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Spatial Persistence of Fluctuating Interfaces
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We show that the probability, P0�l�, that the height of a fluctuating �d 1 1�-dimensional interface in
its steady state stays above its initial value up to a distance l, along any linear cut in the d-dimensional
space, decays as P0�l� � l2u . Here u is a “spatial” persistence exponent, and takes different values, us

or u0, depending on how the point from which l is measured is specified. These exponents are shown to
map onto corresponding temporal persistence exponents for a generalized d � 1 random-walk equation.
The exponent u0 is nontrivial even for Gaussian interfaces.
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Fluctuating interfaces have played the role of a para-
digm in nonequilibrium statistical physics for the last two
decades, with applications ranging from growth problems
to fluid flow [1]. Traditionally the different universality
classes of the interfaces are specified by the exponents as-
sociated with the dynamic correlation functions. Recently
the concept of persistence [2], i.e., the statistics of first-
passage events, was used to characterize the temporal
history of an evolving interface [3]. Starting from an ini-
tially flat interface, it was found that the probability that
the interface at a given point in space stays above its initial
height up to time t decays as a power law in time with an
exponent u

tem
0 that is nontrivial even for simple “Gauss-

ian” interfaces (i.e., with dynamics governed by a linear
Langevin equation) [3,4]. On the other hand, the statistics
of returns to an initial profile chosen from the ensemble of
equilibrium configurations was shown to be governed by
a different exponent utem

s . The exponent utem
s was shown

to be identical to the first passage exponent of the frac-
tional Brownian motion, which is known exactly [3]. In
[3] these two regimes were termed the coarsening and sta-
tionary regimes, respectively.

The exponents u
tem
0 and utem

s describe first-passage
properties in time. A question that naturally arises is
what about the first-passage properties in space? Is
there a power-law distribution and associated nontrivial
exponents for the spatial persistence of an interface? In
this paper we address this important question and show
that indeed in the steady state (long time limit), the
probability P0�l� that an interface stays above its initial
value over a distance l from a given point in space decays
as P0�l� � l2u for large l. Furthermore, analogous to its
temporal counterpart, the spatial persistence exponent u

again takes different values, u0 and us, according to the
“initial” condition, in this case specified by the height
and its spatial derivatives at the point (the “initial point”
in space) from which l is measured. If the initial point
is sampled uniformly from the ensemble of steady state
configurations, the relevant exponent, us, is related to the
Hurst exponent of the spatial roughening. Conversely,
0 0031-9007�01�86(17)�3700(4)$15.00
if the initial point is such that the height and its spatial
derivatives are finite, independent of the system size (we
will call this a finite initial condition), the corresponding
exponent u0 is a new, nontrivial exponent.

A second interesting question asks is there a morpho-
logical transition in the stationary profile of a fluctuating
interface if one changes the mechanism of fluctuations by
changing either the dynamical exponent z or the spatial
dimension d? This question has important experimental
significance. For example, recent scanning tunneling mi-
croscope (STM) measurements have shown [5] that the
dynamical exponent z characterizing the fluctuations of
single layer Cu(111) surface changes from z � 2 at high
temperatures to z � 4 at low temperatures [5–8]. Thus
by changing the temperature, and hence z, the STM mea-
surements may possibly detect a morphological transition
if there is one. We show here that Gaussian interfaces
indeed exhibit a morphological transition across a critical
line zc�d� � d 1 2 in the �z 2 d� plane as one changes z
or d. For z . zc�d�, the steady state profile is smooth with
a finite density of zero crossings along any linear cut in the
d-dimensional space. On the contrary, for z , zc�d�, the
density of zero crossings is infinite and the locations of ze-
ros are nonuniform and form a fractal set.

A seemingly unrelated problem is the usual temporal
persistence of the stochastic process [9]

dnx
dtn

� h�t� , (1)

where x is the position of a particle and h�t� is a Gauss-
ian white noise with zero mean and delta correlation,
�h�t�h�t0�� � d�t 2 t0�. The probability, P0�t�, that x
does not change sign up to time t decays as P0�t� � t2u�n�

for large t, where the persistence exponent u�n� depends
continuously on n [2]. The exact value of the expo-
nent is known only for n � 1 (the usual Brownian
motion), u�1� � 1�2 [10], and n � 2 (the random accel-
eration problem), u�2� � 1�4 [11,12]. The latter problem
has recently attracted attention in connection with the
problem of inelastic collapse in granular materials [13].
© 2001 The American Physical Society
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In this paper, we establish an intricate mapping between
the process in Eq. (1) and the steady state profile of Gauss-
ian interfaces evolving via the Langevin equation

≠h
≠t

� 2�2=2�z�2h 1 j , (2)

where =2 is the d-dimensional Laplacian operator, z is
the dynamical exponent associated with the interface, and
j��r, t� is a Gaussian white noise with zero mean and
�j��r , t�j��r 0, t0�� � 2d��r 2 �r 0�d�t 2 t0� [14]. The contin-
uum equation (2) is well defined only for z . d. For
z , d, one needs a nonzero lattice constant in real space
or an ultraviolet cutoff in momentum space. Below we
will assume z . d.

Let us summarize our main results. We find two inde-
pendent spatial persistence exponents u0 and us depending
on the initial point in space (from where measurements
start). The two main results are (i): by exploiting the map-
ping to the stochastic process (1), we show that for a “fi-
nite” initial starting point,

u0 � u�n�, where n � �z 2 d 1 1��2 . (3)

(ii) For initial points sampled from the steady state configu-
rations, however, we show exactly that

us �

Ω
3�2 2 n, 1�2 , n , 3�2 ,
0, n . 3�2 , (4)

where n � �z 2 d 1 1��2.
Exploiting the two exact results, u�1� � 1�2 and u�2� �

1�4 in Eq. (3), we find that for any �d 1 1�-dimensional
interface with z 2 d � 1, u0 � 1�2 and for z 2 d �
3, u0 � 1�4 exactly. An explicit example of the for-
mer case is the �1 1 1�-dimensional Edwards-Wilkinson
model with z � 2 and d � 1, giving u0 � 1�2 [15]. An
example of the latter case is the �1 1 1�-dimensional con-
tinuum version of the Golubovic–Bruinsma–Das Sarma–
Tamborenea (GBDT) model [16] with z � 4 and d � 1,
which gives u0 � 1�4, a new exact result. For general
n . 3�2, we show that the exponent u�n� and hence u0 can
be estimated rather accurately by using an “independent in-
terval approximation.” Thus Eq. (3), besides giving accu-
rate, and in some cases exact, results for the new exponent
u0, also gives a physical meaning to the stochastic process
in Eq. (1) for general n. We will use this correspondence
to further establish a morphological transition for Gaussian
interfaces, across the critical line zc�d� � d 1 2, as one
changes z or d.

We start by considering the nth derivative of the
scalar field h��r, t� with respect to any particular di-
rection, say x1, in the d-dimensional space, g��r, t� �
≠nh�≠xn

1 . From Eq. (2), it follows that the Fourier trans-
form, g̃� �k, t� �

R
g��r , t�ei �k.�r dd �r then evolves as

≠g̃� �k, t��≠t � 2jkjzg̃� �k, t� 1 j1� �k, t�, where jkj2 �
k2

1 1 k2
2 1 · · · , j1 is a Gaussian noise with zero mean,

and �j1� �k, t�j1� �k0, t0�� � 2jk1j
2nd��k 1 �k0�d�t 2 t0�. One

can easily evaluate the correlator, �g��k, t�g� �k0, t�� �
G� �k, t�d��k 1 �k0�, to obtain, in the steady state, G� �k� �
jk1j

2n�jkjz . Inverting the Fourier transform gives the sta-
tionary, real-space correlator, �g�x1, x2, . . .�g�x0

1, x2, . . .�� �R
jk1j

2njkj2zeik1�x12x0
1� dd �k. It is now easy to see that,

with the choice n � �z 2 d 1 1��2, the integral yields a
delta function, i.e.,

�g�x1, x2, x3, . . .�g�x0
1, x2, x3, . . .�� � Dd�x1 2 x0

1� , (5)

where D is just a dimension-dependent number.
Since the basic Langevin equation, Eq. (2), is a linear

equation and the noise j is Gaussian, clearly h is a Gauss-
ian process and therefore its nth derivative, g, is also a
Gaussian process. A Gaussian process is completely speci-
fied by its two-point correlator. Hence in the steady state
limit t ! `, one can write the following effective equa-
tion, which gives the x1 dependence of g at fixed x2, x3, . . . :

g�x1, x2, . . .� �
≠nh
≠xn

1
� h�x1� , (6)

where h is Gaussian white noise with zero mean and
�h�x1�h�x0

1�� � d�x1 2 x0
1�. Note that we have rescaled

the x1 axis to absorb the constant D. This effective
stochastic equation will generate the correct two-point
correlator as given by Eq. (5) and also all higher order
correlations as well since g is a Gaussian process. Mak-
ing the identification, x1 () t and h () x, Eq. (6)
immediately reduces to the process in Eq. (1). Hence
the steady state profile of a Gaussian interface evolving
via Eq. (2) can be effectively described by the stochastic
equation (1) with n � �z 2 d 1 1��2. Therefore, the
spatial persistence of the Gaussian interface also gets
mapped onto the temporal persistence of the stochastic
process (1).

Some aspects of the stochastic process (1) have briefly
been discussed by us previously [2,9]; however, here we
considerably expand and elaborate on those discussions.
Consider the process (1) starting from the initial condition
at t � 0 where x and all its time derivatives up to order
�n 2 1� vanish. It turns out that the statistics of first-
passage events of this process depends crucially on
whether one starts measuring these events right from
t � 0 or if one first waits for an infinite time and
then starts measuring the events. This is similar to
the “coarsening” versus “stationary” regimes studied in
[3]. This can be quantified more precisely in terms of
two-time correlations. Integrating Eq. (1) n times gives
x�t� � �G�n��21

Rt
0 h�t1� �t 2 t1�n21 dt1, where G�n�

is the usual gamma function. From this integral, which
provides a natural continuation from integer n to real n, it
is easy to evaluate the correlation function

C�t, t0, t0� � ��x�t0 1 t� 2 x�t0�� �x�t0 1 t0� 2 x�t0���

� A�t0 1 t, t0 1 t0� 2 A�t0 1 t, t0�

2 A�t0, t0 1 t0� 1 A�t0, t0� , (7)

where the autocorrelation A�t, t0� is given by
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A�t, t0� �
1

G2�n�

Z tm

0
�t 2 t1�n21�t0 2 t1�n21 dt1 , (8)

where tm � min�t, t0�. Thus the correlation function that
fully characterizes the Gaussian process, and thereby its
persistence, depends explicitly on the “waiting” time t0,
the starting point of measurements. It turns out, however,
that there are only two asymptotic behaviors, controlled
respectively by the t0 � 0 and t0 ! ` fixed points. Any
finite t0 flows into the t0 � 0 fixed point.

To see how the two exponents, u0 and us, emerge, con-
sider first the limit t0 ! `. From Eq. (7), we get after
some algebra,

C�t, t0, `� �
Ω

an�t2n21 1 t02n21 2 jt 2 t0j2n21�, �I� ,
bnt2n23

0 tt0, �II� ,

(9)

where (I) and (II) are the regimes 1�2 , n , 3�2
and n . 3�2, an � 2G�n�G�1 2 2n��G�1 2 n� . 0
and b�n� � �n2 2 n 1 1 2 �n 2 2���2n 2 3����2n 2

1� . 0. To calculate the persistence properties from this
correlator, we note that the form of the correlator for 1

2 ,

n ,
3
2 in Eq. (9) is precisely that of fractional Brownian

motion, i.e., the differences D�t, t0� � x�t 1 t0� 2 x�t0�
have stationary increments: ��D�t, t0� 2 D�t0, t0��2� �
2anjt 2 t0j2H , with Hurst exponent H � n 2

1
2 . The

corresponding persistence exponent is known exactly
[3,17] to be us � 1 2 H � 3

2 2 n � �d 1 2 2 z��2,
from Eq. (3), provided z , d 1 2. For z . d 1 2,
i.e., n . 3�2, Eq. (9) gives the normalized correlator
C�t, t0, `��

p
C�t, t, `�C�t0, t0, `� � 1, implying us � 0.

We now turn to the limit t0 � 0. From Eq. (7), we
find that the process is nonstationary in time, and so are
the increments of D�t, t0�. However, using the standard
transformation [2], X � x�t��

p
�x2�t�� and T � lnt, one

finds that X�T � becomes a Gaussian stationary process
in the “new” time variable T , with a correlator Cn�T � �
�X�0�X�T ��, given by

Cn�T � �

µ
2 2

1
n

∂
e2T�2F�1 2 n, 1; 1 1 n; e2T � ,

(10)

where F�a, b; c; z� is the standard hypergeometric func-
tion. This form of the correlator suggests that the exponent
u0 is nontrivial. To find it one is confronted with the fol-
lowing problem: given a Gaussian stationary process X�T �
with a prescribed correlator C�T � � �X�0�X�T ��, what is
the probability P0�T � that the process X�T � does not cross
zero up to time T?

For general correlator C�T �, P0�T � is hard to solve
[18]. For n � 1, we have, from Eq. (10), C1�T � �
exp�2T�2�, a pure exponential. This corresponds to a
Markov process, for which the exact result is known:
P0�T � � exp�2T�2� � t21�2 implying u0�1� � 1�2. For
higher values of n, the process X�T � is non-Markovian and
3702
hence to determine u0�n� is harder. Fortunately for n � 2
where C2�T � �

3
2 exp�2T�2� 2

1
2 exp�23T�2�, the exact

result is also known: P0�T � � exp�2T�4� � t21�4 [11].
For general n, one can extract some useful information
about the stochastic process by studying the short time
properties of the correlator Cn�T �. Expanding Eq. (10)
for small T we get

Cn�T � 	

8>><
>>:

1 2 anT2n21, 1�2 , n , 3�2 ,

1 1
T 2

4 lnT , n � 3�2 ,

1 2
�2n21�
8�2n23� T

2, n . 3�2 ,
(11)

where an � G�n�G�2 2 2n��G�1 2 n�. Thus for n .

3�2, the process is “smooth” with a finite density of
zero crossings that can be derived using Rice’s formula
[19], r �

p
2C00

n �0��p � �2p�21
p

�2n 2 1���2n 2 3�,
where C00

n �0� is the second derivative at the origin. For
1�2 , n , 3�2, the density is infinite and the zeros
are not uniformly distributed but instead form a fractal
set with fractal dimension df � n 2 1�2 [18]. For
the marginal case n � 3�2, Eq. (10) gives C3�2�T � �
cosh�T�2� 1 sinh2�T�2� ln�tanh�T�4��, with the density
still divergent but only logarithmically. A physical ex-
ample corresponding to this case is the 2D GBDT model
with z � 4. The exponent u�n� diverges as n ! 1�2 from
above. For n , 1�2 or equivalently z . d, the continuum
equation is not well defined and requires a nonzero lattice
constant in space (for the interface problem) or time [for
the stochastic process in Eq. (1)].

This transition at n � nc � 3�2 can now be directly
interpreted in the interface context using the relation (3).
Gaussian interfaces with finite initial conditions undergo
a morphological transition at zc � d 1 2. For z . zc�d�
(n . 3�2), the surface has a finite density of zero crossings
along any linear cut in the d-dimensional space. On the
other hand, for z , zc�d�, the surface crosses zero in a
nonuniform way and the density is strictly infinite. If
it crosses zero once, it crosses subsequently many times
before making a long excursion.

This transition is reminiscent of the “wrinkle” transi-
tion found recently by Toroczkai et al. [8] in �1 1 1�-
dimensional Gaussian interfaces. However there is an
important difference. Toroczkai et al. studied the density
of extrema of a Gaussian �1 1 1�-dimensional surface and
found that the density of extrema is finite for z . 5 and
infinite for z , 5. Their results can be understood very
simply within our general framework by noting that an ex-
tremum of the surface h corresponds to ≠xh � 0. Thus
the density of extrema of the surface h corresponds to the
density of zeros of the derivative process ≠xh. One can
then follow our chain of arguments mapping a Gaussian
interface to the stochastic process in Eq. (1) and one finds
that the derivative process also maps to Eq. (1), but with
n � �z 2 d 2 1��2, i.e., n gets replaced by �n 1 1� in
Eq. (3) due to the extra derivative. Using nc � 3�2 again,
we find that the transition for the derivative process occurs
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at z � zc � d 1 4. This is thus a generalization of the
d � 1 result (zc � 5) of Ref. [8].

For n . 3�2, where the process is smooth, one can ap-
ply the independent interval approximation which assumes
that successive intervals between zero crossings of the pro-
cess X�T � are statistically independent. This method was
used very successfully for rather accurate analytical esti-
mates of the persistence exponent for the diffusion equa-
tion [9,20]. According to this approximation, the exponent
u for a general smooth Gaussian process with correlator
C�T � is given by the first positive root of the following
transcendental equation [9],

1 1
2u

p

Z `

0
sin21�C�T ��euT dT �

2r

u
, (12)

where r �
p

2C00�0��p is the density of zero crossings.
Applying this formula to our problem, with Cn�T � given by
Eq. (10), we can obtain estimates for u�n� for all n . 3�2.
For example, putting n � 2 in Eqs. (10) and (12), we get
u�2� � 0.264 66 · · · which can be compared to the exact
result u�2� � 1�4. Similarly for n � 3, we find u�3� �
0.222 83 · · · , to be compared to the value u�3� 
 0.231 6

0.01 obtained by numerical simulation [21].
In the context of a stationary interface, the morphologi-

cal transition at n � 3�2 (i.e., z � d 1 2) is associated
with the familiar transition from a rough to a super-rough
interface [22], extracted from the mean-square height
difference C�x� � ��h�x� 2 h�0��2�. Using the stationary
correlator, �hkh2k� � 1�jkjz gives C�x� � jxjz2d for
d , z , d 1 2, and C�x� � x2Lz2d22 for z . d 1 2,
where the system size L acts as a regulator for the small-k
divergence (kmin � 1�L) in the latter case. This analysis
also illustrates the difference between finite and steady
state initial points: if the derivatives of h�x� up to order
�n 2 1� are fixed, i.e., not averaged over the steady state
distribution, one obtains, for large jxj, C�x� � jxjz2d ,
independent of L, for all z . d. The same result follows
from Eq. (1) after the replacements x ! h, t ! x.

In summary, we have shown that fluctuating interfaces
exhibit a form of spatial persistence analogous to the
temporal persistence exhibited by stochastic processes.
For Gaussian interfaces the analogy is precise— the
spatial fluctuations in the stationary state are isomorphic
to the stochastic process (1), with n given by Eq. (3). A
non-Gaussian process for which exact results are possible
is the �1 1 1�-dimensional Kardar-Parisi-Zhang (KPZ)
equation, since the stationary probability distribution of the
interface field is given by P����h�x����� � exp�2

R
�≠xh�2 dx�

[1]. Thus the stationary interface can be described by
the effective Langevin equation, ≠xh � h�x�, the n � 1
version of Eq. (1). From the exact results u�1� � 1�2,
and H � 1�2 we immediately obtain u0 � us � 1�2, in
agreement with Ref. [15]. For the KPZ equation in higher
dimensions, and other non-Gaussian interface models,
the determination of u0, in particular [23], remains a
challenge.
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