PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Extremal paths on a random Cayley tree
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We investigate the statistics of extremal gath(both the shortest and the longeftom the root to the
bottom of a Cayley tree. The lengths of the edges are assumed to be independent identically distributed random
variables drawn from a distributign(l). Besides, the number of branches from any node is also random. Exact
results are derived for arbitrary distributigr{l). In particular, for the binarf0,1} distribution p(I)=pé) ;
+(1—p)d o, we show that ap increases, the minimal length undergoes an unbinding transition from a
“localized” phase to a “moving” phase at the critical valup=p.=1—b"*, whereb is the average branch
number of the tree. As the heighiof the tree increases, the minimal length saturates to a finite constant in the
localized phased<p.), but increases linearly as,,(p)n in the moving phasep>p.) where the velocity
vmin(P) is determined via a front selection mechanism.pAt p., the minimal length grows witm in an
extremely slow double-logarithmic fashion. The length of the maximal path, on the other hand, increases
linearly asvpa(p)n for all p. The maximal and minimal velocities satisfy a general duality relation,
Umin(P) Tvma{1—p)=1, which is also valid for directed paths on finite-dimensional lattices.

PACS numbd(s): 05.40—a, 64.60.Cn, 02.56:r

[. INTRODUCTION except the root, has coordination number 3; the coordination
number of the root is 2. However, our main results can be

Optimization lies at the heart of a vast number of phe-easily generalized to the case of a tree with arbitrary coordi-
nomena: Particles “seek” paths with minimal action, speciesnation number, and even to trees where the coordination
“try” to maximize fitness, companies minimize cost. Many number at any node is random.
optimization problems, e.g., the traveling salesman problem, Similar problems arise in numerous fields ranging from
are notoriously harfll]. Additionally, optimization problems computer sciencd2] to condensed-matter physids,4],
often involve randomness, which makes them even morgvhere it is known as the problem of directed polymers in
complicated. When the number of random entries is veryandom medigDPRM). Indeed, the minimal path problem
large, however, optimization problems might become sim-<an be considered as the zero-temperature limit of DPRM on
pler thanks to the “concentration of the measure.” This Cayley trees. DPRM on Cayley trees are interesting on their
means that the probability distribution of some random vari-own rights[5-8] plus they have resurfaced in a surprisingly
able becomes highly localized, almost like a delta functionlarge number of apparently unrelated probld®s12). Ad-
concentrated around its average value. This phenomenon ditionally, DPRM on hierarchical latticef13—15 bear a
well-known in probability theory where, for instance, it ac- strong relation to DPRM on Cayley trees. The primary em-
counts for the fact that after flipping a col times, the phasis of the work devoted to DPRM is on the spin-glass-
probability that the number of heads exce@#® by more like transition occurring at dinite temperature and oftuc-
than, say, 100N is about 108°%. Below, we shall investi- tuation properties. In contrast, we consider exactgro
gate an optimization problem in random media that demontemperature and study the basiacroscopicquantity, the
strates this concentration of the measure in the strongestinimal length(or the ground-state energySpecifically, we
sense(the variance of the optimized quantity is finitand focus on the unbinding transition driven by the parameter
displays an unbinding phase transition. A remarkable hiddenf the bimodal distributionp(l)=pd(I—1)+(1—p)s(l).
connection with traveling-wave phenomena allows us to exRecently, similar unbindingor “depinning”) phase transi-
plain both the concentration of the measure and the phag®ns have been found in a number of nonequilibrium pro-
transition. cesses without quenched disor{i&6—20.

The optimization problem considered in this paper can be Let us first outline our main results. We derive exactly the
formulated as follows: Take a rooted tree whose bonds havstatistics of both the minimal and maximal path on a random
random lengths and find descending paths of extremal totalayley tree for arbitrary distributiorp(l) of the edge
length. (We call the random variable assigned to each bondengths. We find a class of distributions for which the mini-
“length”; in many applications, the term energy might be mal path undergoes an unbinding phase transition from a
more appropriate.We assume that lengths are independentocalized phase to a moving phase as a parameter of the
and chosen from some probability distributip(l). The to-  distribution is varied. A particular example, which we study
tal length of a path is the sum of lengths of the bonds alongn detail in this paper, is the bimodal distribution. In the
the path, and we want to determine the minirrabxima) bimodal case, the length of each bond can be either 1 with
length among the paths from the root to the bottom of theprobability p or 0 with probability (1-p). For any path
tree. We focus on a rooted Cayley tree where each nodatarting at the root and moving down, the length of the path
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is the sum of the lengths of the bonds along the path, i.e., the Pnhi1(X)=[(1—p)P,(X)+ pP,(x—1)]% 3)
number of 1's along the path. There arg 2aths from the

root to then™ level. It is well known that ap varies between This relation can be derived by analyzing various possibili-
0 and 1, the system undergoes a directed percolation trangies for the lengths of the two edges issuing from the root and
tion [16,27] at p.=1/2. In this paper we show that precisely taking into account that two subsequent daughter trees are
at p.=1/2, the minimal length also exhibits an unbinding statistically independent. For instance, both lengths are equal
phase transition. The average minimal length grows linearlyo zero with probability (£ p)2, and paths in the subsequent
with n whenp>1/2, but gets pinned, i.e., remains finite for trees have lengthsx with probability Pﬁ(x); this provides
large n when p<1/2. More specifically, we find that for the contribution (+ p)?P2(x) to P, 1(x). Similarly, one
largen, the average minimal lengfL"") behaves as gets the contributions @ 1—p)P,(x—1)P,(x) and
p?P2(x—1). which sum up to Eq(3). Note that recursion

Umin(P)N p>172, relations analogous to Edq3) appear in several problems
(Lmin (In2)"lninn  p=1/2, e related to DPRM5,6,13,15.
n finite p<1/2. We must solve Eq(3) subject to the initial condition
1 x=<0,
For p>1/2, we shall later compute the minimal “velocity” PoX)={0 x>0 (4

vmin(P) exactly. The average maximal length, on the other
hand, behaves as A
Clearly, the minimal length.;"" is a random variable that
(Li®)=vmadp)n forall p, (2)  takes values between 0 andand Egs(3)—(4) indeed show
) . o that P,,(x)=1 for x<0 andP,(x) =0 for x>n.
Wherev na(p) +vmin(1—p) =1. This duality relation is very - \yhenn grows, L™ increases as well and thus it should

general and valid for arbitrary graphs, for instance, forreachalimit. Fop<1/2, this limit is finite, i.e., one can find

DPRM on fln!te-dlmgn5|onal Iattlces_. We also derlvg a 385 infinite path with only finite number of edges of length 1.
eralized duality relation between minimal and maximal ve-

- ; L .~ Mathematically, it means thd,(x) approaches a stationar
locities for a certain class of bounded distributions. While y n(X) app y

the directed percolation transition on a Cayley tree has bee%'smbunon’ Pa(X)—=P(x), which satisfies

studied in detail before, the exact statistics of extreme paths P(x)=[(1—p)P(x)+pP(x—1)T? (5)
below, at and abovp.= 1/2, have not been studied before to '
the best of our knowledge. Starting from P(0)=1, one computesP(x) recursively:

The minimal length problem on a rooted Cayley tree with P(1)=p2(1—p) 2 etc.P(x) vanishes extremely fast in the
random branchingi.e., the coordination number at each largex limit: In P(x)~2In p.
node iiiandomalsq displays an unbinding transition @ For p=1/2, the minimal length grows asincreases. To
=1-b"", whereb is the average number of branch?ns PeTunderstand why this is so, recall thag(0)=1 and look at
nod_e._At the critical point, the average minimal length™") P.(1). By inserting P,(1)=1—gq, into Eq. (3) we find
exhibits the same unbIe-Iogarlthmlc growth for_ etmyll, Uns1=2(1— p)qn—(l—p)zqﬁ. Hence P,(1)—1 for p
and abovep. the minimal length grows linearly with with  ~ 15 proceeding this line of reasoning one can verify that
velocity v pin(P, D). _ _ P,(xX)—1 whenn—o. Additionally, we see the difference
The rest of th|§ paper is qrganlzed as _folllows. In Sec. llyatween the cases pf>1/2 andp= 1/2: In the former situ-
we study the unbinding transition of the minimal path for theation, P,(x)—1 exponentially fast, while in the latter situa-

special bimodal distribution in detail. In Sec. Ill, we study tion the approach is algebraic. Therefore, the size of the re-
the maximal path for the bimodal case and derive the dualit ion whereP, (x) is close to 1 should grow linearly with
n

relation. In Sec. IV, we generalize the results to a Cayley tre¢ . ~1/2. Thus the distributiorP hes th

with random branching. In Sec. 1V, we go beyond the bimo'tra\?e:iﬁg-w/a\./e folrjr?{;ei g'izt?lt;l]’ltlo n(X) approaches the
dal distribution and obtain generalized results for arbitrary T
distribution of the edge length. Finally we conclude in Sec. P (x)— P2 — x— (LMin 6
VI with a brief summary and outlook. =Py Y {Ln™- ©

In Eq. (6), we have choseg=x—(L™") as the wave vari-
Il. MINIMAL PATH  (S) able. One can justify this choice by noting that the relation

. . min _ _ . :
Instead of studyingP™"(x)=Prob(LM"=x), it proves PR(X) = Pn(X) — Pn(x+1) leads to identity

convenient to consider the cumulative distributid®y,(x) w w
=Prob(L""=x). Clearly, P,(x) is the probability that all min, _ _ _
possible r&)aths to theth level have lengths x. Once we get (La™ xZo X[Pa(0) = Pa(x+1)] le P9, (D
P.(x), the distribution of the minimal length is found
straightforwardly. For instance, for the bimodal length distri-and hencéL™") is indeed an appropriate characterization of
bution that we consider in this sectio®"'(x)=P,(x)  the location of the front. By inserting the wave fok) into
—Pn(x+1). Eg. (3) and using(L"=vn we find,

It is easy to see tha®, (x) satisfies the following recur-
sion relation P(y—v)=(1—p)P3(y)+pP3(y—1). (8)
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2p—1
Umin(P) = 1 (12
In -1
and
In2
1—=vmin(P) 1 (13
Inﬁ

One can also derive the leading correction to the domi-
nant linear behavior ofL"),

) 3
(LA™Y =vmin(P)N+ W'” n. (14)

FIG. 1. The propagating front for the cumulative distribution The logarithmic correction becomes especially important

P,(x) of the minimal length for the bimodal distribution with

p=0.8.

The solution of this equation looks like[d — 0] wave form
with P(y)—1 asy— —« andP(y)—0 asy—x. While itis

very hard to solve this nonlinear, nonlocal equation exactly,

the velocity can be found by analyzing the tail regign;
—ow, where 1-P(y) is small. Linearizing Eq(8) in this

whenp| 3, as can be seen from the asymptotics

en 31Inn

(L) =inwe ™ 2inwe)”

e=2p—1. (15

The logarithmic correction to the front position was first

derived by Bramson in the context of a reaction-diffusion

equation[23,21], and was subsequently rederived and gener-

region and noting that it admits an exponential solution, lalized by a number of authof84—26¢. Our derivation of Eq.

—P(y)~€"Y, one finds that the velocity, is related to the
decay exponenk via

In[2(1—p)+2pe*
_In[2( pz pe 1 ©

U=

When \>In[2p/(2p—1)], the velocity v, is positive.

While any such\ is in principle allowed, and thus the entire
velocity range of is feasible, a particular value is actually

(14) follows an approach developed in R¢R4], and we
only outline the main steps. First, we need to examine the
exact equationi3) rather than the— o limit, Eq. (8), which
was sufficient to determine the velocity. However, the analy-
sis is still performed in the region far behind the front, so we
can use the linearized version of E§). Writing P,(x)=1
—Qn(x), plugging it into Eq.(3), and ignoring quadratic
terms gives

selected. This is similar to the velocity selection in a large

class of problems with a traveling-wave frgr&1,22. It is

well known that for a wide class of initial conditions, the
extremum value is chosen. From this general front selection

Qn+1(X)=2(1=p)Qn(Xx) +2pQpu(x—1). (16)
Now we seek a solution which has the form
Qn(x)=n"G(yn e\, (17)

principle one can infer that in the present case the selected

value A =A*(p) corresponds to the maximum of,, and
hence the selected “velocity” i8 yin(P) =v,*. Thus,\* is
a solution of the equation

s p)\*e*)\*
In[2(1—p)+2pe M ]+ ——— =0, (10
1-p+pe?
and the selected velocity is
pe ™
Umin(P) = R (11
1-p+pe

with y=x—(L™" as assumed previously and yet undeter-
mined exponent and the scaling functio®(z). We cannot
assume L =v ,(p)n as previously. Instead, we write

(LI =0 min(p)N+ () (18)
for the position of the front. Plugging Eq4.7)—(18) into Eq.
(16) we find that different leading orders are compatible pro-
vided thatae=1/2 andc(n)= BInn with some constang.
Additionally, the scaling functiors(z) satisfies a parabolic
cylinder equation

d’G d . B
FERE TR -1)G(2)=0.

dz (19

Although it seems impossible to provide an explicit ex- Equation(19) should be solved subject to the boundary con-
pression fow y,(p), one can easily probe its behavior in the ditions G(z) —0 asz—® asQ,(x) must vanish forx— o

1
limiting casesp| > andpT1l. In these respective limits, one

gets

andG(z)~z for z—0 to ensure tha®,(x) is independent of
n in the limit n—oc. The boundary condition in the large
limit selects one of the two possible solution&(z)
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=Aexp(—22/4)D2(m*_1)(z), whereD , is the parabolic cyl-
inder function with indexv. The second boundary condition
G(z2)~z fixes the index of the parabolic cylinder function
2(BN*—1)=1. Hence, B=3/2\*; thus completing the
derivation of Eq.(14). Note that the sign of the logarithmic
correction term in Eq(14) is positive. This is different from
the earlier studied problen{24—2€ although the positive
sign has been occasionally seen, see F3£f.

In the the critical case gb=1/2, the convergence of the
distribution P,,(x) towards the asymptotic value is only al-

gebraic, and therefore the front propagates extremely slowly.
The simplest way to determine the rate of propagation is

again to look atP,(x) far behind the front. WritingP,(x)
=1-Q,(x) and plugging it into Eq(3) yields

Qn(x) + Qn(x_ 1) 2
2 .

Qn+1(X)=Qn(x)+Qp(x—1)—
(20

Qn(x)=0 for x=<0, so the first nontriviaQ,’s are Q,(1)
=q(n). From Eq.(20), q(n+1)=q(n)—q?(n)/4. In the
largen limit, we can employ the continuum approximation to
getdg/dn=—qg%/4 and thenc®,(1)=4n"1. Similarly, we
find the asymptotic®,(2)=4n"12. Generally, Eq(20) im-
plies Q,(x)=2yQn(x—1), from which

Qu(x)=4n"2 “V=gexg—2ennn-xin2) (o7
This demonstrates that at the critical poi@,(x) also has a
traveling wave formQ,(x) =g(x—x,), with the front atx,
=(In2)"Yninn.

Equation(21) formally applies forx<x,,. To investigate
Qn(x) in the entire range of, we again use the fact that the
distribution Q,(x) should approach a traveling-wave form,
Qu(x)—Q(y) with y=n"2"""" asn—c. By inserting
this into Eqg.(20) and takingn— limit, we arrive at

Q(y)=27Q(y*) — Q(y?). (22
From this equation, one finds
Q(y)=4y—4y?—2y3+ ... for y|O0. (23

The first term in this expansion indeed agrees with 24).
Similarly, one gets

cons
1-Q(y)~ex —H for y11. (29

To provide a more rigorous derivation of the growth law

for (L™, we recall the definition, Eq(7), and write
(LA =2y=1Pa(x)=n—2,21Qu(x).  Inserting Q;(x)
=Q(y) and replacing the sum by an integfathich is jus-
tified for largen), we obtain

min 1 nn -z dz

(Ln >%n_mf2“*1|an(e ) (25
In the limit of largen, the most important contribution in the
integral comes from its lower limit. Usin@(y)—1 asy
—1, see Eq(24), we arrive at the desired result,
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FIG. 2. The propagating front for the cumulative distribution
R,(x) of the maximal path for the bimodal distribution with
p=0.2.

(L™ =(In2)"tnInn. (26)
This completes the derivation of our central result, Eq.
Note that finite-dimensional analogs to Ed) are unknown,
which is hardly a surprise given that it requires understand-
ing of the interplay between DPRM and directed percolation
[27]. In a few special cases, the velocity has been computed
exactly [28,29; unfortunately, in those solvable cases the
system was always in the moving phase and there was no
phase transition.

1. MAXIMAL PATH (S)

We now turn to the statistics df;'?*, the length of the
maximal path for the bimodal distribution. It is now conve-
nient to defineR,(x) =ProbL'¥*<x). By proceeding as in
the minimal length problem, it is easy to show tH&i(x)
evolves according to the same Eg) with P replaced byR,
ie.,

R+ 1) =[(1=Pp)Rn(X) + pRy(x— 1)]%. (27)
The only difference from the minimal case is in the initial
condition. Instead of Eq4), we now have

1 x=0,

Ro(X)=10 x<o.

(28)

This difference in the initial condition, however, leads to a
different behavior of the maximal front as demonstrated be-
low.

Not surprisingly, Eq.(27) admits a traveling-wave solu-
tion, R,(X) =R(y=X—vma), for all p (see Fig. 2 How-
ever, in contrast to th€1—0] wave form of the minimal
case, the functioR(y) now looks like af 0— 1] wave form
with R(y)—0 as a double exponential behind the fromt (
——o) and R(y)—1 exponentially ahead of the frony (
—). We then analyze the wave front near the “forward”
tail, as opposed to the “backward” tail of the minimal prob-
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seems to be universal not just in the present problem but in
many other casg4-26, the sign of the correction term is
not and can either be positiy80] or negative[24—26.

The duality relation(32) can also be derived by a general
argument that does not depend on the structure of the under-
lying tree and therefore is valid for extremal directed paths
on arbitrary graphs, in particular, on arbitrary lattices. The
argument follows from the observation that for bimodal dis-
tribution, if one replaces the 0’s by 1's and the 1's by 0’s on
the minimal patiand thereby replacingby 1—p), then the
minimal path becomes the maximal path. Ibgtandn, de-
note, respectively, the number of 0’s and 1's on the minimal
path. Evidently,n,+n;=n. Then clearly,L""(p)=n, and
by duality, Ly"*{1—p)=n,. Adding the two quantities, we
get Ly"(p) +L"®{(1—p)=n. Dividing by n, we immedi-

FIG. 3. The minimal and maximal velocities for the bimodal ately get the duality relation E§32). Below, we shall derive

distribution as functions ofp. The dotted line shows,,(p) and
the solid line represents,i,(p)-

lem. Substituting +R(y)~e~ Y, we find that there exists a

family of traveling-wave solutions with velocity,, param-
eterized by,

_In[2(1-p)+2pe”]
= p i

v, (29
This velocityv , has a unigue minimum gt=u*. By the
front selection mechanism, this minimum valugs is se-
lected as the velocity ,.{p) of the front. Thus, we have

IN[2(1—p)+2pe] pue” 0 (30
n - - % = 1
P P 1—p+pe!
and the selected maximal velocity is
{P) pe” (31
v =
mal P 1-p+pe”

Using these results together with Eq40) and (11), one
immediately finds

Umin(P) TV ma{1—p)=1. (32

a more generalized version of this duality relation which
goes beyond the bimodal distribution.

IV. GENERALIZATION TO TREES WITH RANDOM
BRANCHING

The generalization of the above analysis to the case of the
rooted Cayley tree with a random number of branches is
straightforward. Leb,, is the probability that the number of
branches is equal ton and b is the average number of
branchesh=23,-1mb,,. Equation(3) is replaced by

Pn+1(x>=n§1 bl (1= p)Pn(X) + pPu(x—1)1", (34)

and the subsequent analysis repeats the steps detailed in the
case of the binary tree. In particuld®,(x) approaches the
stationary distribution fop<p., while abovep. the mini-
mal length grows according to E(L4) with \* a solution to
equation
s p)\* e—)\*
In[b(1-p)+bpe M ][+ —— =1, (39
1-p+pe™
andv min(p) given by the same relatiof11). At the critical
point p.=1—b~1, the minimal length is given by the same

This is the duality relation. Unlike the behavior of the mini- €Xpression6) for any tree. Also, the velocity of the maxi-
mal length, the maximal length does not undergo an unbind_mal path can be determined from the general duality relation

ing transition in the sense that it increases linearly wifor

largen for all 0<p=<1. However, there is still a transition at

p=1/2: The velocityv,,{p) increases from O to 1 ag
increases from 0 to 1/2 and then sticks to 1 fioe 1/2 [see
Fig. (3)].

For the maximal front also, one can easily compute th
subleading logarithmic correction to the front position. Pro

ceeding as in the minimal case, we find

ma 3
(Ln >(>2Uma>€(p)n_ﬁmn. (33

Note the negative sign in the correction term, as opposed tB

the positive sign for the minimal case in Ed.4). This is
also consistent with the duality relation in E@®2). Thus,

while the coefficient 3/2 of the logarithmic correction term

in Eq. (32).

V. GENERALIZATION TO ARBITRARY DISTRIBUTIONS

We now consider the statistics of extreme ggtlon a
binary tree for arbitrary distributiop(l) of the edge lengths.

q_et us first consider the minimal pdth. The velocity of the

minimal path for an arbitrary distribution can be extracted
from earlier results by Derrida and Spoff| that we red-
erive below for the sake of completeness. We consider again
P.(x)=ProbL""=x). Proceeding as in the case of the bi-
modal distribution, one finds that the appropriate generaliza-
on of Eq.(3) is given by

2

P 1(X)= f:dl p()Po(x~1) (36
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with the same initial condition, Eq4), as earlier. The dis- ary distribution and hencéL™")— const. In the opposite
min

tribution of the minimal length is then given 9,7(X)=  case, wherf(l) has a gap\ nearl=0, it turns out that as
—dP,(x)/dx and the average minimal length L")  n— oo,
=f5°Pr,(.x)dx. , ' A
Defining P,(x) =G;,(x), we recast Eq(36) into (Lminy mln nn. (1)
e 20y
Gn+2(X)= fo dlp(HGh(x=1). 37 The bimodal distribution corresponds to the special aase
=1.

For any givenn, G,(x) —1 asx— —« andG,(x) —0 asx These general results are best demonstrated by specific
—oo, SubstitutingG,(x)=1—g,(x) in Eq. (37) and using examples that can be worked out explicitly. Let us first the
normalization ofp(l) one finds, exponential distributionf(l)=e~', which is gapless. Re-

markably, Eg.(40) can be solved exactly in this case,
(X 2 namely, it admits an exponential solutioB,,(x)=A,e *,
gn+1(x)_J’imdyp(x_y)[ZQn(y)_gn(y)]v (38) where An+1:(1+Aﬁ)/2 with Ay=0. As n—w, A, ap-
proaches 1 (more precisely, A;=1—2/n). Therefore,
whereg,(x) —0 asx— —» andg,(x)—1 asx—+=. We (L™= [dx G3(x)=A2/2 approaches 1/2 as—o. Next
analyze the above equation in the “backward” tail region,we consider the distributionf(l)=3%35(I—1)+38(1—2)
i.e., whenx— —o0. In this limit, one can neglect the nonlin- which has the gap. This case also can be worked out explic-
ear term ing, inside the integral in Eq(38). The resulting itly following the same steps as used for the bimodal case. It
linear equation admits a traveling-wave solution of the form,turns out that essentially all the steps are identical to the
gn(x) =" with bimodal case, except thatin Eq. (26) gets replaced bp/2.
But this does not change the leading asymptotic behavior for
largen, which is still given by Eq(26).

We now turn to the maximal path) for an arbitrary dis-
tribution p(l). As in the case of the bimodal distribution,
For generic length distributiong(l), this function has a R,(x)=Prob(;¥<x) satisfies the same E(B6) asP,(x),
maximum atA=\* and by the general velocity selection i.e.,
principle, this maximum velocity is selected, i.emi
=Up*-

We want to characterize a class of distributigr($) for
which an unbinding transition can occur. Such a transition
will occur if the velocity v, in Eq. (39) ceases to have a the only difference is that the initial condition, E¢),
unique maximum. By analyzing E¢39) one sees that this should be replaced by Eq28). Substituting R,(x)=[1
can happen only ip(l) has a nonzero delta-function weight —s,(x)]?, we get
at1=0, i.e., whenp(l)=ad(l)+(1—a)f(l) with 0<a<l1
and f(l) is some positive function witlf;dl f(1)=1. The x 2
unbinding transition occurs as the pa(r)ameme'rs varied. 5n+1(X)=J%dyp(x—y)[ZSn(y)—sn(y)], (43
Note that the positivity condition of velocity in E439) de-
mands that 2<1. Thus the critical point always occurs at with the boundary conditions,(x)—1 as x— —% and
a=1/2. The bimodal distribution considered in the previouss_(x)—0 asx—». We now have to analyze the “forward”
sections is a special case of this class of distributions withaj| of the front, i.e., the behavior in the— limit. We first
a=1-pandf(l)=4(1-1). consider bounded distributions(1)’s with an upper cutoff

Fora<1/2, the average minimal length increases linearlyA . |n that case, the lower limit of the integration in E43)
with n for large n with the velocityv,« obtained from Eq. pecomesc—A. In the tail region where> A, one can again
(39). For a>1/2, the functionP,(x) reaches a stationary neglect the nonlinear term &y, inside the integral in Eq43)
distribution for largen and hence théL ") saturates to a and the resulting linear equation admits a traveling-wave so-
nonzero constant as—o. What happens at the critical point |ution of the forms,(x)=e™ #*~vx"  where
a=1/2 for generic distribution$(l)’'s? Fora=1/2, the Eq.
(37) reduces to,

Zdez e Mp(2)|. (39
0

U\=—— Xln

2

R 10 = f:dl p(DRyx-D)| | 42

1 A
vﬂzﬁlog ZL dz é%p(2)|. (44)

Gpia(X)= Eeﬁmﬁf dIf()GA(x—1). (40
2 2J)o For generic distributionp, has a unique minimum gt

=u* and via the front selection principle, this minimum

An analysis of Eq(40) reveals a remarkable universal prop- velocity is chosen and one getsy.,=v .. Comparing Egs.

erty at the critical point. It turns out that for geneffi¢l), (39) and (44) it becomes evident that for the boundsy-

there are only two possible behaviors ofL™)  metric distributions, i.e., whem(l)=p(A—1), one gets the

= [ydx Gﬁ(x), depending on whether the functibl) has a  general relation,

gap or not neat=0. If f(I) does not have a gap bt0, it

turns out that as— o, G,(x) in Eq. (40) tends to a station- UminT Umax= A (45
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‘For unbounded distributions, however, one has to bebution. In the localized phase&p.), the minimal length
careful since it is not obvious that one can neglect the nondistribution approaches a stationary depth-independent form
linear term ins, inside the integral in Eq43). Equation(44) ~ P™"(x). This distribution vanishes extremely sharply, as the
for the maximal velocity still remains valid as long aél) double exponential, in the largelimit. In the moving phase
decays with exponentially or faster. To see this explicitly in (p>p.), the minimal length distributio®""(x) approaches
an example, let us consider the exponential distributiona traveling-wave form with the front velocity relaxing alge-

p(l)=e"". In this case, one can transform the the integralbraicany,vminzv(p)-4_-3/(2)\*n)+(9(n—3/2), in the largen

gquation(43) into the following difference-differential equa- |imit. Specifically, Py"(x) approaches theolitary traveling

tion, waveP(y) —P(y+1), withy=x—(Ly", the front position
ds,, 1(X) (L™ given by Eq.(14), andP(y) being a solution of Eq.
5—;=28n(x)—5ﬁ(x)—3n+1(x)- (46)  (8). In the critical casep=p,, the minimal length distribu-

tion approaches the solitary traveling-wave, although the
front propagates extremely slowly, as an iterated logarithm.
Given that the distribution of the minimal length is the soli-
ton of a finite width, the variation of the minimal length is
finite. In other words,L" should not vary much from
sample to sample.
2 We have also studied the complementary problem of the
U,L:;'n m) (47) statistics of the maximal path. We have found that the maxi-
mal length always grows linearly with the height, with the
Note that the same formula is obtained if one substituteyelocity v n.cagain determined via the front selection mecha-
p(|):e*| directly into the general expressiofd). Minimiz- nism. For the bimodal length distribution, the minimal and
ing with respect tou, one getsv nay- The Corresponding maximal velocities are connected via the duality relation,
minimal velocity v, for the exponential distribution can be Vmin(P) +vmax{1—p) =1, which admits extensions to finite-
obtained from the general formula in E(9) with p(z) dimensional situations and to arbitrabpunded symmetric
=e~% and then maximizing with respect to. So, for the length distributions.

In this differential form, it is clear that for large one can
neglect the nonlinear term on the right-hand side of ().
By inserting s,(x)~e “*~vu" into the resulting linear
equation, one gets

1

exponentia| distribution we f|na||y get, We have found that the tail of the minimal Iength distri-
bution is a double exponential, in contrast with a simple
Umin=0.23194 ... andv,,=2.67836.... (49 exponential that occurs in most traveling-wave problems

o [22]. This is not very surprising since similar tails were
Thus for unbounded distributions, there does not seem t@ynd in statistics of extremd81]. Note, however, that our
exist any simple relation between minimal and maximal ve-eyact results exemplify extreme value statistics dorre-
locities. lated random variablegsee Ref[11] for a recent review
while classical result$31] correspond to the case afde-
VI. CONCLUSION pendentidentically distributed random variables.

In this paper, we have shown that the length of the mini-
mal path on a Cayley tree exhibits an unbinding phase tran-
sition from a localized phase to a moving phase. This phase P.L.K. acknowledges support from NSF, ARO, and
transition is driven by the parameterof the bimodal distri- CNRS.
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