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We study a random bisection problem where an interval of length x is cut into two random fragments
at the first stage, then each of these two fragments is cut further, etc. We compute the probability
Pn�x� that at the nth stage, each of 2n fragments is shorter than 1. We show that Pn�x� approaches a
traveling wave form, and the front position xn increases as xn � nbrn for large n with r � 1.261 076 . . .
and b � 0.453 025 . . . . We also solve the m-section problem where each interval is broken into m
fragments and show that rm � m��lnm� and bm � 3��2 lnm� for large m. Our approach establishes an
intriguing connection between extreme value statistics and traveling wave propagation in the context of
the fragmentation problem.

PACS numbers: 05.40.–a, 02.50.– r, 64.60.–i
The statistics of extremes plays an important role in
various branches of physics, statistics, and mathematics
[1,2]. For example, in physics of disordered systems, the
statistics of extremely low energy states governs the
thermodynamic behavior at low temperatures [3].
The extreme-value statistics is well understood when ran-
dom variables are independent and identically distributed.
Much less is known when the random variables are
correlated. In the replica language, this class of problems
corresponds to full replica symmetry breaking [3]. Thus
it would be important to derive exact results for extreme
value statistics for correlated random variables.

On the other hand, there is a wide variety of problems
in physics, chemistry, and biology that allows for solu-
tions with propagating traveling waves [4]. The problem
of front propagation into an unstable state dates back to
the pioneering studies [5,6] motivated by gene spreading
in a population. Numerous traveling wave solutions were
found in combustion [7] and reaction diffusion systems
[8]; they also appear in the mean-field theory of directed
polymers in random medium [9], calculations of Lyapunov
exponents [10,11], pattern formation [12], and many other
problems [13]. Usually the traveling wave has an exponen-
tially decaying front that advances with a uniform velocity
from a stable state to an unstable state. Out of a continuum
of possible allowed velocities of the front, a unique value
is usually selected. This velocity selection mechanism has
been investigated by a variety of methods [4,6,13–16], and
it was found that for “sufficiently steep” initial conditions
the minimal velocity is usually selected.

Is there a connection between these two sets of prob-
lems? In this paper, we establish such a connection in the
context of a random fragmentation problem (RFP). This
problem, besides being an exactly solvable example of ex-
treme value statistics for correlated random variables, is
also important in computer science where it is known as
the random binary search tree problem [17–20]. Here we
0031-9007�00�85(26)�5492(4)$15.00
use standard techniques of statistical physics to solve this
problem exactly. Our study reveals that there is perhaps a
very general and deep connection between the two seem-
ingly unrelated topics of extreme value statistics and prop-
agating wave solutions. This connection was also noticed
recently in the context of a particle in a random correlated
potential problem [21].

The RFP studied here is rather similar to the random
multiplicative branching processes studied in the context
of energy cascades in turbulence [22], rupture processes
in earthquakes [23], and financial crashes in stock markets
[24]. The questions asked here (mostly motivated by com-
puter science) are different from those in the other prob-
lems. However, since these different models are rather
similar to each other, we expect that the results obtained
and the new questions posed here might be relevant to these
other problems as well.

The RFP can be formulated as follows. An interval of
length x is cut into two halves of lengths x1 � rx and
x2 � �1 2 r�x, respectively, where r is the random num-
ber chosen from the uniform distribution over �0, 1�. Next,
each of these two fragments is cut again. After the nth
step, there are 2n fragments whose lengths are correlated
random variables (correlations are dynamically generated).
Given the initial length x, what is the probability Pn�x, l�
that each of the 2n fragments is shorter than l? In other
words, what is the probability that the longest of these 2n

fragments would be shorter than l? The l dependence
is simple, Pn�x, l� � Pn�x�l�, so in the following we set
l � 1 without loss of generality.

Clearly, Pn�x� � 0 for x $ 2n. Moreover, there exists a
threshold xn such that, for large n, Pn�x� ! 1 for x ø xn

and Pn�x� ! 0 for x ¿ xn. The structure is that of an
advancing front and the front position xn increases with n
as rn for large n. This intriguing “phase transition” was
established in Refs. [17,18] and finally rigorously proved
by Devroye [25] who also computed exactly the value
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of r � 1.261 076 . . . . Recently, Hattori and Ochiai [26]
conjectured, based on numerical simulation, that the more
precise asymptotic behavior of xn reads

xn � nbrn, (1)

and found numerically that b � 0.407.
In this paper, we derive this asymptotic result by

using methods of statistical physics. In particular, we
rederive the value of r in a physically transparent way
and compute exactly the value of b � 0.453 025 . . . ,
which is a completely new result. Our technique consists
of employing a scaling ansatz which reduces the prob-
lem to solving an equation that admits traveling wave
solutions. We then select an appropriate solution by
employing a well-known front selection principle. Our
technique also allows us to obtain exact results for a
multisection problem where each interval is cut into m
random pieces at every stage. Once again, the distribution
Pn�x� follows the zero-one law, with the threshold value
xn�m� � nbm �rm�n. As in the m � 2 case, we compute
the exponents rm and bm exactly for arbitrary m. For
example, r3 � 1.499 118 . . . and b3 � 0.429 815 . . . , and
rm ! m� lnm and bm ! 3��2 lnm� when m ! `. We
also show that the variance of the front position xn�m� is
always finite.

We first consider the m � 2 case, i.e., the bisection
problem. It is easy to see that Pn�x� satisfies the exact
recursion relation,

Pn11�x� �
1
x

Z x

0
dy Pn� y�Pn�x 2 y� , (2)

with the initial condition, P0�x� � u�1 2 x�, where u�x�
is the Heaviside step function. The prefactor 1�x on the
right hand side of Eq. (2) is the probability that the point
where the interval is cut into two pieces is chosen randomly
from the interval �0, x�. Taking the Laplace transform
Qn�s� �

R`
0 dx e2sxPn�x� of Eq. (2), we get

dQn11�s�
ds

� 2Q2
n�s� . (3)

Physically, one expects that, as n grows, Pn�x� will be
nonzero for x , xn and then will rapidly decay to zero for
x . xn where xn is a threshold. An appropriate definition
of xn would be

xn �
Z `

0
dx Pn�x� . (4)

Thus, it is natural to rewrite Pn�x� in the scaling form
Pn�x� � fn�x�xn�. Thence, the Laplace transform reads
Qn�s� � xnFn�sxn� with Fn�z� �

R
`
0 dy e2zyfn� y�. Sub-

stituting this form of Qn�s� into Eq. (3), we get

dFn11�z�
dz

� 2

µ
xn

xn11

∂2∑
Fn

µ
zxn

xn11

∂∏2

. (5)

Note that, by definition, Qn�0� � xn implying Fn�0� � 1
for all n. Additionally, fn�0� � 1 leads to Fn�0� ! z21 as
z ! `. For convenience, we make a further substitution,
Fn�z� � �1 2 Hn�z���z, which recasts Eq. (5) into

z
dHn11

dz
� H2

n

√
zxn

xn11

!
2 2Hn

√
zxn

xn11

!
1 Hn�z� , (6)

with the boundary conditions Hn�0� � 1 and Hn�z� ! 0
as z ! `.

We first focus on the computing of r in the asymptotic
relation (1). To determine r, we seek a “stationary,” i.e.,
independent of n, solution of Eq. (6). Using xn � nbrn

and taking the n ! ` limit, we find that the stationary
solution satisfies

z
dH�z�

dz
� H2

√
z
r

!
2 2H

√
z
r

!
1 H�z� , (7)

where H�0� � 1 and H�z� ! 0 as z ! `. While we could
not solve this nonlocal and nonlinear differential equation,
we can determine the “eigenvalue” r exactly through the
asymptotic analysis. Indeed, in the large z limit, H�z�
is small and thus one can neglect the nonlinear term in
Eq. (7). The resulting linear equation admits a power law
solution, H�z� � az2m, with

r �

∑
1 1 m

2

∏1�m

. (8)

Thus, a wide range of possible m’s is in principle allowed.
However, usually a particular value is selected depending
on the initial condition of the system. This is very sim-
ilar to the problem of velocity selection in a large class
of problems with wave propagation [8,14] and it is well
known that for a wide class of initial conditions the ex-
tremum value is chosen. In the present case, the function
on the right hand side of Eq. (8) has a unique maximum
at m � m�, which is a root of ln� 11m�

2 � � m���1 1 m��.
Though we have not proved explicitly that the extremum
value is indeed chosen, one can infer this conclusion from
the general principle of front selection.

The exponent b characterizes the next to leading asymp-
totic behavior of the front. Therefore, to compute b

we need to consider the full equation (6) rather than its
n ! ` limit. A subleading asymptotic behavior of trav-
eling fronts was originally analyzed by Bramson [14] for
a reaction-diffusion equation, and recently investigated in
[13,15,16]. Here we employ an approach of Ref. [15]. For
finite but large n, we make the following scaling ansatz for
the function Hn�z�:

Hn�z� � naG

µ
lnz
na

∂
z2m�

, (9)

where the exponent a and the scaling function G� y� are
yet to be determined. The scaling function G� y� must
vanish as y ! `. Also, G� y� � y as y ! 0 to ensure
that, for large n, Hn�z� � z2m�

and is independent of n.
We substitute this scaling ansatz in Eq. (6) and use xn �
nbrn where r is already known exactly from Eq. (8).
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Using the exact value of m�, we find that different leading
order terms are comparable only with the special choice
a � 1�2. In that case, the scaling function G� y� satisfies
an ordinary differential equation,

�lnr�2 d2G
dy2 1 y

dG
dy

1 �2bm� 2 1�G� y� � 0 , (10)

with the boundary conditions G� y� � y for y ! 0 and
G� y� ! 0 as y ! `. This therefore constitutes an eigen-
value problem where b is the required eigenvalue. The
exact solution of this differential equation that satisfies the
boundary condition at y ! ` is given by [27]

G� y� � A e2� y2�4 ln2r� D2�bm�21�

µ
y

lnr

∂
, (11)

where A is a constant and Dp�?� is the parabolic cylin-
der function of order p. From the known properties of
cylinder functions [27], we find that the boundary condi-
tion, G� y� � y as y ! 0, selects the eigenvalue 2�bm� 2

1� � 1. Thus, the exponent b is exactly determined in
terms of the known m�,

b �
3

2m�
. (12)

Using m� � 3.311 070 . . . , we get b � 0.453 025 . . . .
Our exact result slightly differs from the numerical value
b � 0.407 obtained in Ref. [26]. An accurate numerical
determination of b is not simple as it is a subleading
correction to the leading asymptotic behavior.

The bisection problem can be straightforwardly gener-
alized to the m-section problem where at each stage every
interval is cut into m random pieces [28]. The probability
Pn�x� that at the nth stage each of mn fragments is shorter
than 1 satisfies the exact recursion relation,

Pn11�x� �
�m 2 1�!

xm21

Z `

0
· · ·

Z `

0

mY
j�1

dyj Pn� yj�

3 d

√
mX

i�1

yi 2 x

!
, (13)

with the initial condition, P0�x� � u�1 2 x�. This equa-
tion can be easily derived as follows. At a given stage
n, an interval of length x is cut into m fragments. Let
z1, . . . , zm21 denote the location of the points at which
the interval is cut. The allowed range of values of the
coordinates �z1, . . . , zm21� is the �m 2 1�-dimensional
simplex: x $ zm21 $ . . . $ z1 $ 0. The volume of
this simplex is xm21��m 2 1�!, and this explains the
prefactor of Eq. (13). Finally, by changing coordinates
to y1 � z1, y2 � z2 2 z1, . . . , ym � x 2 zm21, one
obtains Eq. (13). For m � 2, Eq. (13) reduces to Eq. (2),
and we proceed exactly as in the m � 2 case. The Laplace
transform, Qn�s�, satisfies the differential equation
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dm21Qn11�s�
dsm21 � �21�m21�m 2 1�!�Qn�s��m. (14)

We again expect the threshold to grow as nbm �rm�n. To
determine rm, we assume that Pn approaches the scaling
form, Pn�x� � f���x�xn�m����, in the large n limit. Thence,
Qn�s� � xn�m�F���sxn�m���� where xn�m� �

R`

0 dx Pn�x�
and F�z� �

R`
0 dz e2zyf� y�. By inserting the scaling

form for Qn�s� and xn�m� � nbm �rm�n into Eq. (14) we
finally arrive at the nonlocal differential equation

dm21F�z�
dzm21 �

�21�m21�m 2 1�!
�rm�m

∑
F

µ
z

rm

∂∏m

. (15)

Substituting F � �1 2 H�z���z and linearizing the result-
ing equation for H�z� in the large z limit, one finds a solu-
tion that behaves algebraically, H�z� � z2mm , in the large
z limit. A straightforward algebra then shows that rm de-
pends on mm via

rm �

∑
G�mm 1 m�

G�mm 1 1�G�m 1 1�

∏�1�mm�
, (16)

where G�?� is the gamma function. Equation (16) is the
generalization of Eq. (8) for the arbitrary m case. Once
again, the function on the right-hand side has a unique
maximum at mm � m�

m and this maximum is selected. In
particular, r3 � exp� �2b13�

�b11��b12� � where b is found from
b�2b 1 3� � �b 1 1� �b 1 2� ln��b 1 1� �b 1 2��6�. Solv-
ing this numerically gives r3 � 1.499 118 . . . and
m

�
3 � 3.489 870 . . . .
The exponent bm can be determined exactly for arbi-

trary m. We do not repeat the calculation as it follows the
same steps as for m � 2 and the final result is given by the
same expression (12), i.e., bm � 3��2m�

m�. For instance,
b3 � 0.429 815 . . . , and generally the exponent bm de-
creases with increasing m.

One can easily derive the asymptotic behavior of rm

and bm. Taking logarithms on both sides of Eq. (16) and
differentiating with respect to mm one finds that the maxi-
mum occurs at m�

m � lnm. Substituting this into Eqs. (12)
and (16) gives the large m asymptotics

rm �
m

lnm
, bm �

3
2 lnm

. (17)

In this work, we have established a relationship be-
tween two seemingly disparate subjects — the statistics of
extremes and traveling wave propagation. Specifically, we
have shown that the probability density of the maximal
fragment length, which is the derivative of the distribu-
tion Pn�x�, approaches the solitary traveling wave in the
large n limit. This traveling wave has a finite width which
implies, in the context of the random binary search trees,
that the variation of the height of a tree is finite. This result
has long been anticipated on the basis of numerical experi-
ments, but remained intractable [19,29].

The present work admits several extensions. One could
assume that an interval can be cut into fragments of
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relative lengths r and 1 2 r with the probability den-
sity p�r� which is arbitrary apart from normalization
and symmetry requirements, p�r� � p�1 2 r� andR1

0 dr p�r� � 1. Besides the uniform probability den-
sity, p�r� � 1, one could solve the random bisection
problem for a number of other densities, e.g., for
p�r� � 6r�1 2 r�. The basic result, Eq. (1), always
holds but the exponents do depend on the probability
density p�r�.

One could also modify the random bisection problem by
deciding to cut only those intervals which are still longer
than 1. This problem can be solved by employing similar
techniques as the original one. The most interesting ques-
tion is how does the total number of intervals N�x�, which
are left after all intervals will be shorter than 1, depend
on the initial length x? For the original random bisection
problem with the uniform probability density, our solution
implies N�x� � xg�lnx�2d with g � ln2� lnr 	 2.9881
and d � bg 	 1.353 68. For the modified version, we
have found N�x� 
 2x. Thus, the modified algorithm is
much more effective if we want to minimize the total num-
ber of cuts.

Apart from straightforward applications to the random
search tree problem in computer science, our results have
implications in a number of topics of current interest in
physics, chemistry, and geophysics. One obvious applica-
tion is to the fracture of a rock, or to the breakup of a poly-
mer. Generally, systems involving treelike structures often
lead to recursion relations similar to Eq. (2) as exempli-
fied by directed polymers on disordered trees [9], cascade
processes [22], and hierarchical models of rupture [23].
Finally, we mention a concrete possible application to
granular materials. Recent experiments have studied the
propagation of stresses in a granular pile of glass beads
subjected to a large vertical overload [30]. Our model is
closer to the situation when the vertical overload is local-
ized. This force gets transmitted from the top layer to
the bottom layer. If this external force greatly exceeds
the weight of individual grains, F ¿ w, and if fractions
of force transmitted from a grain to its neighbors in the
lower layer are random, then the model studied above
gives the mean-field description of the force transmission.
Our results then imply that if the force from a grain in
a given layer is always transmitted to m grains in the
lower layer, than the granular material should contain at
least ln�F�F��� lnrm layers to guarantee that the normal
force supported by any grain at the bottom layer never
exceeds F�.
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