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Coarsening in the Presence of Kinetic Disorders: Analogy to Granular Compaction
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We study the zero temperature dynamics in an Ising chain in the presence of a dynamically induced
field that favors locally the “2” phase compared to the “1” phase. At late times, while the “1” domains
coarsen as t1�2, the “2” domains coarsen as t1�2 log�t�. Hence, at late times, the magnetization decays
slowly as m�t� � 21 1 const� log�t�. We establish this behavior both analytically within an independent
interval approximation and numerically. Our model can be viewed as a simple model for granular
compaction, where the system decays into a fully compact state (with all spins “2”) in a slow logarithmic
manner as seen in recent experiments on granular systems.

DOI: 10.1103/PhysRevLett.86.2301 PACS numbers: 45.70.Cc, 05.50.+q, 75.10.Hk, 82.40.Bj
The effect of quenched disorder on the relaxation dy-
namics of many body systems has been studied quite ex-
tensively [1]. In systems such as structural glasses, where
quenched disorder is absent, an alternative approach has
been put forward that considers the slow relaxation due to
kinetic disorder, induced by the dynamics itself [2]. An-
other important system where kinetic disorders give rise to
slow relaxation is granular material. The density relaxation
of loosely packed glass beads was studied in recent experi-
ments and it was found that the density r�t� compactified
slowly as, r�`� 2 r�t� � 1� log�t� under mechanical tap-
ping [3]. It is natural to expect that such kinetic disorders
may play important roles in the dynamics of other sys-
tems as well. In this Letter we study, for the first time, the
effect of a dynamically self-induced field in an important
class of out-of-equilibrium problems, namely, the domain
growth problems, and show that such systems also exhibit
logarithmic relaxation, suggesting that inverse logarithmic
relaxation is extremely robust.

Domain growth following a rapid quench in temperature
in pure ferromagnetic spin systems is one of the better un-
derstood out-of-equilibrium phenomena [4]. For example,
if an Ising system is quenched rapidly from infinite tem-
perature to T � 0 without breaking the symmetry between
the two ground states, domains of up and down spins form
and grow with time. The average linear size of a do-
main grows with time as l�t� � t1�2 for zero temperature
nonconserved dissipative dynamics. Domain growth prob-
lems in the presence of quenched ferromagnetic disorder
has also been studied extensively [4]. In such systems,
quenched disorder pins the domain walls leading to a com-
plete freezing of dynamics at T � 0. However, at small
positive T , the system coarsens via activated dynamics,
leading to an extremely slow growth law, l�t� � �logt�1�4

[4]. However, virtually nothing is known about coarsen-
ing in such systems where the disorder is not quenched
but is kinetic in nature. In this paper, we take the first step
towards understanding the nature of coarsening in Ising
systems in the presence of a particular type of kinetic dis-
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order, namely, a symmetry breaking kinetic field, and find
novel coarsening behavior.

Following a rapid temperature quench in a pure Ising
model, if one puts on a small uniform external field (say, in
the down direction), then even at T � 0 the system quickly
reaches the pure state of magnetization 21 in a finite time
proportional to the initial size of the up domains. A natural
question is: What happens when, instead of applying a
global external bias, the symmetry between the pure states
is broken locally by the dynamics itself?

In this Letter we address this question in the context of a
simple Ising spin chain with spins Si � 61. Starting from
a given initial configuration, the system evolves by single
spin flip continuous time dynamics. Let W�Si; Si21, Si11�
denote the rate at which the flip Si ! 2Si occurs when
the two neighboring spins are Si21 and Si11. In our model
the rates are specified as follows:

W�1; 11� � W�2; 22� � 0 ,

W�1; 12� � W�1; 21� � W�2; 12�
� W�2; 21� �

1
2 , (1)

W�1; 22� � 1 ,

W�2; 11� � a .

Here we restrict ourselves to the case a � 0. We note that
the case a � 1 corresponds to the usual zero temperature
Glauber dynamics [5]. The only difference is that, for
a � 0, the move �1, 2, 1� ! �1, 1, 1� is not allowed
and thereby the symmetry between “1” and “2” spins
is locally dynamically broken. Thus isolated “2” spins
(surrounded on both sides by a “1”) block the coalescence
of “1” domains and locally favor the “2” spins. As a
result, we show below that the system eventually decays
into the state where all spins are “2” but does so in a very
slow manner, m�t� 1 1 � 1� log�t�.

Our main results can be summarized as follows. In con-
trast to the case a � 1 [where the average size of both “1”
and “2” domains grows as l6�t� � t1�2 at late times [6]
© 2001 The American Physical Society 2301
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and the average magnetization m�t� � �l1 2 l2���l1 1 l2�
is a constant of motion [5] ], for a � 0 we show that at late
times, while l1�t� � t1�2, l2�t� � t1�2 log�bt� where b is
a constant that depends on the initial condition. Thus due
to the dynamically generated local bias, the “2” domains
grow slightly faster than the “1” domains and, as a result,
the magnetization decays as m�t� � 21 1 const� log�bt�
for large t. Notice that the average domain size grows
faster for a � 0 than for a � 1, i.e., paradoxically coars-
ening is enhanced by putting one of the rates to zero.

Our model can alternately be viewed as a toy lattice
model of granular compaction if one identifies the “2”
spins as particles,“1” spins as holes, and the 1D lattice as
a section of the bottom layer of a granular system. The
flip of a spin in the Ising model then corresponds to de-
position or evaporation of a particle from the bottom layer
of a granular packing. The specific rules of spin flipping
in Eq. (1) can then be directly translated into the rules for
particle evaporation or deposition. The final state where all
spins are negative (magnetization, m � 21) corresponds
to the fully compact state with particle density 1. While
the rules of the local dynamics studied here are not derived
from a realistic model of granular compaction, the idea
is to reproduce the correct nature of compaction within
a simplistic Ising-type model by incorporating the basic
mechanism of compaction that can be summarized as fol-
lows. There exist local kinetic “defects” and the system
can gain in compaction only by relaxing such local de-
fects. Such relaxation happens via the tapping process.
However, these defects become rarer with time and it be-
comes harder and harder for the system to find such a local
defect, relax it, and thereby gain in compaction. This is the
origin of the slow logarithmic relaxation. In our model, the
triplets “1 2 1” play the role of such local defects which
decay only via the diffusion of kinks. Thus the diffusion
effectively plays the role of tapping. The density of these
triplets decays with time and the system finds it progres-
sively harder to relax. Similar defect mediated slow relaxa-
tion has also recently been observed in other models [7].

In terms of the motion of the domain walls between “1”
and “2” phases, our model can also be viewed as a reaction
diffusion process. We need to distinguish between the two
types of domain walls 21 � A and 12 � B. Note that
by definition (originating from a spin configuration) the A’s
and B’s always occur alternately. The A’s and B’s diffuse
and, when an A and a B meet, they annihilate only if A
is to the left of B, otherwise there is hard core repulsion
between them.

To start with, we set up our notations. We define Pn�t�
and Rn�t� to be the number of domains of size n per unit
length of “1” and “2” types, respectively. Then, N�t� �P

n Pn �
P

n Rn is the number of domains of either “1”
or “2” spins per unit length. The density of kinks is
therefore 2N�t�. We also define the normalized variables,
pn � Pn�N and rn � Rn�N . pn (or rn) denotes the con-
ditional probability that, given a domain of “1” (or “2”)
2302
has occurred, it is of length n. Let L1�t� �
P

nPn and
L2�t� �

P
nRn denote the densities of “1” and “2”

spins. Clearly L1�t� 1 L2�t� � 1 and the magnetization
per unit length is m�t� � L1�t� 2 L2�t�. The average
size of a “1” and a “2” domain is denoted, respectively,
by l1�t� �

P
npn � L1�t��N and l2�t� �

P
nrn �

L2�t��N .
Following Glauber’s calculation for the a � 1 case, it

is easy to show [8] that, for the a � 0 case, the domain
density, N�t� � �1 2 �SiSi11���4, of either phase and the
fraction of “1” spins, L1�t� � �1 1 �Si���2, evolve ac-
cording to the exact equations,

dN
dt

� 2P1 (2)

and

dL1

dt
� 2R1 , (3)

where P1�t� � ��1 2 Si21� �1 1 Si� �1 2 Si11���8 and
R1�t� � ��1 1 Si21� �1 2 Si� �1 1 Si11���8 are, respec-
tively, the density of “1” and “2” domains of unit length,
i.e., the density of triplets “2 1 2” and “1 2 1.” It
is easy to see physically the origin of these two exact
equations. Equation (2) arises from the fact that the
domain density can decrease only via the annihilation
of the triplets “2 1 2.” Also, on average, the fraction
of “1” spins can decrease only due to the blockage by
“1 2 1” triplets giving rise to Eq. (3).

By using m�t� � �Si� � 2L1�t� 2 1, we find from
Eq. (3) that dm�dt � 22R1. We note that, for the case
a � 1, dm�dt � 0 [5], indicating that the magnetization
does not evolve with time. In our case, due to the triplet
defects “1 2 1,” the average magnetization decays with
time. We also note that, unlike the a � 1 case, the
evolution equation (3) for the single point correlation
function involves two and three point correlations [via
R1�t�]. Writing down the analogous equations for Rn�t�
gives an infinite hierarchy which makes an exact solution
difficult for a � 0.

By using R1 � r1N and L1 � l1N in Eq. (3), one can
formally solve for N�t� in terms of r1 and l1 as

N�t�
N�t0�

�
l1�t0�
l1�t�

exp

µ
2

Z t

t0

r1�t0�
l1�t0�

dt0
∂

. (4)

Furthermore if the density of the “1” phase is L1�t0� � e,
then, by using the relation N�t� � 1��l2�t� 1 l1�t�	 in
Eq. (4), we find

l2�t�
l1�t�

�
1
e

exp

µZ t

t0

r1�t0�
l1�t0�

dt0
∂

2 1 , (5)

clearly showing that the ratio l2�t��l1�t� is growing due
to the presence of the triplets “1 2 1.” Note that the
asymmetry between the growth of “2” and “1” domains
is evident due to the triplet defects “1 2 1” present with
density R1 � r1N .
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In order to make further analytic progress, we first
use the independent interval approximation (IIA), where
correlations between neighboring domains are neglected.
The IIA was used successfully for the pure Glauber-Ising
model, i.e., the a � 1 case [9]. Here we apply it to the
a � 0 case. The basic idea is to write the rate equations
of the domain densities Pn�t� and Rn�t� by counting all
the gain and loss terms. Typically the equations for single
point densities involve terms containing joint densities of
two domains. The IIA assumes that the joint density can
be written as a product form. Since the derivation [8] is a
straightforward generalization of the a � 1 case [9], we
just present the final equations,

dPn

dt
� Pn11 1 Pn21 2 2Pn 1

R1

N
�Pn 2 Pn21� , (6)

for all n $ 1 with P0 � 0 (absorbing boundary condition)
and

dRn

dt
� Rn11 1 Rn21 2 2Rn 2

P1

N
�Rn 1 Rn21�

1
P1

N2

n22X
i�1

RiRn2i21, n $ 2 , (7)

and dR1�dt � R2 2 R1 2 P1R1�N , where N�t� �P
Pn �

P
Rn. It can be easily checked that these two

IIA equations satisfy Eqs. (2) and (3) exactly, and conse-
quently also Eqs. (4) and (5).

To calculate N�t� using Eq. (4), we need to evaluate two
quantities from the IIA equations: (i) r1�t� � R1�N and
(ii) l1�t� �

P
npn, where pn � Pn�N . In order to calcu-

late these two quantities, it is useful to write the IIA equa-
tions in terms of the normalized variables, pn � Pn�N
and rn � Rn�N . From Eqs. (6) and (7), we then get

dpn

dt
� pn11 1 pn21 2 2pn 1 r1�pn 2 pn21� 1 p1pn

(8)

for all n $ 1 with p0 � 0 (absorbing boundary condition)
and

drn

dt
� rn11 1 rn21 2 2rn 2 p1rn21

1 p1

n22X
i�1

rirn2i21, n $ 2 , (9)

and dr1�dt � r2 2 r1. It is easy to check that the normal-
ization condition

P
pn �

P
rn � 1 is satisfied by these

two equations.
The two IIA equations above are coupled nonlinear

equations with infinite number of variables and hence are
difficult to solve exactly. Our approach is a combination
of a scaling assumption and then rechecking this assump-
tion for self-consistency. Consider first the pn equation,
i.e., Eq. (8). We substitute pn�t� � t21�2f�nt21�2, t� in
Eq. (8) and ask if the resulting equation allows for a steady
state scaling solution as t ! `, i.e., if the scaling func-
tion becomes explicitly independent of t as t ! `. It
is easy to verify that, if r1�t� decays faster than t21�2,
such a time-independent scaling solution is possible with
f�x� � x

2 exp�2x2�4�. In this case, l1�t� �
P

npn 

t1�2

R`
0 xf�x� dx �

p
pt at late times.

Next we consider the rn equation, i.e., Eq. (9). Since
p1 � 2d logN�dt, a natural choice would be to write
rn�t� � N�t�g�nN�t�, t	. Substituting this in Eq. (9), we
find that in the t ! ` limit, the equation allows for a time
independent scaling function, g�x� � c exp�2cx� (c is a
constant), provided N�t� decays faster than t21�2. In this
case, r1 � N�t�g�0� � cN�t�. Thus if scaling starts hold-
ing beyond some time t0, then c � r1�t0��N�t0�.

Using the results (i) r1�t� � r1�t0�N�t��N�t0� and
(ii) l1�t� �

p
pt in the exact equation [Eq. (4)], we find

N�t�
N�t0�

�

r
t0

t
log�b�

log�bt�t0�
, (10)

where log�b� �
p

p

r1�t0�
p

t0
. Substituting this result in the

expression for r1�t�, we find

r1�t� �

p
p

p
t log�bt�t0�

. (11)

We now use the late time result [Eq. (10)] in the exact
relation [Eq. (2)] and find

p1 �
1
2t

1
1

t log�bt�t0�
. (12)

From the above expressions, it is clear that both r1�t�
and N�t� decay faster than t21�2 and hence our scaling
solutions are completely self-consistent.

It is easy to see that these IIA results become exact in
the zero density limit of the “1” phase �e ! 0�. In this
limit, the average size of a “2” domain is 1�e times larger
than the average size of a “1” domain. As time increases,
the “1” domains will certainly grow in size. But a typical
“1” domain will disappear (via the absorbing boundary
condition) long before encountering other “1” domains,
i.e., before feeling the presence of the constraint due to
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FIG. 1. l2�t��l1�t� versus t for runs with different initial mag-
netizations.
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FIG. 2.
p

t N�t� versus t�t�m�0�	 for the same runs as in
Fig. 1. Also shown is the prediction const� log�t�t�.

triplets “1 2 1.” The probability of such an event is of
order O�e�. Thus, effectively, the dynamics of the system
will proceed via eating up of the “1” domains. Hence, if
there is no correlation between domains in the initial con-
dition, the dynamics is not going to generate correlations
between them and hence IIA becomes exact. The picture
in this limit is similar to the zero temperature dynamics
of the q state Potts model in the limit q ! 11 [9]. For
other volume fractions, it is likely that IIA predicts the
correct fixed point picture at late times. This is confirmed
by Monte Carlo simulations of the model.

To improve efficiency, these simulations were made for a
version of the model with simultaneous updating. This
should not change any of the above conclusions. For con-
venience, we chose initial conditions such that all domains
of minority spins had length 1, while the lengths of majority
spin domains were distributed exponentially. At each time
t, all kink positions were written into an array K, and only
this array is used to generate the array K0 for the next time
step. For each value of m�0� we simulated between 20 and
200 lattices of 226 sites for 3 3 107 time steps.

Data for l2�t��l1�t�, plotted in Fig. 1, show the pre-
dicted monotonic increase with t. This increase is logarith-
mic for t . t0, while it is faster for t , t0. For a detailed
comparison with the above theory we need to know how
t0 (and thus also b) depends on m�0�. We expect it to be
exponential for m�0� ø 1, but this is not sufficient for a
detailed analysis. Thus we determine for each m�0� a t

such that the data for l2�t��l1�t�, for
p

t N�t�, for tp1�t�,
and for

p
t r1�t� collapse when plotted against t�t. The

fact that a single t�m�0�	 exists which gives a good data
collapse in all four plots is highly nontrivial. We show
such plots for N�t�, p1�t�, and r1�t� in Figs. 2 and 3. We
see good agreement with the theoretical predictions. In
particular, data collapse is excellent (showing that the only
memory left from the initial conditions is the current value
of the magnetization). But the detailed predictions for the
2304
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FIG. 3. tp1�t� (top) and
p

t r1�t� (bottom) versus t�t�m�0�	.
To avoid overcrowding, results are shown only for m�0� �
22�3 (circles), 0 (squares), and 2�3 (triangles). The dashed
curves show the predictions 1�2 1 1� ln�t�t� and

p
p� ln�t�t�.

scaling function show substantial corrections which seem,
however, to disappear for t ! `.

In summary, we have addressed a rather general question
about the effect of kinetic disorders on phase ordering
kinetics and have obtained exact results for a particular
type of kinetic disorder in a 1D Ising model. Besides, our
model can be viewed as a new model of reaction diffusion
processes as well as a toy model of granular compaction.

We thank M. Barma and C. Sire for useful discussions.
We thank G. Odor for communicating his results to us.

Note added.—A related reaction diffusion model
has recently been studied numerically by Odor and
Menyhard [10].
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