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Extremal paths on a random Cayley tree
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We investigate the statistics of extremal path~s! ~both the shortest and the longest! from the root to the
bottom of a Cayley tree. The lengths of the edges are assumed to be independent identically distributed random
variables drawn from a distributionr( l ). Besides, the number of branches from any node is also random. Exact
results are derived for arbitrary distributionr( l ). In particular, for the binary$0,1% distribution r( l )5pd l ,1

1(12p)d l ,0 , we show that asp increases, the minimal length undergoes an unbinding transition from a
‘‘localized’’ phase to a ‘‘moving’’ phase at the critical value,p5pc512b21, whereb is the average branch
number of the tree. As the heightn of the tree increases, the minimal length saturates to a finite constant in the
localized phase (p,pc), but increases linearly asvmin(p)n in the moving phase (p.pc) where the velocity
vmin(p) is determined via a front selection mechanism. Atp5pc , the minimal length grows withn in an
extremely slow double-logarithmic fashion. The length of the maximal path, on the other hand, increases
linearly as vmax(p)n for all p. The maximal and minimal velocities satisfy a general duality relation,
vmin(p)1vmax(12p)51, which is also valid for directed paths on finite-dimensional lattices.

PACS number~s!: 05.40.2a, 64.60.Cn, 02.50.2r
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I. INTRODUCTION

Optimization lies at the heart of a vast number of ph
nomena: Particles ‘‘seek’’ paths with minimal action, spec
‘‘try’’ to maximize fitness, companies minimize cost. Man
optimization problems, e.g., the traveling salesman probl
are notoriously hard@1#. Additionally, optimization problems
often involve randomness, which makes them even m
complicated. When the number of random entries is v
large, however, optimization problems might become s
pler thanks to the ‘‘concentration of the measure.’’ Th
means that the probability distribution of some random va
able becomes highly localized, almost like a delta funct
concentrated around its average value. This phenomeno
well-known in probability theory where, for instance, it a
counts for the fact that after flipping a coinN times, the
probability that the number of heads exceedsN/2 by more
than, say, 100AN is about 1028000. Below, we shall investi-
gate an optimization problem in random media that dem
strates this concentration of the measure in the stron
sense~the variance of the optimized quantity is finite! and
displays an unbinding phase transition. A remarkable hid
connection with traveling-wave phenomena allows us to
plain both the concentration of the measure and the ph
transition.

The optimization problem considered in this paper can
formulated as follows: Take a rooted tree whose bonds h
random lengths and find descending paths of extremal t
length.~We call the random variable assigned to each bo
‘‘length’’; in many applications, the term energy might b
more appropriate.! We assume that lengths are independ
and chosen from some probability distributionr( l ). The to-
tal length of a path is the sum of lengths of the bonds alo
the path, and we want to determine the minimal~maximal!
length among the paths from the root to the bottom of
tree. We focus on a rooted Cayley tree where each n
PRE 621063-651X/2000/62~6!/7735~8!/$15.00
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except the root, has coordination number 3; the coordina
number of the root is 2. However, our main results can
easily generalized to the case of a tree with arbitrary coo
nation number, and even to trees where the coordina
number at any node is random.

Similar problems arise in numerous fields ranging fro
computer science@2# to condensed-matter physics@3,4#,
where it is known as the problem of directed polymers
random media~DPRM!. Indeed, the minimal path problem
can be considered as the zero-temperature limit of DPRM
Cayley trees. DPRM on Cayley trees are interesting on th
own rights@5–8# plus they have resurfaced in a surprising
large number of apparently unrelated problems@9–12#. Ad-
ditionally, DPRM on hierarchical lattices@13–15# bear a
strong relation to DPRM on Cayley trees. The primary e
phasis of the work devoted to DPRM is on the spin-gla
like transition occurring at afinite temperature and onfluc-
tuation properties. In contrast, we consider exactlyzero
temperature and study the basicmacroscopicquantity, the
minimal length~or the ground-state energy!. Specifically, we
focus on the unbinding transition driven by the parametep
of the bimodal distribution,r( l )5pd( l 21)1(12p)d( l ).
Recently, similar unbinding~or ‘‘depinning’’! phase transi-
tions have been found in a number of nonequilibrium p
cesses without quenched disorder@16–20#.

Let us first outline our main results. We derive exactly t
statistics of both the minimal and maximal path on a rand
Cayley tree for arbitrary distributionr( l ) of the edge
lengths. We find a class of distributions for which the min
mal path undergoes an unbinding phase transition from
localized phase to a moving phase as a parameter of
distribution is varied. A particular example, which we stu
in detail in this paper, is the bimodal distribution. In th
bimodal case, the length of each bond can be either 1 w
probability p or 0 with probability (12p). For any path
starting at the root and moving down, the length of the p
7735 ©2000 The American Physical Society
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7736 PRE 62SATYA N. MAJUMDAR AND P. L. KRAPIVSKY
is the sum of the lengths of the bonds along the path, i.e.,
number of 1’s along the path. There are 2n paths from the
root to thenth level. It is well known that asp varies between
0 and 1, the system undergoes a directed percolation tra
tion @16,27# at pc51/2. In this paper we show that precise
at pc51/2, the minimal length also exhibits an unbindin
phase transition. The average minimal length grows linea
with n whenp.1/2, but gets pinned, i.e., remains finite f
large n when p,1/2. More specifically, we find that fo
largen, the average minimal lengtĥLn

min& behaves as

^Ln
min&.H vmin~p!n p.1/2,

~ ln 2!21ln ln n p51/2,

finite p,1/2.
~1!

For p.1/2, we shall later compute the minimal ‘‘velocity’
vmin(p) exactly. The average maximal length, on the oth
hand, behaves as

^Ln
max&.vmax~p!n for all p, ~2!

wherevmax(p)1vmin(12p)51. This duality relation is very
general and valid for arbitrary graphs, for instance,
DPRM on finite-dimensional lattices. We also derive a ge
eralized duality relation between minimal and maximal v
locities for a certain class of bounded distributions. Wh
the directed percolation transition on a Cayley tree has b
studied in detail before, the exact statistics of extreme pa
below, at and abovepc51/2, have not been studied before
the best of our knowledge.

The minimal length problem on a rooted Cayley tree w
random branching~i.e., the coordination number at eac
node is random! also displays an unbinding transition atpc
512b21, whereb is the average number of branches p
node. At the critical point, the average minimal length^Ln

min&
exhibits the same double-logarithmic growth for anyb.1,
and abovepc the minimal length grows linearly withn with
velocity vmin(p,b).

The rest of this paper is organized as follows. In Sec.
we study the unbinding transition of the minimal path for t
special bimodal distribution in detail. In Sec. III, we stud
the maximal path for the bimodal case and derive the dua
relation. In Sec. IV, we generalize the results to a Cayley t
with random branching. In Sec. IV, we go beyond the bim
dal distribution and obtain generalized results for arbitr
distribution of the edge length. Finally we conclude in S
VI with a brief summary and outlook.

II. MINIMAL PATH „S…

Instead of studyingPn
min(x)5Prob(Ln

min5x), it proves
convenient to consider the cumulative distribution,Pn(x)
5Prob(Ln

min>x). Clearly, Pn(x) is the probability that all
possible paths to thenth level have lengths>x. Once we get
Pn(x), the distribution of the minimal length is foun
straightforwardly. For instance, for the bimodal length dis
bution that we consider in this section,Pn

min(x)5Pn(x)
2Pn(x11).

It is easy to see thatPn(x) satisfies the following recur
sion relation
e
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Pn11~x!5@~12p!Pn~x!1pPn~x21!#2. ~3!

This relation can be derived by analyzing various possib
ties for the lengths of the two edges issuing from the root a
taking into account that two subsequent daughter trees
statistically independent. For instance, both lengths are e
to zero with probability (12p)2, and paths in the subseque
trees have lengths>x with probability Pn

2(x); this provides
the contribution (12p)2Pn

2(x) to Pn11(x). Similarly, one
gets the contributions 2p(12p)Pn(x21)Pn(x) and
p2Pn

2(x21). which sum up to Eq.~3!. Note that recursion
relations analogous to Eq.~3! appear in several problem
related to DPRM@5,6,13,15#.

We must solve Eq.~3! subject to the initial condition

P0~x!5H 1 x<0,

0 x.0. ~4!

Clearly, the minimal lengthLn
min is a random variable tha

takes values between 0 andn, and Eqs.~3!–~4! indeed show
that Pn(x)51 for x<0 andPn(x)50 for x.n.

Whenn grows,Ln
min increases as well and thus it shou

reach a limit. Forp,1/2, this limit is finite, i.e., one can find
an infinite path with only finite number of edges of length
Mathematically, it means thatPn(x) approaches a stationar
distribution,Pn(x)→P(x), which satisfies

P~x!5@~12p!P~x!1pP~x21!#2. ~5!

Starting from P(0)51, one computesP(x) recursively:
P(1)5p2(12p)22, etc.P(x) vanishes extremely fast in th
largex limit: ln P(x);2x ln p.

For p>1/2, the minimal length grows asn increases. To
understand why this is so, recall thatPn(0)[1 and look at
Pn(1). By inserting Pn(1)512qn into Eq. ~3! we find
qn1152(12p)qn2(12p)2qn

2 . Hence Pn(1)→1 for p
>1/2. Proceeding this line of reasoning one can verify t
Pn(x)→1 whenn→`. Additionally, we see the difference
between the cases ofp.1/2 andp51/2: In the former situ-
ation, Pn(x)→1 exponentially fast, while in the latter situa
tion the approach is algebraic. Therefore, the size of the
gion wherePn(x) is close to 1 should grow linearly withn
when p.1/2. Thus the distributionPn(x) approaches the
traveling-wave form@see Fig.~1!#,

Pn~x!→P 2~y!, y5x2^Ln
min&. ~6!

In Eq. ~6!, we have choseny5x2^Ln
min& as the wave vari-

able. One can justify this choice by noting that the relati
Pn

min(x)5Pn(x)2Pn(x11) leads to identity

^Ln
min&5 (

x50

`

x@Pn~x!2Pn~x11!#5 (
x51

`

Pn~x!, ~7!

and hencêLn
min& is indeed an appropriate characterization

the location of the front. By inserting the wave form~6! into
Eq. ~3! and usinĝ Ln

min&.vn we find,

P~y2v !5~12p!P 2~y!1pP 2~y21!. ~8!
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The solution of this equation looks like a@120# wave form
with P(y)→1 asy→2` andP(y)→0 asy→`. While it is
very hard to solve this nonlinear, nonlocal equation exac
the velocity can be found by analyzing the tail region,y→
2`, where 12P(y) is small. Linearizing Eq.~8! in this
region and noting that it admits an exponential solution
2P(y);ely, one finds that the velocityvl is related to the
decay exponentl via

vl52
ln@2~12p!12pe2l#

l
. ~9!

When l. ln@2p/(2p21)#, the velocity vl is positive.
While any suchl is in principle allowed, and thus the entir
velocity range of is feasible, a particular value is actua
selected. This is similar to the velocity selection in a lar
class of problems with a traveling-wave front@21,22#. It is
well known that for a wide class of initial conditions, th
extremum value is chosen. From this general front selec
principle one can infer that in the present case the sele
value l5l* (p) corresponds to the maximum ofvl , and
hence the selected ‘‘velocity’’ isvmin(p)5vl* . Thus,l* is
a solution of the equation

ln@2~12p!12pe2l* #1
pl* e2l*

12p1pe2l* 50, ~10!

and the selected velocity is

vmin~p!5
pe2l*

12p1pe2l* . ~11!

Although it seems impossible to provide an explicit e
pression forvmin(p), one can easily probe its behavior in th

limiting casesp↓ 1
2

andp↑1. In these respective limits, on

gets

FIG. 1. The propagating front for the cumulative distributio
Pn(x) of the minimal length for the bimodal distribution wit
p50.8.
,

e

n
ed

vmin~p!.
2p21

ln
1

2p21

~12!

and

12vmin~p!.
ln 2

ln
1

12p

. ~13!

One can also derive the leading correction to the do
nant linear behavior of̂Ln

min&,

^Ln
min&.vmin~p!n1

3

2l*
ln n. ~14!

The logarithmic correction becomes especially import

whenp↓ 1
2 , as can be seen from the asymptotics

^Ln
min&.

en

ln~1/e!
1

3 lnn

2 ln~1/e!
, e52p21. ~15!

The logarithmic correction to the front position was fir
derived by Bramson in the context of a reaction-diffusi
equation@23,21#, and was subsequently rederived and gen
alized by a number of authors@24–26#. Our derivation of Eq.
~14! follows an approach developed in Ref.@24#, and we
only outline the main steps. First, we need to examine
exact equation~3! rather than then→` limit, Eq. ~8!, which
was sufficient to determine the velocity. However, the ana
sis is still performed in the region far behind the front, so w
can use the linearized version of Eq.~3!. Writing Pn(x)51
2Qn(x), plugging it into Eq.~3!, and ignoring quadratic
terms gives

Qn11~x!52~12p!Qn~x!12pQn~x21!. ~16!

Now we seek a solution which has the form

Qn~x!5naG~yn2a!el* y, ~17!

with y5x2^Ln
min& as assumed previously and yet undet

mined exponenta and the scaling functionG(z). We cannot
assumê Ln

min&.vmin(p)n as previously. Instead, we write

^Ln
min&.vmin~p!n1c~n! ~18!

for the position of the front. Plugging Eqs.~17!–~18! into Eq.
~16! we find that different leading orders are compatible p
vided thata51/2 andc(n)5b ln n with some constantb.
Additionally, the scaling functionG(z) satisfies a parabolic
cylinder equation

d2G

dz2 1z
dG

dz
1~2bl* 21!G~z!50. ~19!

Equation~19! should be solved subject to the boundary co
ditions G(z)→0 asz→` as Qn(x) must vanish forx→`
andG(z);z for z→0 to ensure thatQn(x) is independent of
n in the limit n→`. The boundary condition in the largez
limit selects one of the two possible solutions:G(z)
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5Aexp(2z2/4)D2(bl* 21)(z), whereDn is the parabolic cyl-
inder function with indexn. The second boundary conditio
G(z);z fixes the index of the parabolic cylinder functio
2(bl* 21)51. Hence, b53/2l* ; thus completing the
derivation of Eq.~14!. Note that the sign of the logarithmi
correction term in Eq.~14! is positive. This is different from
the earlier studied problems@24–26# although the positive
sign has been occasionally seen, see Ref.@30#.

In the the critical case ofp51/2, the convergence of th
distribution Pn(x) towards the asymptotic value is only a
gebraic, and therefore the front propagates extremely slo
The simplest way to determine the rate of propagation
again to look atPn(x) far behind the front. WritingPn(x)
512Qn(x) and plugging it into Eq.~3! yields

Qn11~x!5Qn~x!1Qn~x21!2FQn~x!1Qn~x21!

2 G2

.

~20!

Qn(x)50 for x<0, so the first nontrivialQn’s are Qn(1)
[q(n). From Eq. ~20!, q(n11)5q(n)2q2(n)/4. In the
largen limit, we can employ the continuum approximation
getdq/dn52q2/4 and thenceQn(1).4n21. Similarly, we
find the asymptoticsQn(2).4n21/2. Generally, Eq.~20! im-
plies Qn(x).2AQn(x21), from which

Qn~x!.4n222(x21)
54 exp~22eln ln n2x ln 2!. ~21!

This demonstrates that at the critical point,Qn(x) also has a
traveling wave formQn(x)5g(x2xn), with the front atxn
.(ln 2)21ln ln n.

Equation~21! formally applies forx!xn . To investigate
Qn(x) in the entire range ofx, we again use the fact that th
distribution Qn(x) should approach a traveling-wave form
Qn(x)→Q(y) with y5n222(x21)

, as n→`. By inserting
this into Eq.~20! and takingn→` limit, we arrive at

Q~y!52AQ~y2!2Q~y2!. ~22!

From this equation, one finds

Q~y!54y24y222y31 . . . for y↓0. ~23!

The first term in this expansion indeed agrees with Eq.~21!.
Similarly, one gets

12Q~y!;expF2
const

12yG for y↑1. ~24!

To provide a more rigorous derivation of the growth la
for ^Ln

min&, we recall the definition, Eq.~7!, and write
^Ln

min&5(x>1Pn(x)5n2(x>1Qn(x). Inserting Qn(x)
5Q(y) and replacing the sum by an integral~which is jus-
tified for largen), we obtain

^Ln
min&'n2

1

ln 2E2n21ln n

ln n

Q~e2z!
dz

z
. ~25!

In the limit of largen, the most important contribution in th
integral comes from its lower limit. UsingQ(y)→1 as y
→1, see Eq.~24!, we arrive at the desired result,
y.
is

^Ln
min&.~ ln 2!21ln ln n. ~26!

This completes the derivation of our central result, Eq.~1!.
Note that finite-dimensional analogs to Eq.~1! are unknown,
which is hardly a surprise given that it requires understa
ing of the interplay between DPRM and directed percolat
@27#. In a few special cases, the velocity has been compu
exactly @28,29#; unfortunately, in those solvable cases t
system was always in the moving phase and there was
phase transition.

III. MAXIMAL PATH „S…

We now turn to the statistics ofLn
max, the length of the

maximal path for the bimodal distribution. It is now conv
nient to defineRn(x)5Prob(Ln

max<x). By proceeding as in
the minimal length problem, it is easy to show thatRn(x)
evolves according to the same Eq.~3! with P replaced byR,
i.e.,

Rn11~x!5@~12p!Rn~x!1pRn~x21!#2. ~27!

The only difference from the minimal case is in the initi
condition. Instead of Eq.~4!, we now have

R0~x!5H 1 x>0,

0 x,0. ~28!

This difference in the initial condition, however, leads to
different behavior of the maximal front as demonstrated
low.

Not surprisingly, Eq.~27! admits a traveling-wave solu
tion, Rn(x)5R(y5x2vmaxn), for all p ~see Fig. 2!. How-
ever, in contrast to the@120# wave form of the minimal
case, the functionR(y) now looks like a@021# wave form
with R(y)→0 as a double exponential behind the fronty
→2`) and R(y)→1 exponentially ahead of the front (y
→`). We then analyze the wave front near the ‘‘forward
tail, as opposed to the ‘‘backward’’ tail of the minimal prob

FIG. 2. The propagating front for the cumulative distributio
Rn(x) of the maximal path for the bimodal distribution wit
p50.2.
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lem. Substituting 12R(y);e2my, we find that there exists a
family of traveling-wave solutions with velocityvm param-
eterized bym,

vm5
ln@2~12p!12pem#

m
. ~29!

This velocity vm has a unique minimum atm5m* . By the
front selection mechanism, this minimum valuevm* is se-
lected as the velocityvmax(p) of the front. Thus, we have

ln@2~12p!12pem* #2
pm* em*

12p1pem* 50, ~30!

and the selected maximal velocity is

vmax~p!5
pem*

12p1pem* . ~31!

Using these results together with Eqs.~10! and ~11!, one
immediately finds

vmin~p!1vmax~12p!51. ~32!

This is the duality relation. Unlike the behavior of the min
mal length, the maximal length does not undergo an unb
ing transition in the sense that it increases linearly withn for
largen for all 0<p<1. However, there is still a transition a
p51/2: The velocityvmax(p) increases from 0 to 1 asp
increases from 0 to 1/2 and then sticks to 1 forp>1/2 @see
Fig. ~3!#.

For the maximal front also, one can easily compute
subleading logarithmic correction to the front position. P
ceeding as in the minimal case, we find

^Ln
max&.vmax~p!n2

3

2m*
ln n. ~33!

Note the negative sign in the correction term, as oppose
the positive sign for the minimal case in Eq.~14!. This is
also consistent with the duality relation in Eq.~32!. Thus,
while the coefficient 3/2 of the logarithmic correction ter

FIG. 3. The minimal and maximal velocities for the bimod
distribution as functions ofp. The dotted line showsvmax(p) and
the solid line representsvmin(p).
d-

e
-

to

seems to be universal not just in the present problem bu
many other cases@24–26#, the sign of the correction term i
not and can either be positive@30# or negative@24–26#.

The duality relation~32! can also be derived by a gener
argument that does not depend on the structure of the un
lying tree and therefore is valid for extremal directed pa
on arbitrary graphs, in particular, on arbitrary lattices. T
argument follows from the observation that for bimodal d
tribution, if one replaces the 0’s by 1’s and the 1’s by 0’s
the minimal path~and thereby replacingp by 12p), then the
minimal path becomes the maximal path. Letn0 andn1 de-
note, respectively, the number of 0’s and 1’s on the minim
path. Evidently,n01n15n. Then clearly,Ln

min(p)5n1 and
by duality, Ln

max(12p)5n0. Adding the two quantities, we
get Ln

min(p)1Ln
max(12p)5n. Dividing by n, we immedi-

ately get the duality relation Eq.~32!. Below, we shall derive
a more generalized version of this duality relation whi
goes beyond the bimodal distribution.

IV. GENERALIZATION TO TREES WITH RANDOM
BRANCHING

The generalization of the above analysis to the case of
rooted Cayley tree with a random number of branches
straightforward. Letbm is the probability that the number o
branches is equal tom and b is the average number o
branches,b5(m>1mbm . Equation~3! is replaced by

Pn11~x!5 (
m51

`

bm@~12p!Pn~x!1pPn~x21!#m, ~34!

and the subsequent analysis repeats the steps detailed
case of the binary tree. In particular,Pn(x) approaches the
stationary distribution forp,pc , while abovepc the mini-
mal length grows according to Eq.~14! with l* a solution to
equation

ln@b~12p!1bpe2l* #1
pl* e2l*

12p1pe2l* 51, ~35!

andvmin(p) given by the same relation~11!. At the critical
point pc512b21, the minimal length is given by the sam
expression~26! for any tree. Also, the velocity of the maxi
mal path can be determined from the general duality rela
in Eq. ~32!.

V. GENERALIZATION TO ARBITRARY DISTRIBUTIONS

We now consider the statistics of extreme path~s! on a
binary tree for arbitrary distributionr( l ) of the edge lengths
Let us first consider the minimal path~s!. The velocity of the
minimal path for an arbitrary distribution can be extract
from earlier results by Derrida and Spohn@5# that we red-
erive below for the sake of completeness. We consider ag
Pn(x)5Prob(Ln

min>x). Proceeding as in the case of the b
modal distribution, one finds that the appropriate general
tion of Eq. ~3! is given by

Pn11~x!5F E
0

`

dl r~ l !Pn~x2 l !G2

~36!
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with the same initial condition, Eq.~4!, as earlier. The dis-
tribution of the minimal length is then given byPn

min(x)5

2dPn(x)/dx and the average minimal length iŝLn
min&

5*0
`Pn(x)dx.

Defining Pn(x)5Gn
2(x), we recast Eq.~36! into

Gn11~x!5E
0

`

dl r~ l !Gn
2~x2 l !. ~37!

For any givenn, Gn(x)→1 asx→2` andGn(x)→0 asx
→`. SubstitutingGn(x)512gn(x) in Eq. ~37! and using
normalization ofr( l ) one finds,

gn11~x!5E
2`

x

dy r~x2y!@2gn~y!2gn
2~y!#, ~38!

wheregn(x)→0 asx→2` andgn(x)→1 asx→1`. We
analyze the above equation in the ‘‘backward’’ tail regio
i.e., whenx→2`. In this limit, one can neglect the nonlin
ear term ingn inside the integral in Eq.~38!. The resulting
linear equation admits a traveling-wave solution of the for
gn(x)5el(x2vln), with

vl52
1

l
lnF2E

0

`

dz e2lzr~z!G . ~39!

For generic length distributionsr( l ), this function has a
maximum atl5l* and by the general velocity selectio
principle, this maximum velocity is selected, i.e.,vmin
5vl* .

We want to characterize a class of distributionsr( l ) for
which an unbinding transition can occur. Such a transit
will occur if the velocity vl in Eq. ~39! ceases to have
unique maximum. By analyzing Eq.~39! one sees that this
can happen only ifr( l ) has a nonzero delta-function weig
at l 50, i.e., whenr( l )5ad( l )1(12a) f ( l ) with 0,a,1
and f ( l ) is some positive function with*0

`dl f ( l )51. The
unbinding transition occurs as the parametera is varied.
Note that the positivity condition of velocity in Eq.~39! de-
mands that 2a,1. Thus the critical point always occurs
a51/2. The bimodal distribution considered in the previo
sections is a special case of this class of distributions w
a512p and f ( l )5d( l 21).

For a,1/2, the average minimal length increases linea
with n for large n with the velocityvl* obtained from Eq.
~39!. For a.1/2, the functionPn(x) reaches a stationar
distribution for largen and hence thêLn

min& saturates to a
nonzero constant asn→`. What happens at the critical poin
a51/2 for generic distributionsf ( l )’s? Fora51/2, the Eq.
~37! reduces to,

Gn11~x!5
1

2
Gn

2~x!1
1

2E0

`

dl f ~ l !Gn
2~x2 l !. ~40!

An analysis of Eq.~40! reveals a remarkable universal pro
erty at the critical point. It turns out that for genericf ( l ),
there are only two possible behaviors of̂Ln

min&
5*0

`dx Gn
2(x), depending on whether the functionf ( l ) has a

gap or not nearl 50. If f ( l ) does not have a gap atl 50, it
turns out that asn→`, Gn(x) in Eq. ~40! tends to a station-
,

,

n

s
h

y

ary distribution and hencêLn
min&→const. In the opposite

case, whenf ( l ) has a gapD near l 50, it turns out that as
n→`,

^Ln
min&.

D

ln 2
ln ln n. ~41!

The bimodal distribution corresponds to the special caseD
51.

These general results are best demonstrated by spe
examples that can be worked out explicitly. Let us first t
exponential distribution,f ( l )5e2 l , which is gapless. Re
markably, Eq. ~40! can be solved exactly in this cas
namely, it admits an exponential solution,Gn(x)5Ane2x,
where An115(11An

2)/2 with A050. As n→`, An ap-
proaches 1 ~more precisely, An.122/n). Therefore,
^Ln

min&5*dx Gn
2(x)5An

2/2 approaches 1/2 asn→`. Next
we consider the distributionf ( l )5 1

4 d( l 21)1 1
4 d( l 22)

which has the gap. This case also can be worked out exp
itly following the same steps as used for the bimodal case
turns out that essentially all the steps are identical to
bimodal case, except thatn in Eq. ~26! gets replaced byn/2.
But this does not change the leading asymptotic behavior
largen, which is still given by Eq.~26!.

We now turn to the maximal path~s! for an arbitrary dis-
tribution r( l ). As in the case of the bimodal distribution
Rn(x)5Prob(Ln

max<x) satisfies the same Eq.~36! asPn(x),
i.e.,

Rn11~x!5F E
0

`

dl r~ l !Rn~x2 l !G2

, ~42!

the only difference is that the initial condition, Eq.~4!,
should be replaced by Eq.~28!. Substituting Rn(x)5@1
2sn(x)#2, we get

sn11~x!5E
2`

x

dy r~x2y!@2sn~y!2sn
2~y!#, ~43!

with the boundary conditionssn(x)→1 as x→2` and
sn(x)→0 asx→`. We now have to analyze the ‘‘forward’
tail of the front, i.e., the behavior in thex→` limit. We first
consider bounded distributionsr( l )’s with an upper cutoff
L. In that case, the lower limit of the integration in Eq.~43!
becomesx2L. In the tail region wherex@L, one can again
neglect the nonlinear term insn inside the integral in Eq.~43!
and the resulting linear equation admits a traveling-wave
lution of the formsn(x)5e2m(x2vmn), where

vm5
1

m
logF2E

0

L

dz emzr~z!G . ~44!

For generic distribution,vm has a unique minimum atm
5m* and via the front selection principle, this minimum
velocity is chosen and one gets,vmax5vm* . Comparing Eqs.
~39! and ~44! it becomes evident that for the boundedsym-
metric distributions, i.e., whenr( l )5r(L2 l ), one gets the
general relation,

vmin1vmax5L. ~45!
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‘For unbounded distributions, however, one has to
careful since it is not obvious that one can neglect the n
linear term insn inside the integral in Eq.~43!. Equation~44!
for the maximal velocity still remains valid as long asr( l )
decays withl exponentially or faster. To see this explicitly i
an example, let us consider the exponential distributi
r( l )5e2 l . In this case, one can transform the the integ
equation~43! into the following difference-differential equa
tion,

dsn11~x!

dx
52sn~x!2sn

2~x!2sn11~x!. ~46!

In this differential form, it is clear that for largex, one can
neglect the nonlinear term on the right-hand side of Eq.~46!.
By inserting sn(x);e2m(x2vmn) into the resulting linear
equation, one gets

vm5
1

m
lnS 2

12m D . ~47!

Note that the same formula is obtained if one substitu
r( l )5e2 l directly into the general expression~44!. Minimiz-
ing with respect tom, one getsvmax. The corresponding
minimal velocityvmin for the exponential distribution can b
obtained from the general formula in Eq.~39! with r(z)
5e2z and then maximizing with respect tol. So, for the
exponential distribution we finally get,

vmin50.231961 . . . and vmax52.678346 . . . . ~48!

Thus for unbounded distributions, there does not seem
exist any simple relation between minimal and maximal
locities.

VI. CONCLUSION

In this paper, we have shown that the length of the m
mal path on a Cayley tree exhibits an unbinding phase t
sition from a localized phase to a moving phase. This ph
transition is driven by the parameterp of the bimodal distri-
.g
e
-

,
l

s

to
-

i-
n-
se

bution. In the localized phase (p,pc), the minimal length
distribution approaches a stationary depth-independent f
Pmin(x). This distribution vanishes extremely sharply, as t
double exponential, in the largex limit. In the moving phase
(p.pc), the minimal length distributionPn

min(x) approaches
a traveling-wave form with the front velocity relaxing alge
braically, vmin5v(p)13/(2l* n)1O(n23/2), in the largen
limit. Specifically,Pn

min(x) approaches thesolitary traveling
waveP(y)2P(y11), with y5x2^Ln

min&, the front position
^Ln

min& given by Eq.~14!, andP(y) being a solution of Eq.
~8!. In the critical case,p5pc , the minimal length distribu-
tion approaches the solitary traveling-wave, although
front propagates extremely slowly, as an iterated logarith
Given that the distribution of the minimal length is the so
ton of a finite width, the variation of the minimal length
finite. In other words,Ln

min should not vary much from
sample to sample.

We have also studied the complementary problem of
statistics of the maximal path. We have found that the ma
mal length always grows linearly with the height, with th
velocity vmax again determined via the front selection mech
nism. For the bimodal length distribution, the minimal a
maximal velocities are connected via the duality relatio
vmin(p)1vmax(12p)51, which admits extensions to finite
dimensional situations and to arbitrarybounded symmetric
length distributions.

We have found that the tail of the minimal length dist
bution is a double exponential, in contrast with a simp
exponential that occurs in most traveling-wave proble
@22#. This is not very surprising since similar tails we
found in statistics of extremes@31#. Note, however, that our
exact results exemplify extreme value statistics forcorre-
lated random variables~see Ref.@11# for a recent review!,
while classical results@31# correspond to the case ofinde-
pendentidentically distributed random variables.
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