatible with a power law decay Q(t) ~ t~%
with ¢ = 0.34(1), which is actually rather far from the
value obtained for a renewal process in Eq. (IIl) which
givesp =1—-1/60 ~0.7.

These results for non-smooth processes in coarsening
dynamics, summarized in Fig. 2k, are qualitatively and in
some cases even quantitatively (see Fig.[2h) in agreement
with the results for renewal processes in Eqs. ([0 IT).

As a prototype of smooth processes, we have stud-
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FIG. 2: a): Q(t) as a function of ¢ for the local magnetization
in the Ising chain evolving with Glauber dynamics at T" = 0.
b): Q(t) as a function of ¢ on a log-log scale for the magne-
tization of a line in the 2d-Ising model at 7. evolving with
Glauber dynamics starting from a fully magnetized state. c):
Qoo as a function of 0: the lines correspond respectively to
QR () (solid) and Q2 (6) (dotted) and the points correspond
to the numerical values obtained for different nonequilibrium
systems. The two values for ‘Ising 1d’ correspond to the local
magnetization (6 = 3/8) and to the global one (6 = 1/4). d):
Same plot as in ¢) on a larger scale.

ied the diffusing field ¢(x,t) evolving according to the
heat equation 9;p(x,t) = VZp(x,t) with pbc in dimen-
sion d starting from random initial condition {(p(x,t =
0)p(x',t = 0)) = 6%(x — x'). It is known that the persis-
tence exponent § = 6(d) associated to the diffusing field
at the origin X (t) = ¢(x = 0, ) depends continuously on
d [13] and in particular 8(d = 46) ~ 1 [19]. The proba-
bility Q(¢) can be easily computed numerically in any di-
mension d by solving the heat equation and noticing that
the field at the origin ¢(0,t) can be simply written, for a
large system size, as (0,t) ~ [ dr pld=1)/2=r" /1 (r)
where U(r) is a random field with short range correla-
tions. We have computed Q(t) for d = 2,10, 20, 30,40
and 50 and found, in all cases, Q(t) — Qoo. The asymp-
totic values Q. as a function of 6, reported in Fig. 2k,
are in good agreement, even quantitatively, with Q ()
for multiplicative processes. In Fig. Pk we have also re-
ported the value of @, for another smooth process called
the random acceleration process, for which § = 1/4.
These data suggest that smooth processes, at variance
with coarsening dynamics in Ising systems, are better
approximated by multiplicative processes.

A close look at Fig. [l suggests investigation of other
closely related cousins of Ily.x(t) defined in Eq. (),
such as pimax(t) = max(71,72, -+ ,7n+1) or for instance
Amax(t) = max(71,72, -+ ,7n). For renewal processes
with Lévy index 6 < 1, the analysis presented above

can be extended to obtain exact results for the average
of both observables. In both cases, the average grows
linearly with ¢ but with different #-dependent prefactors.
While the prefactor for the former case was computed in
Ref. [20] by a rather complicated but rigorous method,
the latter case (Amax(t)) has not been studied, to our
knowledge, even for Brownian motion (§ = 1/2). We find
(Amax(t)) =~ Ao (0)t which yields, in particular, a new
constant As(1/2) = 0.241749... for Brownian motion.
The detailed studies of pmax(t) and Apmax(t) for other
nonequilibrium processes will be reported elsewhere [8].

In conclusion, we have shown that the average length
of the longest excursion has rather rich and universal
asymptotic time dependence for a variety of nonequi-
librium processes. Our analytical and numerical results
highlight the importance of extreme value statistics in
generic nonequilibrium dynamics.
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