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Abstract 

 

An exact expression for the distribution of the area swept out by a drifted Brownian 

motion till its first-passage time is derived. A study of the asymptotic behaviour 

confirms earlier conjectures and clarifies their range of validity. The analysis leads to 

a simple closed-form solution for the moments of the Airy distribution.  
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The Airy distribution (not to be confused with the Airy function) occurs quite 

naturally in a remarkably diverse range of problems; see [1-3] and references therein. 

Examples arise when considering, e.g., the cost function for algorithms used for data 

storage [4], the internal path length of rooted trees [5], the nature of fluctuations in 

inventory processes [6], the area enclosed by planar random loops [7], the maximal 

relative height for fluctuating interfaces [8], solid-on-solid models [9] and Gaussian 

signals with αf/1  spectra [10], and the avalanche size in directed sandpile models 

[11]. In perhaps its most natural setting the Airy distribution characterises the area 

swept out by a Brownian excursion, i.e. the area under the Wiener process )(tW  

conditioned such that 0)0( =W , 0)1( =W  with 0)( >tW  for 10 << t . See [2] for a 

derivation from a path integral perspective, and [12] for an excellent overview of the 

wider class of Brownian area problems, many of which share similar features. It is 

known that the area moments of a Brownian excursion and hence the moments of the 

Airy distribution are given by [13,14];  
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with 8/1,2/1 10 =−= KK  whilst for 2≥n  one has the quadratic recursion 
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Slightly different definitions of the Airy distribution exist in the literature [12] which 

are equivalent up to a scaling of the area variable, e.g., in [1] the moments 
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+=Ω  are the so-called Airy 

constants. In all cases, however, the recursion (2) plays a fundamental role, and it is 

this object we focus on. It is easy to iterate (2) for small values of n ; however, it has 

been a long-standing challenge to identify a simple closed-form solution for nK  

which is valid for general n . Below we will show that for all 1≥n  
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where )(Ai z  and )(Bi z  are the standard, linearly independent solutions of Airy’s 

differential equation 0)()( =−′′ zzFzF .  

 

To derive this rather elegant result we will first solve another problem, similar to 

but distinct from the Brownian excursion problem described above, building on the 

work presented in [15]. This ancillary problem finds application in determining the 

limiting behaviour of various models associated with discrete time queues [16], 

cellular automaton traffic jam models [17] etc. To set the scene, consider a stochastic 

process, )(ty , which evolves via the Langevin equation 
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dt
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where )(tξ  is a zero mean noise source with correlator )()()( tttt ′−=′ δξξ  such that 

)()( tdWdtt =ξ . Thus )(ty  is a drifted Brownian motion. Suppose the motion starts at 

0)0( >== xty  with drift parameter 0>η , and let ft  denote the time at which the 

process first crosses 0=y . Then the variable ∫ ′′= ft
tdtyA

0
)(  defines the area swept 

out by the process till this first-passage time. One would like to know the probability 

density, ),( xAP , of this area variable. This was considered in [15] where it was 

shown, using a backward Fokker-Planck technique, that the Laplace transform of the 

probability density dAexAPxsP sA∫
∞ −≡

0
),(),(~  satisfies (for convenience and clarity 

we work hereafter in units where 1=η )  

 

0),(~),(~),(~

2
1

2

2

=−
∂

∂
−

∂
∂ xsPsx

x
xsP

x
xsP        (5) 

 

subject to the boundary conditions 1)0,(~ ==xsP  and 0),(~ =∞→xsP . The solution 

is given by  
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Using this result, various asymptotic results were presented in [15] relating to the 

moments nA  and the tail of the probability density ),( xAP  as ∞→A  when x  is 

small. It was left as a challenge to formally invert (6) to derive an explicit expression 

for ),( xAP . We take up this challenge here.  

 

Thus we seek to evaluate the contour integral 
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with ),(~ xsP  given by (6). The approach taken is similar to that discussed in [18] in 

the context of considering the integral of the absolute value of a Brownian bridge. We 

first wish to modify the contour by closing it to the left. The continuation to the left 

hand side of the complex s-plane can be accomplished by providing a cut on the 

negative real axis. Thus one can represent ϕires =  where π<sarg  or πϕπ <<− . 

Fractional powers µs  with 1<µ  are to be interpreted as ϕµµµ iers =  so that 

πϕµµ <=)arg(s . It then follows that ),(~ xsP  is an analytic function on the cut-

plane since the zeros of )(Ai z  are restricted to the negative real axis [1]. Now, if one 

considers that )(Ai z  vanishes exponentially fast as ∞→z  [19]  
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it follows that the Bromwich contour in (7) may be deformed to a Hankel-type 

contour around the branch cut, starting at ∞− , winding round the origin in an anti-

clockwise fashion and ending up at ∞− , i.e.,  
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By considering the contributions above and below the branch cut one then finds that 
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This appears to be no more tractable than the original expression; however, a key 

simplification comes from exploiting the identity [19] 
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whereupon (noting that 1−=± πie ) one can recast (10) in the form 
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with 3/2)2( −≡ rrτ . This is an exact expression for the first-passage area probability 

density for drifted Brownian motion in terms of the integral of a real function, valid 

for all 0>A  and 0>x . It is, of course, not the same as the Airy distribution 

discussed above, but there are deep connections as we shall see shortly. 

 

To illustrate the power and utility of (12), we first consider the asymptotic 

behaviour of ),( xAP  as ∞→A  without making any assumption about the size of x . 

It is clear that in the limit ∞→A  the integral is dominated by the contribution in the 

neighbourhood of 0=r , where ∞→rτ . The following asymptotic expansions of 

)(Ai z  and )(Bi z  as ∞→z  are therefore useful [19];  
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where 
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Defining )(Ai)(Bi)()BiAi(),( 2/12/1 zzxzzzxzxzf −− −−−≡ , it is a straightforward 

although laborious task to show using (13) that as ∞→z , 
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This is sufficient to develop the first two terms in an asymptotic expansion of ),( xAP  

as ∞→A  since, to the required order, (12) now simplifies to, 
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One can easily evaluate the integrals in (16) using the result [20] 
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where )(ˆ zKν  is a modified Bessel function (we use ∧  to distinguish νK̂  from nK ). 

The final step requires one to use the asymptotic expansion of )(ˆ zKν  as ∞→z  [19] 
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whereupon one eventually derives as ∞→A   
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We stress that this result is valid for all values of 0>x . For 0→x  one recovers the 

leading order term conjectured in [15]. The relative size of the second term provides 

insight into the regime of validity of approximations made in the queueing problems 

discussed in [16,17]. With effort, one could calculate higher order terms in the 

asymptotic expansion if one felt so inclined. 

 

For completeness, it is also possible to derive the behaviour of ),( xAP  as 0→A . 

The exact result (12) is of little use in this regard, since the oscillatory nature of the 

integrand for large r  is difficult to handle. However, from the Laplace transform (6) 

we have as ∞→s  
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The leading order asymptotic behaviour of ),( xAP  as 0→A  is governed by the first 

term in (20). This can be inverted exactly by noting that )(3)(Ai 2/3
3
2

3/1
1 zKzz −= π  

[19] and by appealing to (17). The result is  
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where we have used the fact that )(/3)0(Ai 3
23/2 Γ= −  [19]. In the limit 0→x  this 

reduces to the exact distribution for the zero-drift case [15], valid for all 0>A . By 

reintroducing a general drift η  through the replacements xx η→  and AA 3η→ , one 

may readily see why this is the case.  

 

Now we turn our attention to the moments. By considering the moments from 

two different perspectives we will show how to derive (3). We start by writing  
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into which we insert the formal expression (12) for the probability density ),( xAP . 

Interchanging the order of integration one has 
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When 0=n  the right hand side of (23) is unity for all 0>x , although a direct 

demonstration of this fact is difficult and has so far eluded us. Notwithstanding, it 

follows that one cannot expand (23) in powers of x  when 0=n ; mathematically the 

reason why may be traced backed to the observation that the integral 
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is infinite when 0=n . However, for 1≥n  this integral is finite and one can justify 

expanding the right hand side of (23) to at least )( 2xO . Using the fact that the 

Wronskian has a particularly simple form [19] 
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one obtains after a change of variables 
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Next we consider the moments from the perspective of the Laplace transform, 

wherein 
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The function )(Ai/)(iA zz′  has a well-known asymptotic expansion as ∞→z  [1,12] 
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where nK  is defined by the quadratic recurrence relation (2). It is at this point that the 

connection with the Airy distribution becomes apparent. It follows that as 0→s  
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If we now compare (30) with (26) and equate the coefficient of the )(xO  term we find 

immediately the result for nK  given by (3). As a useful check one can evaluate (3) 

exactly when 1=n . Thus, given the form of the Wronskian (25), one has that  
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where the final step uses the asymptotic forms for )(Ai z  and )(Bi z  given by (13) as 

well the fact that )(/3)0(Ai 3
23/2 Γ= −  and )(/3)0(Bi 3

26/1 Γ= −  [19]. It follows that 

8/11 =K , as required. Numerical evaluation of (3) using Maple confirms its 

correctness for 102 ≤≤ n . Further, when ∞→n  one may use (13) to show that  

 

)!.1(
4
3

2
1

4
3

2
1

4
3~

0

1

0

2/)23(
2/3

3
4

−⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= ∫

∫

∞
−−

∞
−−

ndyey

dzezK

n
yn

n

zn
n

ππ

π
                    (32) 

 

This result was first proved by Takacs [6,13] by studying directly the behaviour of (2) 

together with an alternative linear recursion relation for the nK , namely 
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where the coefficients nc  are given by (14). The present derivation is much simpler, 

and can be extended to provide higher order terms almost trivially.  

 

Having derived (3) somewhat indirectly, it is natural to ask whether there is a 

more direct derivation. The answer is yes, and we sketch the outline proof as follows 

(omitting the technical details). The starting point is (28), from which one can easily 

establish the two defining recursions for nK , (2) and (33), using formal power series 

methods; see, e.g., [12]. With considerably more effort (the difficulties associated 
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with (28) being an asymptotic expansion need careful handling) one can justify 

writing for 1≥n  
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where the contour C  runs along two rays; the first from 3/2πie−∞  to 0 and the second 

from 0 to 3/2πie∞ . Taking each ray in turn, making a straightforward change of 

variables, and noting that 1)1( )1( −−± −= nnie π , one can show that  
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It is now straightforward using (11) and (25) to show that (35) reduces to (3). It must 

be confessed, however, that the search for this second derivation was greatly assisted 

by knowing the answer first. This, coupled with the importance of (12) in its own 

right, explains why we have presented the analysis in the way that we have.  

 

We conclude by making two observations which might prove worthy of further 

study. First, since 
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with the boundary condition 0)0( ==xAn  for 1≥n  and, by definition, 1)(0 ≡xA . 

This differential equation has the formal solution  
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which may be iterated to give any moment exactly, e.g., 2/)()( 2
1 xxxA +=  etc. By 

taking the limit 0→x  in (37) and by invoking (30) it follows that for 1≥n  
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Whether such results in conjunction with (23) add something new is unclear. Second, 

consider a random variable Y  whose probability density is given by  
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The moments of Y  are 18 +≡ nn KY  for 0≥n , which follows from (3) after a simple 

change of variables. Given the ubiquitous nature of nK , it would be interesting to 

know whether this random variable Y  has a simple physical interpretation.  

 

In summary, we have succeeded in deriving an exact expression for the 

probability density for the area swept out by a drifted Brownian motion during its first 

passage time. Using this result it has proved possible to derive a simple closed-form 

solution for nK , and hence the moments of the Airy distribution, in terms of the Airy 

functions )(Ai z  and )(Bi z . As well as being of mathematical interest, the results are 

applicable to a wide variety of physical problems.  
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