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We consider the one-dimensional target search process that involves an immobile target located
at the origin and N searchers performing independent Brownian motions starting at the initial
positions ~x = (x1, x2, . . . , xN) all on the positive half space. The process stops when the target
is first found by one of the searchers. We compute the probability distribution of the maximum
distance m visited by the searchers till the stopping time and show that it has a power law tail:
PN(m|~x) ≃ BN(x1x2 . . . xN)/mN+1 for large m. Thus all moments of m up to the order (N − 1)
are finite, while the higher moments diverge. The prefactor BN increases with N faster than
exponentially. Our solution gives the exit probability of a set of N particles from a box [0, L]
through the left boundary. Incidentally, it also provides an exact solution of the Laplace’s equation
in an N-dimensional hypercube with some prescribed boundary conditions. The analytical results
are in excellent agreement with Monte Carlo simulations.

I. INTRODUCTION

The probability distribution of the maximum of a single one-dimensional Brownian motion (and its variants such as a
Brownian bridge or an excursion) over a fixed interval of time [0, t], has a long history in the probability literature [1–7].
The statistics of the maximum has diverse applications. One example is the Kolmogorov-Smirnov test in statistics that
is used to compare, in a nonparametric way, two different probability distributions [8, 9]. Similarly, the distribution of
the global maximum of a discrete-time random flights (including Lévy flights) has also been studied in the probability
literature [10, 11], with more recent applications in computer science [12], physics [13] and chemistry [14].
In statistical physics, there has been a recent revival of interest in related problems in the context of the distribution

of the maximal height, measured with respect to a reference point, of (1 + 1)-dimensional fluctuating interfaces [15–
17]. In the stationary state of a finite sample of size L, such fluctuating interfaces are often described by a Brownian
bridge in space over an interval [0, L], albeit with certain global constraints [16]. The statistics of maximum has
also been computed for continuous-time subdiffusive processes [18, 19] and has been used to analyse single particle
trajectories [20].
The distribution of the maximum for a single Brownian motion (or its variants such as bridge, excursion etc.)

has been extended to many Brownian motions, including certain strongly interacting random walkers, e.g. non-
intersecting, so-called vicious random walkers [21–24]. (The latter problem has an intriguing connection to the
Gaussian ensembles of the random matrix theory [21, 24, 25].) For independent walkers, the results on the distribution
of the maximum have recently been used to compute the mean perimeter and the mean area of the convex hull of N
independent planar Brownian motions [26, 27].
These results on Brownian motion and its variants represent rare exact analytical results for the extreme value

statistics of correlated random variables, a subject of increasing current interest [28]. However, all these results about
the distribution of the maximum, for a single or multiple walkers, have been derived in the case when one considers
the walkers over a fixed interval of time [0, t]. An interesting variation of this problem, with several applications, arises
when the interval [0, t] is not fixed, but itself varies from realization to realization, i.e., one observes the walker (or
walkers) over a time interval [0, ts] where the stopping time ts of the process itself is a random variable. For example,
ts may represent the first-passage time (through the origin) of a walker.
To be more precise, consider first a single Brownian walker that starts at time t = 0 at position x1 > 0. The position

x1(t) of the walker evolves via the continuous-time stochastic equation, dx1/dt = η1(t) where η1(t) is a Gaussian white
noise with mean 〈η1(t)〉 = 0 and a correlator 〈η1(t)η1(t′)〉 = δ(t− t′). The process stops at the stopping time ts when
the walker hits the origin for the first time (see Fig. 1).
Let m be the maximum displacement of the particle till the stopping time ts. The statistics of the random variable

m is interesting and it represents an example of the so called first-passage Brownian functional [29]. The problem is a
toy model of ‘random search’, where the origin represents a fixed ‘target’ and the Brownian walker represents a random
searcher. The search is called off when the searcher finds its target and m represents the maximum distance travelled
by the searcher before it finds its target. For concreteness, we shall mostly used terminology related to random
search, although there are several applications of this problem. For example, in the context of trapping [30–32] or
predator-prey [33] models the origin may represent an immobile target (prey) and the Brownian walker may represent
a diffusing chemical trap (predator). The stopping time ts is then the reaction time or the survival time of the prey
and m denotes the maximum distance the predator travels before finding its prey. In the context of the directed
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FIG. 1: The trajectory (red line) of a single Brownian walker starting initially at x1 till the stopping time ts at which it hits
the origin for the first time. The maximum distance travelled by the particle till ts is denoted by m.

Abelian sandpile model in (1 + 1)-dimensions [34], m represents the maximum lateral size of an avalanche [35]. The
random variable m also plays an important role in characterizing the so called staircase polygons [36]. In the context
of queueing theory, where the position of the walker represents the length of a queue, m represents the maximum
length of a queue during the so called busy period [35, 36].
The probability density function (pdf) P1(m

∣

∣x1) of m (for fixed x1) can be easily computed [35] and it turns out
to be a pure power law:

P1(m
∣

∣x1) =
x1

m2
; m ≥ x1. (1)

While this pdf is evidently normalized to unity, the average 〈m〉 and higher integer moments are infinite! The
cumulative distribution of the maximum is given by

Q1(L
∣

∣x1) = Prob
[

m ≤ L
∣

∣x1

]

=

∫ L

x1

P1(m
∣

∣x1) dm = 1− x1

L
. (2)

This distribution has a very simple interpretation: it just represents the exit probability of a Brownian particle [37],
starting at 0 ≤ x1 ≤ L, from a box [0, L] through its left boundary at 0.
In this paper, we study a generalization of this search problem where there is still one fixed target at the origin, but

there are N searchers who perform independent Brownian motions on the x > 0 axis, starting at the initial positions
~x ≡ (x1, x2, . . . , xN ). The position xi(t) of the i-th walker evolves with time t via the Brownian evolution

dxi

dt
= ηi(t) (3)

where ηi(t) is a Gaussian white noise satisfying 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = δ(t − t′)δi,j . Since the walkers are
independent they can cross each other. The process stops at a stopping time ts when the origin is hit for the first
time by any one of the walkers (e.g., the second walker (red) in Fig. 2). Note that ts varies from one history of the
process to another.
In the context of chemical kinetics [31] where the problem is generally referred to as the ‘target annihilation’

problem, various generalizations of this problem have been investigated including e.g. the situation where the target
itself diffuses [38–42]. In the following, we shall limit ourselves to the case of immobile target and focus on the statistics
of the maximum distance m (from the target) travelled by any of the walkers till the stopping time ts when the target
is found. Thus m denotes the distance of the farthest point on the x axis visited by any one of the walkers till ts.
Clearly m is a random variable fluctuating from one realization of the process to another. Our object of interest is the



3

��
��
��
��

��
��
��
��

�� ��
��
��
��

��
��
��
��

��
��
��
��

m

ts

x x x xx
1 2 3 4 50 space

t
im

e

L

FIG. 2: The trajectories of N = 5 independent Brownian walkers starting at initial positions x1, x2, x3, x4 and x5 till the
stopping time ts when one of the walkers (the second one (red) in this figure) hits the origin. The maximum displacement
along the x direction till ts (undergone, e.g., by the third particle (green)) is denoted by m. The cumulative probability
QN(L

∣

∣~x) = Prob [m ≤ L|~x] also represents the exit probability of the first particle from a box [0, L] through its left boundary.

probability density PN (m
∣

∣~x) of this maximum distance m, given the number N of walkers and their initial positions
~x. Thus m provides an estimate (worst-case) of the distance that needs to be covered by a team of N walkers to find
a fixed target.

As in the single searcher case, let QN (L
∣

∣~x) = Prob[m ≤ L
∣

∣~x] =
∫ L

0 PN (m
∣

∣~x) dm be the cumulative probability that
the maximum m till ts is less than or equal to L. This cumulative distribution of the maximum can be interpreted
as the solution of a different problem as in the N = 1 case. Consider, for instance, a slightly different problem where
again we have a set of N independent walkers, but now inside a box [0, L], starting at the initial positions ~x. Let us
define the exit probability as the probability that the first particle that exits the box [0, L] does so through 0 (and not
through the upper boundary at L), see Fig. 2. As in the N = 1 case, this exit probability is precisely the cumulative
distribution QN(L

∣

∣~x) of the maximum m till the stopping time in the semi-infinite system, as it counts all those
events where one of the trajectories hits the lower boundary 0 before hitting the upper boundary at L while all the
others stay inside the box [0, L] till this event of first-hitting the origin.
We will see that for this seemingly simple one-dimensional model of independent walkers, the statistics of m has a

rich and nontrivial dependence on the number N of walkers. This is partly due to the fact that the same stopping
time ts for all the walkers effectively introduces a correlation between the trajectories of the walkers, even though
each executes an independent Brownian motion. While for N = 1 the solution is simple, it becomes rather nonrivial
even for N = 2!
Let us first summarize our main results. We compute the pdf PN (m

∣

∣~x) exactly for all N ≥ 1 by a path counting
(or path integral) method. We show that, for arbitrary N ≥ 1, the pdf of the maximum has an asymptotic power-law
tail

PN (m
∣

∣~x) ≃ BN
x1 x2 . . . xN

mN+1
as m → ∞ (4)

where the prefactor BN has a nontrivial N dependence which we compute explicitly. For N = 1, we have B1 = 1 and
the asymptotic result in (4) is actually valid exactly for all m ≥ x1. For N = 2, we will see that

B2 =
1

4π2

[

Γ

(

1

4

)]4

= 4.37688 . . . (5)

In particular, for large N , the prefactor BN grows faster than exponentially

BN ≃ N

[

4

π
ln(N)

]N/2

. (6)
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Our asymptotic result (4) indicates that for N walkers, integer moments of m up to order (N − 1) are finite, while
higher integer moments are infinite. Evidently, as N increases, the distribution becomes narrower and narrower as
expected but it does so in a nontrivial fashion.
Recently, the cumulative distribution of the maximum m till the first-passage time ts, or equivalently the exit

probability Q(L|x) from the box [0, L] through the origin, was studied [43] for a generic self-affine stochastic process
x(t) starting at the initial position x. The process x(t) typically grows with time as x(t) ∼ tH where H is the Hurst
exponent. This power law growth of distance with time makes the process self-affine. An example is the ordinary
Brownian motion where H = 1/2. For such a generic self-affine process, it was argued [43] that the cumulative
distribution of the maximum Q(L|x) = Prob(m ≤ L|x) ∼ 1 − A (x/L)φ in the limit x/L → 0 where A is a constant.
The exponent φ was found to be related to the persistence exponent θ via the scaling relation φ = θ/H [43]. The
persistence exponent θ characterizes the late time power law decay of the survival probability, i.e., the probability
that the process stays on the positive half-axis up to time t [44]. Thus the pdf of the maximum decays for large m
as, P (m|x) ∼ m−φ−1 with φ = θ/H . The exact result (4) shows that if we think of the assembly of N independent
Brownian motions as a single self-affine stochastic process in the N -dimensional space, then φ = N . We will see later
that the persistence exponent for this collective process is θ = N/2 and the Hurst exponent H = 1/2. Thus our exact
result for this model supports the general scaling relation φ = θ/H found in [43].
The paper is organized as follows. In Section 2, we provide a simple heuristic argument in favour of our main result

(4). This argument is not sufficient to compute the prefactor BN exactly for all N . However, we show that this
heuristic argument becomes asymptotically exact for large N and one can extract the limiting behavior of BN for
large N using an extreme value argument. In Section 3, we set up the general method for computing the cumulative
distribution QN(L

∣

∣~x) of the maximum m. This requires solving Laplace’s equation in an N -dimensional space with
appropriate boundary conditions. We present explicit solutions for the cases N = 1 and N = 2. In Section 4, we
present an alternative path counting method that is more general, physically transparent and provides explicit results
for all N ≥ 1. In Section 5, we present numerical results to verify our analytical predictions. Finally in Section 6,
we conclude with a summary and a list of interesting open problems. Some of the details of the computations are
relegated to the appendices.

II. HEURISTIC ARGUMENT

We begin with a simple heuristic argument in favour of (4). Consider the semi-infinite geometry with the indepen-
dent Brownian motions, evolving via (3), starting at initial positions {x1, x2, . . . , xN}. Let ts be the stopping time
when one of the walkers hits the origin. The probabality distribution of ts can be computed exactly as follows. As
an input to solving the N -particle problem, let us first consider a single Brownian motion starting initially at x0 > 0
and let p(x0, t) be the survival probability, i.e., the probability that the walker does not hit the origin up to time t.
This can be easily computed by various standard methods and is given by the well known formula [29, 45]

p(x0, t) = erf

(

x0√
2t

)

; erf(y) =
2√
π

∫ y

0

e−u2

du. (7)

Turning to N walkers we note that since the walkers are independent, the probability that none of them hits 0 up

to time t is simply the product
∏N

i=1 p(xi, t). This is precisely the probability that the stopping time ts > t. Thus,
the cumulative distribution of the stopping time ts, given the initial positions ~x, reads [31, 39]

Prob
[

ts > t
∣

∣~x
]

=

N
∏

i=1

erf

(

xi√
2t

)

. (8)

For large t, this cumulative distribution has a power law tail

Prob
[

ts > t
∣

∣~x
]

≃
(

2

π

)N/2
x1 x2 . . . xN

tN/2
. (9)

This asymptotic for survival probability tells us that the persistence exponent is θ = N/2.
The result (8) and its asymptotic counterpart (9) are exact. Next comes the heuristic part. We note that for

large ts, the typical maximal displacement m in time ts must scale as: m ∼ √
ts. Taking this relationship between

the two random variables m and ts seriously, we see that Prob
[

m > L
∣

∣~x
]

∼ Prob
[

ts > L2
∣

∣~x
]

for large L. Since

QN (L
∣

∣~x) = Prob
[

m ≤ L
∣

∣~x
]

, we conclude that for large L

1−QN(L
∣

∣~x) = Prob[m > L
∣

∣~x] ∼ Prob[ts > L2
∣

∣~x] ∼ x1 x2 . . . , xN

LN
(10)
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where we used the result in Eq. (9). Taking derivatives with respect to L and putting L = m then gives an approximate
behavior of the probability density P (m

∣

∣~x) of the maximum for large m

PN (m
∣

∣~x) ∼ x1 x2 . . . , xN

mN+1
(11)

as announced in (4). This heuristic scaling argument thus provides, up to an overall N dependent prefactor BN , the
leading asymptotic power law tail of the distribution of m in (4).
To compute the prefactor BN exactly for any N one needs to go beyond this scaling argument. This requires a

more sophisticated mathematical analysis that is carried out in the rest of the paper. However, it is possible to refine
this heuristic argument, as shown below, that even provides the prefactor BN exactly for large N .
In the argument above, the main approximation was to replace m ∼ √

ts for large m and then use the exact
asymptotic distribution of ts in Eq. (9) to compute the tail of the distribution of m. This approximation clearly
ignores fluctuations of m for a fixed ts. We now use an extreme value argument to show that this approximation
actually becomes exact for large N . We consider again a group of Brownian motions starting at the initial positions
~x and examine their trajectories over a fixed time interval [0, ts], with m denoting their global maximum in [0, ts]. To
compute the cumulative probability QN(L, ts

∣

∣~x) = Prob
[

m ≤ L
∣

∣~x
]

, we consider the trajectories that stay below the

level L till ts and also above the level 0. Now, for large L, the trajectories that contribute to QN (L, ts
∣

∣~x) typically have
large excursions. So, to a first approximation, one can ignore the lower boundary at 0. For the i-th walker, starting
at xi, the probability that its maximum stays below L can be computed easily: it is just the survival probability
p(x0, ts) in Eq. (7) with the initial position x0 = L− xi. Thus the joint probability that all walkers stay below L till
ts (ignoring the lower boundary at 0) is just the product

QN(L, ts
∣

∣~x) ≃
N
∏

i=1

erf

(

L− xi√
2ts

)

. (12)

For large argument, the error function behaves as 1− erf(x) = e−x2

/(x
√
π) ≃ e−x2

to leading order. Hence, for large
L and large N , one can write

QN (L, ts
∣

∣~x) ≃ exp
[

−N e−L2/2ts
]

→ f [(L− aN )/bN ] (13)

where the scale factors aN =
√

2ts ln(N) and bN =
√

ts/(2 lnN) and the scaling function f(x) = exp[−e−x] is the
standard Gumbel function. The pdf of m is just the derivative of the cumulative distribution. The derivative of the
scaling function f ′(x) = exp [−x− e−x] has a peak at x = 0. This indicates that the random variable m has a peak

at m = aN =
√

2ts ln(N) and the width of m around its peak is bN =
√

ts/(2 lnN) that actually decreases with
increasing N . Thus, for large N , the random variable m approaches to the its mean value aN with probability 1, i.e.,
m =

√

2ts ln(N) with fluctuations around this value essentially negligible for large N . Using this relation in Eq. (9)
provides the following tail for the cumulative distribution of m for large N

1−QN (L
∣

∣~x) = Prob
[

m > L
∣

∣~x
]

≃ Prob

[

ts >
L2

2
(lnN)−2

∣

∣~x

]

≃ AN
x1 x2 . . . , xN

LN
(14)

with the prefactor AN ≃ [4 ln(N)/π]
N/2

. Taking derivative with respect to L then gives the tail of the pdf of m in
Eq. (4) with the prefactor, for large N ,

BN = NAN ≃ N

[

4

π
ln(N)

]N/2

. (15)

We will see later that the same asymptotic result also follows from a more rigorous approach.

III. A BACKWARD FOKKER-PLANCK METHOD: LAPLACE’S EQUATION

In this section we show that the cumulative distribution QN (L
∣

∣~x) = Prob
[

m ≤ L
∣

∣~x
]

of the maximum m satisfies
a Laplace’s equation in an N -dimensional hypercube with appropriate boundary conditions. To see this, it is first
useful to consider QN(L

∣

∣~x) ≡ QN (~x
∣

∣L) as a function of the coordinates ~x for a given fixed L. Note that QN (~x
∣

∣L) is
the probability that starting at ~x, the maximum of the process till ts stays below the level L. The idea is to derive
a differential equation for QN (~x

∣

∣L) using a backward approach where one focuses on the evolution of the system via
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(3) over a small time interval [0, dt] starting from the initial positions ~x. According to (3), in this small time interval
dt, the i-th particle moves from xi to xi

′ = xi + ηi(0)dt where ηi(0) is the noise at t = 0 that kicks the i-th particle.
Now, starting from this ‘new’ initial coordinates xi

′ the maximum of the system has to subsequently stay below L till
the stopping time. Finally, one must sum over all possible values of the new coordinates xi

′. Thus one must have

QN

(

x1, x2, . . . , xN

∣

∣L
)

= 〈QN

(

x1 + η1(0)dt, x2 + η2(0)dt, . . . , xN + ηN (0)dt
∣

∣L
)

〉 (16)

where the 〈.〉 denote the averages over the initial noises ηi(0). Expanding the right hand side in a Taylor series and
using (i) 〈ηi(0)〉 = 0 and (ii) 〈ηi(0)ηi(0)〉 = 1/dt (which follows from the delta correlator), one finds that QN (~x

∣

∣L)
satisfies the Laplace’s equation in the N -dimensional hypercube, 0 ≤ xi ≤ L,

∇2QN(x1, x2, . . . xN

∣

∣L) = 0. (17)

The information about the maximum is captured in the boundary conditions. For example, if xi = 0 for any i,
QN = 1 since if the i-th particle starts at the origin, the process stops immediately (ts = 0) and hence the maximum
is necessarily (with probability 1) less than L. On the other hand, if xi = L for any i, one has Q = 0. This follows
from the fact that if the i-th particle starts at L, it will immediately cross the level L and the probability that the
maximum will stay below L till ts is necessarily zero.
To summarize, QN(~x

∣

∣L) satisfies Laplace’e equation (17) in an N -dimensional hypercube 0 ≤ xi ≤ L with Q = 1
for any xi = 0 and Q = 0 for any xi = L. Thus, it reduces to an electrostatic problem where one needs to find the
potential QN (~x

∣

∣L) inside the hypercube [0, L]N , whose N faces touching the origin are held at a constant potential
QN = 1 while the rest of the N faces are earthed (QN = 0). We present the solutions explicitly for N = 1 and N = 2
in the next two subsections.

Scaling: Let us remark that since the only length scales are the intial positions {xi} of the particles and the size of
the box L, it is evident that the exit probability QN(~x

∣

∣L) satisfies the scaling property

QN(~x
∣

∣L) = QN

(x1

L
,
x2

L
, . . . ,

xN

L

)

= QN(z1, z2, . . . , zN) (18)

where the dimensionless scaled variables 0 ≤ zi = xi/L ≤ 1.

Special initial condition and a duality relation: It is useful to consider a special initial condition where all the
particles start from the same initial positions: xi = x for all 1 ≤ i ≤ N . In this case, the exit probabality is a function
of a single scaled variable 0 ≤ z = x/L ≤ 1: QN (x1 = x, x2 = x, . . . , xN = x

∣

∣L) = qN (x/L) where the scaling function
qN (z) satisfies

qN (z) + qN (1− z) = 1. (19)

This duality relation states that the exit probability through the right boundary at L starting from the initial position
L − x (of all the particles) is exactly identical to the exit probability through the left boundary 0 starting from the
initial positions x (of all the particles). The duality relation (19) in particular dictates that

qN (z = 1/2) = 1/2 (20)

for all N . The general solution of the Laplace’s equation must satisfy Eq. (19) which actually provides a useful check
for the validity of the solution.

A. N = 1

For N = 1, we have a second order ordinary differential equation

d2Q1

dx2
1

= 0 with Q1(0
∣

∣L) = 1 and Q1(L
∣

∣L) = 0, (21)

whose solution is

Q1(x1

∣

∣L) = 1− x1

L
; 0 ≤ x1 ≤ L (22)
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FIG. 3: Laplace’s equation to be solved in a square (L× L) with boundary conditions as shown.

Since Q1(x1

∣

∣L) = Q1(L
∣

∣x1) = Prob[m ≤ L
∣

∣x1], it follows, by differentiation that the probability density of the
maximum m has a strict power law form for all m

P1(m
∣

∣x1) =
x1

m2
for m ≥ x1 (23)

which is normalized to unity over m ∈ [x1,∞] and all its integer moments diverge [35]. Thus the prefactor B1 = 1 in
(4).
Clearly for N = 1, the exit probability Q1(x1

∣

∣L) is only a function of the scaled variable z = x1/L: Q1(x1

∣

∣L) =
q1(x1/L) where the scaling function q1(z) is simple

q1(z) = 1− z (24)

and evidently it satisfies the duality relation (19).

B. N = 2

The solution of the Laplace’s equation becomes more involved in higher dimensions N > 1. For N = 2, one needs
to solve Laplace’s equation in an (L × L) square with boundary conditions shown in Fig. 3. The solution can be
written down explictly for this case, although the expression is rather cumbersome. Using separation of variables one
finds the appropriate solution [46]

Q2(x1, x2

∣

∣L) = 1− x1

L
+

2

π

∞
∑

n=1

(−1)n−1

n

[

sinh
(

nπ
(

1− x2

L

))

+ (−1)n sinh
(

nπx2

L

)]

sinh(nπ)
sin

(nπx1

L

)

. (25)

It is straightforward to verify that (25) is a solution of the Laplace’s equation. Next we need to check that it
satisfies the 4 boundary conditions (see Fig. 3). It is easy to check the two conditions: (i) Q2(x1 = 0, x2

∣

∣L) = 1 for

all x2 and (ii) Q2(x1 = L, x2

∣

∣L) = 0 for all x2. The other two conditions can also be verified. For instance, putting
x2 = L in (25) we get

Q2(x1, L
∣

∣L) = 1− x1

L
− 2

π

∞
∑

n=1

1

n
sin

(nπx1

L

)

. (26)

Using the identity

∞
∑

n=1

1

n
sin

(nπx1

L

)

=
π

2

(

1− x1

L

)

(27)
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we verify that Q2(x1, L
∣

∣L) = 0. Similarly, putting x2 = 0 in (25) and using the identity

∞
∑

n=1

(−1)n−1

n
sin

(nπx1

L

)

=
π x1

2L
(28)

one verifies the last boundary condition Q2(x1, x2 = 0
∣

∣L) = 1. Note that even though the solution Q2(x1, x2

∣

∣L) in
(25) is not manifestly symmetric under the exchange of x1 and x2, it is actually symmetric in x1 and x2 as it should
be. Later in Section 4, we will derive an alternative expression via the path integral method which is manifestly
symmetric in x1 and x2.
Let us analyse the large L behavior of (25) in the situation when x1 and x2 are kept finite. Since Q2(x1, x2

∣

∣L) =
Q2(x1/L, x2/L) is a function of only the scaled variables z1 = x1/L and z2 = x2/L, the L → ∞ limit is equivalent to
taking the limits z1 → 0 and z2 → 0. Clearly Q2(z1 = 0, z2 = 0) = 1. It is easy to check that the first derivatives ∂z1Q
and ∂z2Q vanish at the origin (z1 = 0, z2 = 0). Similarly, the second derivatives ∂2

z1Q2 and ∂2
z2Q2 also vanish at the

origin. So, in a Taylor expansion of Q2(z1, z2) the first nonzero term is the cross derivative, indicating the following
leading order behavior as z1 → 0 and z2 → 0

Q2(z1, z2) = 1−A2z1z2 + . . . (29)

The amplitude A2 is given by

A2 =
∂2Q2

∂z1∂z2

∣

∣

z1=0,z2=0
= 2π

[

∞
∑

n=1

(−1)n n coth(nπ) −
∞
∑

n=1

n

sinh(nπ)

]

(30)

where the last line follows from (25). Fortunately, the sums can be carried out explicitly using some known identi-
ties [47] to yield

A2 =
1

8π2
[Γ(1/4)]

4
= 2.18844 . . . (31)

Hence for large L

Prob
[

m ≤ L
∣

∣x1, x2

]

= Q2(x1, x2

∣

∣L) ≃ 1−A2
x1 x2

L2
. (32)

which leads to the announced power law tail for the probability density of the maximum m

P2(m
∣

∣x1, x2) ≃ B2
x1 x2

m3
; with B2 = 2A2 = 4.37688 . . . (33)

To compare with the N = 1 case, let us consider the special initial condition where both particles start from the
same initial position: x1 = x2 = x. In this case, the exit probability Q2(x1 = x, x2 = x

∣

∣L) = q2(x/L) with scaling
function q2(z) given by

q2(z) = 1− z +
2

π

∞
∑

n=1

(−1)n−1

n

[sinh (nπ (1− z)) + (−1)n sinh (nπz)]

sinh(nπ)
sin (nπz) . (34)

One can verify that q2(z) satisfies the duality relation (19). Near z = 0 and z = 1, the scaling function has the
asymptotics

q2(z) ≃
{

1−A2 z
2 as z → 0,

A2 (1− z)2 as z → 1.
(35)

Comparing with the expression for the N = 1 case, Eq. (24), one finds that q2(z) has a much richer functional
form. An analytic prediction for the function q2(z) is in excellent agreement with results obtained from Monte Carlo
simulations (Fig. 5).

IV. EXACT SOLUTION FOR ALL N BY PATH COUNTING METHOD

The approach based on the Laplace equation (Sect. III) is difficult to extend for N > 2. The technical problem is
to find the exact solution of the Laplace equation ∇2QN (z1, z2, . . . , zN ) = 0 in the N -dimensional hypercube of the



9

scaled variables 0 ≤ zi = xi/L ≤ 1, with the prescribed boundary conditions that QN = 1 for any zi = 0 and QN = 0
for any zi = 1. For N > 2, it is not easy to find an explicit solution to this problem. In this section, we use an
alternative path counting method that is physically more explicit and, in addition, allows us to write down the exact
solution QN(z1, z2, . . . , zN) for all N . This method thus provides an alternative way to solving the Laplace’s equation
in a hypercube with the prescribed boundary conditions.
To set up the path counting method for general N , we need two basic ingredients from the single particle problem

in a box [0, L] with absorbing boundary conditions at the two boundaries 0 and L:

(i) the survival probability S(x0, t, L) which counts the probability that a single particle, starting at x0 at time 0,
remains inside the box [0, L] during the time interval (0, t).

(ii) the first passage probability density F (x0, t, L) that denotes the probability density that the particle, starting
initially at x0 (0 ≤ x0 ≤ L), exits for the first time the box through the boundary at 0 (and not through the other
boundary at L) at time t.

One can write the survival probability S(x0, t, L) =
∫ L

0 G(x, x0, t, L) dx where G(x, x0, t, L) denotes the Green’s
function counting the probability density that the particle reaches x at time t, starting from x0 at time 0, while
staying inside the box [0, L] during time t. This Green’s function can be computed (a) either by solving the diffusion
equation ∂tG = D∂2

xG (the diffusion constant is D = 1/2 for our choice of the noise term) with absorbing boundary
condition G(x = 0, x0, t, L) = G(x = L, x0, t, L) = 0 and the initial condition G(x, x0, 0, L) = δ(x− x0), or (b) by the
path integral method. The resulting Green’s function admits the following representation

G(x, x0, t, L) =
2

L

∞
∑

n=1

sin
(nπx

L

)

sin
(nπx0

L

)

e−
n2π2

2L2
t. (36)

The survival probability, after integrating over the final position x, is

S(x0, t, L) =
2

π

∞
∑

n=1

[1− (−1)n]

n
sin

(nπx0

L

)

e−
n2π2

2L2
t. (37)

To calculate the first passage probability density F (x0, t) through 0 at time t, we note that this just counts the
flux of particles going out of the box through 0 at time t. The flux through a point x in the positive direction is the
probability current −D∂xG (with D = 1/2). Hence, the first-passage probability through the origin that counts the
flux through the origin in the negative direction is simply, F (x0, t) = D∂xG

∣

∣

x=0
. Using G from (36), we get

F (x0, t) =
π

L2

∞
∑

n=1

n sin
(nπx0

L

)

e−
n2π2

2L2
t. (38)

Armed with these two ingredients from the single particle problem, we are now ready to compute the exit probability
QN (~x

∣

∣L) for the N -particle problem. Consider first the event shown in Fig. 2 where one of the particles (say the
i-th one) exits the box for the first time between time ts and ts + dts while the N − 1 other particles stay inside
[0, L] till this time ts. Clearly, the probability for this event, using independence of walkers, is given by the product
F (xi, ts)

∏

j 6=i S(xj , ts) dts. Now, the particle that hits 0 (whose label is i) can, in fact, be any one of the N particles.
Hence we have to sum over the hitting index i from 1 to N . In addition, this event can occur at any time ts, so we
need to integrate over ts. This path counting method then gives the following net contribution to the exit probability

QN (~x
∣

∣L) =
N
∑

i=1

∫ ∞

0

F (xi, ts)
∏

j 6=i

S(xj , ts) dts. (39)

Substituting the results for S(x, t) and F (x, t) respectively from Eqs. (37) and (38), integrating over ts and setting
zi = xi/L gives our main exact result, valid for all N ,

QN (~x
∣

∣L) = QN(z1, z2, . . . , zN) =

(

2

π

)N
∑

{ni}

a(n1, n2, . . . , nN )

n2
1 + n2

2 + . . .+ n2
N

N
∏

k=1

sin(nkπzk)

nk
(40)

where each index ni = 1, 2, . . . for all 1 ≤ i ≤ N and

a(n1, n2, . . . , aN ) =

N
∑

i=1

n2
i

∏

j 6=i

[1− (−1)nj ] . (41)
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Equation (40) is an exact solution of the Laplace’s equation in the N -dimensional hybercube 0 ≤ zi ≤ 1 with the
prescribed boundary conditions which has a virtue of being manifestly symmetric with respect to the interchange of
the coordinates zi’s.
To extract the behavior in the limit of large L, with xi’s fixed, we need to take the limit zi → 0 in Eq. (40). This

limiting behavior reads

QN (z1, z2, . . . , zN ) = 1−ANz1 z2 . . . zN +O(z2i ) (42)

The coefficient AN can be computed by taking the derivatives of Eq. (40) with respect to each zi and then putting
zi = 0 for all i. This gives

AN = −N 2N lim
zi→0

∑

{ni}

n2
1 cos(n1πz1)

n2
1 + n2

2 + . . .+ n2
N

N
∏

j=2

[1− (−1)nj ] cos(njπzj). (43)

Noting that QN(~x
∣

∣L) = QN (z1, z2, . . . , zN ) is precisely the cumulative distribution of the maximum m, one thus
gets

Prob[m ≤ L
∣

∣~x] ≃ 1−AN
x1x2 . . . xN

LN
asL → ∞. (44)

Differentiating with respect to L and putting L = m gives the exact power-law tail of the pdf of the maximum m in
Eq. (4) with the prefactor BN is given by the formal sum

BN = NAN = −N2 2N lim
zi→0

∑

{ni}

n2
1 cos(n1πz1)

n2
1 + n2

2 + . . .+ n2
N

N
∏

j=2

[1− (−1)nj ] cos(njπzj) (45)

where each index ni runs over all positive integers.
The formal sum in Eq. (45) can be explicitly evaluated for N = 1 and N = 2. For N = 1

B1 = −2 lim
z1→0

∑

n1=1,2,...

cos(n1πz1) = 1 (46)

in agreement with already known results. For N = 2, equation (45) gives

B2 = −16 lim
zi→0

∑

n1,n2

n2
1 cos(n1πz1)

n2
1 + n2

2

[1− (−1)n2 ] cos(n2πz2) =
1

4π2

[

Γ

(

1

4

)]4

= 4.37688 . . . (47)

In Appendix A, we show how to compute the above sum explicitly.
For N > 2, we haven’t deduced explicit expressions for the sum in (45). However, one can reduce it to a simpler

form where the sum is rapidly convergent and can then be evaluated by Mathematica. As an example, for N = 3,

B3 = −6 +
9

8π2
Γ4(1/4) + 72π

∑

n1,n2

n2
1 + n2

2 (−1)n2

√

n2
1 + n2

2 sinh
(

π
√

n2
1 + n2

2

) = 15.3369 . . . (48)

In the limit of large N , one can evaluate the formal sum (see Appendix B) to obtain the limiting behavior

BN ≃ N

[

4

π
ln(N)

]N/2

(49)

in perfect agreement with the heuristic result in Eq. (15).

Special initial condition: Finally, let us consider the special initial condition when all the particles start from the
same point: x1 = x2 = . . . = x where 0 ≤ x ≤ L. In this case, the exit probability in Eq. (40) reduces to a function
of one scaled variable z = x/L: QN(x, x, . . . , x

∣

∣L) = qN (z) given by

qN (z) = N

(

2

π

)N
∑

{ni}

n1 sin(n1πz)

(n2
1 + n2

2 + . . .+ n2
N )

∏

j 6=1

[1− (−1)nj ]
sin(njπz)

nj
. (50)
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One can check that qN (z) satisfies the duality relation qN (z) + qN (1− z) = 1 and thus qN (1/2) = 1/2 for all N .
Performing this multiple sum directly by Mathematica is difficult as it converges slowly. To circumvent this problem,

we first perform the sum over n1 in Eq. (50) using the following identity [47]

∞
∑

k=1

k sin(kπx)

k2 + a2
=

π

2

sinh (π(x − a))

sinh(πa)
. (51)

This gives

qN (z) = N

(

4

π

)N−1
∑

n2,n3,...,nN→odd

sinh
[

π(1 − z)
√

n2
2 + n2

3 + . . .+ n2
N

]

sinh
[

π
√

n2
2 + n2

3 + . . .+ n2
N

]

N
∏

j=2

sin(njπz)

nj
. (52)

The multiple sum in Eq. (52) is now rapidly convergent and can be easily evaluated by Mathematica. In Fig. 2 we
plot this function qN (z) for N = 2 and N = 3. For N = 2, it of course coincides with the earlier expression (34)
obtained via the Laplace’s method in the previous section.

Average Maximum: For fixed identical initial position of all particles xi = x, another interesting question is how
does the average maximum (till the stopping time ts) depend on N? For N = 1 the average is infinite but for all
N > 1 it is finite. However, does the average maximum for N > 1 increase or decrease as the number of walkers
N increases? The answer to this question is not intuitively obvious. However, knowing the function qN (z), one can
compute the average maximum in the following way. We have, Prob[m ≤ L|x] = qN (x/L) where qN (z) is given in
Eq. (52). Therefore the probability density function of m reads

PN (m|x) = − x

m2
q′N

( x

m

)

; m ≥ x (53)

where q′N (z) = dqN (z)/dz. The first moment is then given by, for all x ≥ 0 and N > 1

〈m〉 = −
∫ ∞

x

x

m
q′N

( x

m

)

dm = CN x (54)

with prefactor

CN = −
∫ 1

0

q′N (z)

z
dz. (55)

Thus the average maximum, for N > 1, is proportional to x for all x and the proportionality constant CN is given by
Eq. (55). We were unable to carry out the integral in Eq. (55) in closed form. However, it is clear that as N → ∞,
using qN (z) = θ(1/2− z), one gets CN → 2. On the other hand CN diverges as N → 1. Thus, CN decreases when N
increases. These results are supported by Monte Carlo simulations (Fig. 8).

V. NUMERICAL SIMULATIONS

Our analytical result for the exit probability through the origin qN (z), when all particles start at the same scaled
position 0 ≤ z = x/L ≤ 1, is tested by Monte Carlo simulations. For a fixed box of size L, the exit probility for the
N -particle problem can be efficiently computed using a method proposed in Ref. [43]. Naively, to compute qN (z), one
would first fix the starting point 0 ≤ z ≤ 1 of all the Brownian motions and then generate different realizations of
the process and compute the fraction of realizations where the first exit happens through the origin. One would then
repeat the procedure for each value of 0 ≤ z ≤ 1 (with an appropriate bin size) in order to compute the full function
qN (z) over the range z ∈ [0, 1]. Instead of repeating the simulation for each starting point z, it turns out to be more
efficient to follow a different algorithm described briefly below.
For illustration, we take the example of just one Brownian motion (N = 1). The method is easily generalized for

all N . We start the Brownian motion at the origin, let it evolve in time and record the maximal (xmax) and the
minimal (xmin) position reached by the walker up to time t. The process is halted when xmax − xmin ≥ L for the first
time (see Fig. 4). Keeping xmin and xmax fixed, we now horizontally slide the whole configuration thereby changing
the starting point (see the second and the third panel of Fig. 4). Measuring all distances with respect to xmin, it is
then clear that this configuration contributes 1 to q1(z) for z ∈ [0, 1 − xmax/L] and 0 for z ∈ [1 − xmax/L, 1]. So,
for this configuration, we just record the number y = 1 − xmax/L and the fact that it contributes θ[y − z] to q1(z).
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FIG. 4: The illustration of the algorithm to compute the exit probability qN (z) for a single (N = 1) Brownian motion.

We then repeat this procedure for another configuration starting at 0, do the sliding and record the value of y and
the associated θ(y − z). We repeat this, say, for Ns number of samples. To sum all the contributions, we first sort
the values of y associated with the configurations in increasing order. Let {ỹ1, ỹ2, . . . , ỹNs

} denote the sorted values.
Then, we assign q1(ỹ1) = 1, q1(ỹ2) = 1 − 1/Ns and in general q1(ỹi) = 1 − (i − 1)/Ns. This generates the full curve
q1(z).
Thus this algorithm has two advantages: (i) it does not require to repeat the simulations for each value of z and

(ii) it does not require any specific choice of bin sizes. This clearly makes the simulation much faster. The results of
our simulations for N = 2, N = 3 and N = 6 are plotted in Fig. (5). The agreement with the analytical prediction is
excellent. For all N , qN (z) satisfies the duality relation: qN (z) + qN (1 − z) = 1.
In Ref. [43] we had studied the exit probability from a box [0, L] through the upper boundary L (rather than the

lower boundary 0 considered here) for a single particle whose motion is described by a generic self-affine stochastic
process. This probability was called the ‘hitting probability’ in [43]. In the present paper, we are considering the
complimentary event of exiting the box [0, L] through the lower boundary 0. In the notation of the present paper,
the hitting probability (of the boundary L) would correspond to 1 − qN (z) [50]. For a generic self-affine process, it
was shown in Ref. [43] that the exit probability should have a power law behavior close to the origin 1 − q(z) ∼ zφ

with φ = θ/H as mentioned in the introduction. In addition, it was observed in ref. [43] that for many processes
(but not all), once we know the exponent φ, the full function q(z) over the range z ∈ [0, 1] is described by a universal
one-parameter (parametrized by φ) form [43]

qφ(z) = 1− Iz(φ, φ) = 1− Γ(2φ)

Γ(φ)2

∫ z

0

[u(1− u)]φ−1du. (56)

The function Iz(φ, φ) is the incomplete regularized beta function. In our present problem, we have seen in Eq. (42)
that for small z, qN (z) ∼ 1 − ANzN indicating φ = N . It is then natural to investigate if our result for the full
function qN (z) can be re-expressed as the universal functional form in Eq. (56) with φ = N . Interestingly, the answer
is no, as it is clearly shown in Fig 6, thus providing us with a counterexample.
We have also computed the prefactor BN numerically from the Monte Carlo simulations up to N = 7. The results

are shown in Fig. 7 by squares. For N = 1, N = 2 and N = 3, they agree with our exact analytical predictions
B1 = 1, B2 = 4.37688 . . . and B3 = 15.3369 . . . as discussed in Section IV. Had the qN (z) be described by the universal
function in Eq. (56) with φ = N , one would get from the small z expansion in Eq. (56), qN (z) → 1 − ANzN with
AN = Γ(2N)/NΓ2(N). This would predict the prefactor BN = NAN = Γ(2N)/Γ2(N). In Fig. 7, this prediction from
the universal curve is shown by the dashed line. Clearly, it does not match the simulation results, confirming once
more that qN (z) is not described by the universal function in Eq. (56). We have also plotted the exact asymptotic
prediction of BN in Eq. (49) as a solid line for comparison. While it is difficult to extract the small z behavior of
qN (z) and hence BN for larger values of N , we notice that the asymptotic large N behavior is already approached
for N = 7.
Finally we have also computed the average maximum (till the stopping time ts) of N Brownian motions starting

from the same initial positions x > 0. We verified that for all N > 1, the average maximum exists, and it is
proportional to x, as predicted analytically in Eq. (54). In Fig. 8 we plot the amplitude CN , given analytically in
Eq. (55), as a function of N . As predicted, CN approaches 2 for large N .
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FIG. 5: The exit probability qN (z) through the origin obtained from Monte Carlo simulations for N = 2 (red squares), N = 3
(deep blue circles) and N = 8 (blue triangles). The numerical data are compared to analytical results (solid lines) for N = 2
and N = 3 (obtained from Eq. (52) respectively for N = 2 and N = 3).
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FIG. 6: Difference between the exit probability for N = 2 and N = 3 and the universal function in Eq. (56) with φ = N . Solid
lines are the analytical results from Eq. (52) with N = 2 and N = 3. Symbols are the numerical results for 105 realizations of
N = 2 (squares) and N = 3 (circles) Brownian motions starting from the same initial position in a box of size L = 1000.

VI. CONCLUSION

To summarize, we have presented an exact solution for the probability distribution of the maximum m of a set
of N independent Brownian motions starting at the initial positions ~x ≡ {x1, x2, . . . , xN} on the positive half-axis
and the process terminating when any one of the walkers crosses the origin. We have shown that for large m, the
pdf of m decays as a power law, PN (m|~x) ≃ BN (x1x2 . . . xN )/mN+1 where the prefactor BN has an interesting N
dependence. For a fixed N > 1, integer moments of m up to order (N − 1) are finite, while all higher integer moments
are infinite. The cumulative distribution of this maximum also provides an exact solution to the first-exit probability
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FIG. 7: Dashed line: BN = Γ(2N)/Γ2(N) from the universal function in Eq. (56). Solid line: aymptotic behavior for large
N given in Eq.(49) and squares: direct simulations of N Brownian motions starting from the same position in a box of size
L = 1000. Averages are performed over 106 samples.
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FIG. 8: Monte Carlo results for the average maximum of N Brownian motions till the first passage time through the origin, all
starting at the same initial position x > 0. The coefficient CN = 〈m〉/x, see Eq. (55), is plotted vs. N . Averages are performed
over 103 realizations.

through the origin (rather than through L) of N walkers from a box [0, L]. Incidentally, our path counting method
also provides an exact solution to the N -dimensional Laplace’s equation ∇2QN = 0 in a hypercube [0, L]N with the
boundary conditions QN = 1 on any face of the hypercube passing through the origin and QN = 0 on the rest of the
faces. Monte Carlo simulations confirm our analytical results.
This work raises some interesting open questions. We have focused only on the maximum m till the stopping time

ts of N independent walkers. Another interesting observable is not just the actual value of the maximum, but the time
tm at which this maximum occurs before the stopping time ts. This random variable has recently been studied in a
number of contexts. For a stochastic process over a fixed time interval [0, t], the distribution of the time tm has been
computed for a variety of Brownian paths, such as a free Brownian motion, Brownian bridges, Brownian excursions
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and Brownian meanders, using path integral method [7] and also by an alternative functional renormalization group
method [18]. The distribution of tm was also computed exactly for the random acceleration process which is a non-
Markov process [51]. It has also been computed both for independent Brownian walkers [26, 27] and very recently
for vicious walkers [52]. On the other hand, when the process stops at a random stopping time ts where for instance
ts is the first time a walker hits the origin, the distribution of tm has been computed for a single Brownian motion
(N = 1) where it is already nontrivial [53]. It would be interesting to extend the results of Ref. [53] to the case of
N > 1 independent Brownian motions.
Another interesting challenging problem would be to compute the distribution of m as well as that of tm for a set

of vicious walkers till the stopping time ts when the walker closest to the origin crosses the origin for the first time.
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Appendix A: Evaluation of B2

To evaluate the sum in Eq. (47) we first split the sum into two parts: B2 = I1 + I2 with

I1 = −16 lim
z1,z2→0

∑

n1,n2

n2
1

n2
1 + n2

2

cos(n1πz1) cos(n2πz2) (A1)

I2 = 16 lim
z1,z2→0

∑

n1,n2

(−1)n2 n2
1

n2
1 + n2

2

cos(n1πz1) cos(n2πz2) (A2)

where all the sums run over positive integers.
Let us first evaluate I1. Due to the symmetry we can re-write I1 as

I1 = −8 lim
z1,z2→0

∑

n1,n2

n2
1 + n2

2

n2
1 + n2

2

cos(n1πz1) cos(n2πz2) = −8 lim
z1,z2→0

∑

n1,n2

cos(n1πz1) cos(n2πz2) = −2 (A3)

In the last step we have used the identity,
∑

n≥1 cos(nπz) = −1/2.

To evaluate I2 we use another standard identity [47]

∞
∑

k=1

(−1)k cos(kπz)

k2 + a2
=

π

2a

cosh(aπz)

sinh(aπ)
− 1

2a2
. (A4)

We now sum over n2 in Eq. (A2) using above identity. This gives

I2 = −8 lim
z1→0

∞
∑

n1=1

cos(n1πz1) + 8π lim
z1,z2→0

∞
∑

n1=1

n1

sinh(n1π)
cos(n1πz1) cos(n1πz2) = 4 + 8π

∞
∑

n1=1

n1

sinh(n1π)
. (A5)

The remaining sum in (A5) can be explicitly evaluated using the identity [47]

∞
∑

n=1

n

sinh(nπ)
=

1

32π3
Γ4

(

1

4

)

− 1

4π
. (A6)

Adding I1 and I2 we arrive at the announced expression (5) for B2.

Appendix B: Evaluation of BN for large N

Here we show that BN in Eq. (45) behaves, to leading order for large N , as

BN ≃ N

[

4

π
ln(N)

]N/2

. (B1)
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First we rewrite the denominator in Eq. (45) using the integral representation

1

n2
1 + n2

2 + . . .+ n2
N

=

∫ ∞

0

dt e−t (n2

1
+n2

2
+...+n2

N ). (B2)

Using this representation, one can then decouple the sums over different indices ni in Eq. (45) giving

BN = −N2 2N lim
zi→0

∫ ∞

0

dt

∞
∑

n1=1

n2
1 cos(n1πz1) e

−n2

1
t
∏

j 6=1

∞
∑

nj=1

[1− (−1)nj ] cos(njπzj) e
−tn2

j (B3)

If we now take the limits zj → 0 inside the sums, each of the sums is convergent. However, it is easy to check that the

integrand, as a function of t, diverges as ∼ t1+N/2 as t → 0. Thus the integral is longer convergent. To circumvent
this difficulty, one can use a standard regularization scheme used often in evaluating the Madelung constant in the
context of lattice sums in crystals [48] whereby we introduce a parameter s and rewrite Eq. (B3) as, upon taking the
limits zj → 0 inside the sums,

BN (s) = −N2 2N

Γ(s)

∫ ∞

0

dt ts−1
∞
∑

n1=1

n2
1e

−n2

1
t





∞
∑

nj=1

[1− (−1)nj ] e−n2

j t





N−1

. (B4)

Note that this integral is covergent for all s > (1 + N/2). The idea is to first evaluate BN (s) for large N with
s > (1 +N/2) and then analytically continue this result to s → 1 to evaluate BN = BN (s → 1).
Let us next define the function

g(t) = 4

√

t

π

∞
∑

k=0

e−(2k+1)2t. (B5)

Up to the factor
√

t/π, this function g(t) can be expressed in terms of standard Jacobi theta functions [49]. Then
one can rewrite Eq. (B4) as

BN (s) = −2N2(
√
π)N−1

Γ(s)

∫ ∞

0

dt ts−(N+1)/2 [g(t)]
N−1

[

∞
∑

n=1

n2e−n2 t

]

. (B6)

To evaluate this integral for large N , we need to know how the function [g(t)]N−1 behaves for large N .
Let us first focus on the function g(t) in Eq. (B5). Clearly, for large t, the dominant contribution comes from the

k = 0 term in the sum and hence g(t) ∼
√
te−t as t → ∞. In contrast, the opposite limit t → 0 is more tricky. To

derive its behavior as t → 0, we first use the following Jacobi identity [49]

1 + 2

∞
∑

k=1

(−1)ke−k2 z = 2

√

π

z

∞
∑

k=0

e−(2k+1)2π2/4z (B7)

to rewrite the function g(t) (upon identifying t = π2/4z) as

g(t) = 1 + 2

∞
∑

k=1

(−1)k e−π2k2/4t. (B8)

This representation of g(t) is more amenable to the asymptotic analysis in the t → 0 limit. We obtain from Eq. (B8)
the leading behavior of g(t) as t → 0

g(t) ≃ 1− 2 e−π2/4t + . . . (B9)

Thus g(t) has an essential singularity at t = 0 and it approaches to 1 as t → 0 in an extremely flat way. Thus the
function g(t) starts at g(0) = 1, stays flat for a while and then decreases exponentially fast to 0 as t increases (see
Fig. (9)).
Next consider the function [g(t)]N that appears in the integral in Eq. (B6). As N increases, the function [g(t)]N

almost approaches a step function (see Fig. ((9))

[g(t)]N → θ (t∗(N)− t) (B10)
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FIG. 9: The function [g(t)]N plotted as a function of t for N = 1 (black solid), N = 5 (red dotted) and N = 50 (blue dashed).
As N becomes large, [g(t)]N almost approaches to a step function.

where the characteristic scale t∗(N) decreases very slowly with increasing N . One can easily estimate t∗(N) for large
N from the asymptotic behavior in Eq. (B9). For small t, one finds, to leading order for large N

[g(t)]N ∼
[

1− 2 e−π2/4t
]N

≃ exp
[

−2N e−π2/4t
]

. (B11)

Thus as N increases, it approaches to 0 rapidly for all t > t∗ where 2Ne−π2/4t∗ ≈ 1. This provides an estmaite of
t∗(N) which, to leading order for large N , reads

t∗(N) ≃ π2

4 ln(N)
. (B12)

Therefore, for large N , using Eq. (B10), we can cut off the upper limit of the integral in Eq. (B6) at t = t∗(N)
and replace [g(t)]N−1 by 1 over the interval t ∈ [0, t∗(N)]. Furthermore, over this small interval t ∈ [0, t∗(N)], one

can replace the function
∑∞

n=1 n
2 e−n2 t by its small t behavior ≃ √

π/4t3/2. Substituting these results in Eq. (B6)
then yields, for large N ,

BN (s) ≃ −N2 πN/2

2Γ(s)

∫ t∗(N)

0

dt ts−(N+4)/2 ≃ −N2πN/2

2Γ(s)

[t∗(N)]s−N/2−1

(s−N/2− 1)
. (B13)

In deriving this result, we have assumed s > (1 +N/2). After obtaining this large N formula for BN (s), we can now
analytically continue it to s → 1 which finally yields

BN = BN (s → 1) = N πN/2 [t∗(N)]−N/2. (B14)

Upon using the expression for t∗(N) from Eq. (B12) gives the final large N expression for BN in Eq. (B1).
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