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We study a lattice model of an ideal (no self-exclusion) polymer chain in d dimensions in 
the presence of an attractive site. For very long chains, we calculate analytically, for all 
dimensions, the partition function, the average energy per monomer unit and the probability 
distribution of the end-to-end length of the chain. For d/> 3, the system undergoes a phase 
transition from the low-temperature adsorbed phase to a high-temperature extended phase. 
This transition is continuous for d ~< 4 and first order for d > 4. We determine the finite-size 
scaling functions near the transition for all d # 4. For d = 4, there is no scaling form due to 
the existence of logarithmic corrections. 

I. Introduction 

The statistical mechanics  of  po lymer  molecules  interacting with surfaces and 

interfaces is a subject  of  long s tanding interest. The  potent ia l  of  impor tan t  

technological  applications has mot iva ted  much  theoret ical  and exper imenta l  

research in this area. Recen t  exper imenta l  studies [1-3]  have revealed  the 

complexi ty  of  the p h e n o m e n a  involved. One  part icularly interesting phenom-  

enon  is the adsorption-desorption t ransit ion of  a po lymer  chain near  an 

attractive surface f rom the low- tempera ture  adsorbed phase  where  the po lymer  

is collapsed (staying close to the surface),  to  a h igh- tempera ture  desorbed 

phase  where  it is ex tended  (most  of  the m o n o m e r s  are not  near  the adsorbing 

surface). 

Various theoret ical  models  have been  suggested for  s tudying the equil ibrium 

proper t ies  of  this p h e n o m e n o n .  A part icularly simple case where  this transit ion 
still occurs  is a system of  highly dilute po lymer  solution near  an at tractive 
surface. This case is easier to deal with theoret ical ly as it is sufficient to 

consider  a single chain interacting with the surface. A r andom-wa lk  lattice 
mode l  of  this system in 3D was considered by Rub in  [4] in case o f  an ideal 

po lymer  chain (self-excluded-volume effect no t  taken  into account) .  H e  calcu- 
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lated analytically the average number  of monomer  units in the surface layer 
and the mean extent of the chain in the direction normal to the surface. He 
also considered [5] the adsorption of a polymer chain to a long rigid rod-like 
molecule on a 3D cubic lattice. The behaviour of a long ideal chain interacting 
with two parallel surfaces in a 3D simple cubic lattice was investigated by Van 

Opheusden et al. [6]. They found an exact closed set of equations to determine 
the relevant thermodynamic quantities as a function of the interaction energy, 
temperature  and the distance between the two plates. Eisenriegler et al. [7] 
considered a polymer chain in a d-dimensional lattice and interacting with a 
(d - 1)-dimensional surface. For the ideal Gaussian chain, they evaluated the 
associated exponents and the scaling functions analytically. 

When the self-excluded volume effect is taken into account, the problem 
becomes difficult to tackle analytically. For this case, general scaling ideas have 
been proposed [7-10] and Monte Carlo [11] and real-space renormalization 
[12] calculations have been done to estimate the exponents and the scaling 
functions near the transition point. Exact lattice SAW enumeration [13-15] and 
transfer matrix methods [16] have been used to study the behaviour of a single 
self-avoiding chain near surfaces and interfaces, and in two dimensions the 
exact critical exponents are known from conformal invariance arguments [17]. 
An exact solution for a class of directed SAW models of the adsorption 
transition in 2 and 3 dimensions has been recently obtained by Privman et al. 
[18, 19]. Using transfer matrix methods,  they have evaluated quantities like the 
fraction of monomers  at the substrate and the concentration profile of mono- 
mers as a function of the distance from the wall. 

A natural generalization of the adsorption of a single chain in a d-dimension- 
al lattice to a ( d -  1)-dimensional attractive surface would be the adsorption to 
a d '  < d dimensional subset of the lattice. This problem has been considered in 
detail for some fractal lattices [20] where d and d '  are not integers. For integers 
d and d '  and in case of a Gaussian chain, it is easy to see that this problem is 
reducible to that of the adsorption of a chain in a (d - d ' ) -dimensional  lattice 
to a 0-dimensional subset, i.e. a particular site of the lattice. Thus for the 
Gaussian chain it is sufficient to consider the chain in a d-dimensional lattice 
and interacting attractively to a particular lattice site. 

The dynamic properties of a polymer chain near its adsorpt ion-desorpt ion 
transition are, however,  as for most other  physical systems [21, 22], relatively 
less understood compared to their static counterpart .  The dynamics of dilute 
polymer solutions was first modelled by Rouse [23]. In this model the polymer 
is represented by a set of beads connected along a chain and having localized 
interactions only (excluded-volume effect not considered).  The dynamics of  the 
chain is modelled by the Brownian motion of the beads. A variant of this 
model was suggested by Verdier and Stockmayer ]24]. They started with a 
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freely jointed chain and simulated its dynamics by allowing local jumps of the 
beads. We have been interested in studying the dynamics of a simple, ideal 
chain on a lattice near its adsorpt ion-desorpt ion transition as it provides one of 
the simplest examples where dynamical effects near a phase transition can be 
analytically studied. We have considered an ideal chain embedded in a 
d-dimensional hypercubic lattice and interacting with a single attractive site of 
the lattice. However ,  as a prerequisite, we have studied the equilibrium 
statistical mechanics of this model in some detail and calculated the exact 
scaling functions of various thermodynamic quantities near the transition 
temperature.  We find that the thermodynamic properties of this model have an 
interesting, nontrivial dependence on the dimension d of the lattice. These 
results are summarized in this paper. We hope to deal with the dynamical 
properties of the chain in a future publication. 

We consider a single polymer chain in a d-dimensional hypercubic lattice. 
The chain consists of n momomer  units. One end of the chain is fixed at the 
origin of the lattice, the other end being free. The monomers  are constrained 
to lie along the bonds of the lattice. The chain is ideal (no self-avoidance or 
other self-interactions). The origin is a special adsorbing site in the following 
sense. It associates a negative adsorption energy - m E  (with E > 0) to a chain 
configuration with m returns to the origin. So, in equilibrium, the canonical 
weight to be associated with this configuration is ym, where y = e e/kBr, where T 

is the temperature and k B is the Boltzman constant. We calculate analytically 
the partition function, mean square end-to-end distance of the chain, average 
energy, the probability distribution of the position of the free end of the chain, 
etc., as a function of y (hence of T)  in all dimensions, in the limit of a very 
long chain (n ~ ~). 

In the long chain limit, the behaviour of various thermodynamic quantities 
shows some interesting features. For d >I 3, we show that there exists a finite 
T = T c such that, for T > To, the mean square end-to-end distance i2(y ,  n) of 
the chain increases linearly with n for large n. This is said to be the extended 

phase of the polymer chain. For  T < Tc, F2(y, n) remains finite even as n tends 
to infinity. The polymer is then said to be in the localized or adsorbed phase. In 
dimensions 1 and 2, the chain remains in the adsorbed phase at any finite 
temperature,  and the critical temperature  T c is infinite. 

The effect of the dimension of the space on the nature of the transition 
mentioned above is particularly interesting. As mentioned above, for d ~< 2 
there is no phase transition. We show that the transition is continuous for 
2 < d ~< 4 and first order for d > 4. For finite n, we study the finite-size effects 
on different thermodynamic quantities including the partition function. Near 
T = To, all of them exhibit finite-size scaling behaviour in all dimensions, 
except for d = 4, where the corresponding quantities do not have a scaling form 
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due the appearance of logarithmic corrections to power-law forms. So, d = 2 
and d = 4 turn out to be the special dimensions. We derive exact expressions 
for different scaling functions. In particular, for d />5 ,  this gives a simple, 
soluble example where finite-size scaling holds for first-order transitions [25] 
and the scaling functions can be computed explicitly. 

The plan of the paper is as follows. In section 2, we introduce the notation 
and derive integral representations for the thermodynamic quantities of inter- 
est in terms of the generating functions of random walks on the lattice. In 
section 3, we derive an expression for T c for d/> 3 and show that T. = :~ for 
d = 1 and 2. Section 4 deals with the partition function in the large n limit and 
its scaling form near T = T .  Explicit expressions for the mean square end-to- 
end distance and the corresponding scaling functions are derived in section 5. 
In sections 6 and 7, we investigate the scaling behaviour of the average energy 
and the probability distribution of the position of the chain-end, respectively. 
In the concluding section 8, we summarize and discuss the results. The 
mathematical details of the asymptotic analysis of some of the integrals are 
included in the three appendices. 

2. Generating functions 

Each n-step walk on a d-dimensional hypercubic lattice corresponds to a 
particular polymer configuration. The statistics of such walks can be studied by 
defining appropriate generating functions [26] as done below. We, then, 
express all the thermodynamic quantities in terms of these random-walk 
generating functions. 

Let C;,,(x) be the number  of r-stepped paths starting from the origin and 
finally arriving at x with m returns to the origin in between. Then 

C(r) = E E C;;,(x) 
x t t l  

= total number  of r-stepped paths starting from the origin 

= ( 2 d ) ' .  

Clearly, C~I , = 0 if m > r/2. We define 

P(x,  y, r) = (m~ y ' C r  (X) ) (2d)  - r . (2.1) 

If y = 1, P(x,  y,  r) is the probability that a random walk starting at the origin 
will end at x after r steps. The generating function for P(x,  y,  r) is defined as 
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oe 

G(x, y, z) = ~ P(x, y, r) Z r . (2.2) 
r = 0  

The random walk generating function U(x, z) is defined by 

U(x, z) = G(x, y = 1, z) . (2.3) 

Let F(z) be the generating function for the probability of a path starting at the 
origin and coming back there for the first time (this is usually called the 
first-passage probability) and S(x, z) be the generaing function for the prob- 
ability of a path starting at the origin and arriving at x without coming back to 
the origin. Clearly 

S(x, z) 
G(x, y, z) = k=0 ~ [YF(z)lkS(x' z) = 1 - yF(z)  " (2.4) 

Since 

S(x, z) 
U(x, z) = G(x, y = l ,  z) = 1 -  F(z) ' (2.5) 

we get 

G(x, y, z) = ( 1 2-_ F(z) ] 
1 - y F ( z ) /  U(x, z ) .  (2.6) 

The partition function for a chain of n monomers is defined as 

D(y ,  n) = ~ P(x, y, n ) .  (2.7) 
x 

We define F(~,  y, z) to be the Fourier transform of G(x, y, z), 

F(qg, y, z) = ~'~ ei~'XO(x, y, z ) ,  (2.8) 
x 

where the vector ~p is a d-dimensional vector lying in the first Brillouin zone. 
Using (1.6), it is easy to show that 

1 - F(z) ) 1 
F(~,  y, z) = l~-Sy-ff~- ) [1 - zA(~)] ' (2.9) 

where 

A(~o) = "~ p(l)  e i ~ ' ' t  , (2.10) 
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where the summation extends over all the nearest neighbour bonds l, and p(1) 
is the probability that the random walk will take place along that bond [26]. 

For an isotropic random walk on a hypercubic lattice of dimension d 

1 p(l) = ~ (2.11) 

for each of the 2d bond directions 1 from any lattice site. Now 

r ( O , y , z ) = L  -Q(Y,r) z r ,  
r = 0 

whence 

1 ~ V(O,y,z) 
~2(y, n) = ~ z n + l  dz , 

(-'~1 

(2.12) 

where C 0 is a closed contour in the complex-z plane enclosing only the pole at 
z = 0. The mean square end-to-end distance pzE(y, n) is defined as 

r '(y,  n) = O(y, n~-- 7 x2p(x' y' n). (2.13) 

Now 

--V2¢['(tP' Y'Z)[~=O=r~O (~x Y'r)) zr '  (2.14) 

whence 

1 ~ -V2¢F(~, y, z)[~=0 
x x2P(x' y' n) = ~ z,+, dz .  

C 0 

(2.15) 

The average energy /~(y, n), in units of kBT, is given by 

0 log .(2( y, n) 
/~(y, n) = - y  log y (2.16) 

Oy 

The normalized probability distribution of the position of the chain-end is 
defined as 

1 1 1 ~ f l G ( x , y , z )  d z 
O(x, y, n) - ~2(y, n~ P(x, y, n) - 12(y, n) 27ri 

C0 
(2.17t 
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Using the expressions for G(x, y, z) and F(~0, y, z) from eqs. (2.6) and (2.9), 
respectively, and substituting them in (2.12), (2.15) and (2.16), respectively, 
we get the following integral representations: 

1 ~ 1 - F(z) 
O(y, n) = ~ zn+l[1 -- yF--~z)](1 - Z) 

Co 

d z ,  (2.18) 

1 ~ 1 - F(z) dz 
[2(y,  n) - g2(y, n) 2"rri z"[1 --yF(z"~-i  - z) 2 ' 

C O 

(2.19) 

y log y ~ F(z) [1 - F(z)] dz (2.20) 
/~(y, n) = O(y,n) Z~ri z"+l-~ C yF--(z)-~- z) ' 

Co 

1 ~ 1 - F(z) 
Q(x, y,n)= g2(y, n) 2"rri z,,+i-[-]- -Tff(z)]  U(x,z) dz. (2.21) 

Co 

3. Calculation of  T c 

To compute the integrals in eqs. (2.18)-(2.21),  we note the following 
behaviour of F(z) as a function of z in different dimensions: 

F(z) = ~ f~z", (3.1) 
n = l  

where fn is the probability of coming back to the origin for the first time in n 
steps. For a hypercubic lattice, all odd terms in this expansion are zero and we 
get 

F(z) = ~_, fz, Z 2" (3.2) 
n = l  

As f2n ~> 0, it obviously follows that along the real axis in the complex-z plane, 
F(x) is an even function of x and for x >/0 it monotonically increases with x. 

According to Polya's theorem [26] 

F(1) = 1, d = 1 , 2 ,  

< 1 ,  d~>3.  
(3 .3 )  

So, for real x lying in [0, 1], the function F(x) behaves qualitatively as sketched 
in fig. la  and b respectively. 
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= 

F(x 

F(1) 

F(x) ! 

o (a)  × ~  1 (b )  x ~  I 

Fig. 1. The behaviour (schematic) of F(x), the generating function for the first-passage probability, 
with real x lying in [0, 1] for (a) d ~ 2, (b) d/> 3. 

Now,  the singularit ies o f  the in tegrands  in eqs. ( 2 . 18 ) - (2 .21 )  occur  at 

(i) z : 0, 
(ii) z = 1, 

1 (iii) z = -+z+, where  F ( z + )  = y ~< 1 as y I> 1. 
For  d ~< 2, there  exists a pa i r  o f  solut ions z = -+z+ to F(z )  = 1 / y  with z+ < 1 for  

all y > 1. Wherea s ,  for  d />  3, s ingulari ty of  type (iii) occurs  only  if y > Yc = 
l / F ( 1 ) .  These  give rise to d i f ferent  behav iour s  of  the integrals  in the two 
regions  y < yc and y > Yc. So, the t ransi t ion or  the critical t e m p e r a t u r e  is given 

by the equa t ion  

Yc = eE/kBT~ -- 1 
F(1)  " (3.4)  

In 1 and 2 d imens ions ,  F(1)  is 1, which co r re sponds  to infinite T c. 

4. Partition function 

H e r e  we c o m p u t e  the b e h a v i o u r  of  the par t i t ion  funct ion in the limit of  large 
n for  the three  distinct cases T < Tc, T > T c and T =  T~, respect ively ,  in all 
d imens ions  of  the lattice. Also ,  we deduce  the scaling fo rm of  the par t i t ion  

funct ion nea r  T = T c. 

Case 1: T < T c 
T h e r e  exists a pair  o f  pole  type singulari t ies of  the in tegrand  in (2.18) in the 
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region [zl < 1 at --- z + given by 

1 
V ( z +  ) = - 

Y 
(4.1) 

Also [26], 

F ( z )  = 1 u(o, z)" (4.2) 

The asymptotic expansion of U(0, z) near z---~ 1 in different dimensions are 
given by [27, 28] 

u ( o ,  z )  = 

1 f o r d = l ,  (4.3) 
~/1 - z 2 

- l l n ( 1 - z )  f o r d = 2 ,  (4.4) 

u 3 -  a 3 ( 1 -  z) 1/2 

[/4 -1- a4(1 -- Z) ln(1 -- z) 

u d -- % ( 1  -- z )  + ~7[(1 -- z)  ° In(1 -- z), 0 > 1] 

f o r d = 3 ,  (4.5) 

f o r d = 4 ,  (4.6) 

f o r d 1 > 5 ,  (4.7) 

where u n and a,  are positive numerical constants. Similar asymptotic analysis 
holds for z--->- 1 with z replaced by - z  in the above expressions [27]. Thus, 
apart from the pole type singularities at z = 0, 1 and - z + ,  there are branch-cut 
singularities at z = +-1. 

In the limit of large n, the partition function is given by the following 
expression (the details of the calculation are given in appendix A): 

O ( y , n ) =  1 y - 1  1 ( 1 ( - 1 ) " ]  
+ (4.8) z~+l y2 F ' ( z + )  1 -  z+ 1 + z + /  ' 

where z+ is given by the solution of eq. (4.1) and F ' ( z + )  is the derivative of 
F ( z )  at z = z+. As y goes to Yc from above, z+ tends to 1. Then defining 

= ( y  - y c ) / y ~  and substituting (4.3) to (4.7) and using it in (4.8), we get, for 
fixed y close to y¢ and large n, the following asymptotic values of the partition 
function in different dimensions: 
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2e
€2 n /2

for d = 1 , (4.9)

'IT n e-7r!~

for d = 2, (4.10)-e
E

2 (Yc(3)-I) n€2A for d = 3, (4.11 )- e 3

n(y, n) ~ E yc(3)

(Ye(4)-I) 1 for d = 4, (4.12)
y~(4) (1- z+)F'(z+) Z:+1

(Ye(d) -1) ! eAdn€ for d ~ 5, (4.13)
Ye(d) E

where A} = u~/y~(3) a; with YcC3) = u}/(u} - 1) and Ad = u~/Ye(d) ad with
Ye(d) = Ud/(Ud -1) and z+ and F(z+) in (4.12) have to be obtained by solving
(4.1), (4.2) and (4.6).

Case 2: T> Te

For d = 1,2, this phase does not exist as Te is infinite. For other dimensions,
we find, to leading order for large n (for details see appendix B), the following
behaviour of the partition function:

(
Ye(d)-I) 1

n(y, n) ~ - Ye(d) ~ .

Case 3: T= Te

For d ~ 2, Ye = 1. From eq. (2.18) it follows trivially that

n(y=l,n)=I.

(4.14)

(4.15)

For d = 3, substituting Y = Ye in eq. (2.18), it is shown in appendix B that

(4.16)

where = indicates that only the leading order term in n has been kept.
For d = 4, putting Y = Ye in eq. (2.18), one gets

(4.17)

The function
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- n x  

t ( n )  = e 1 
x [(In x)  z + ar 2] 

0 

dx 

is known as the R a m a n u j a n  f u n c t i o n  [29]. This function appears in other fields 
of physics also such as in the theory of transport of neutrons inside nuclear 
reactors [30]. The asymptotic analysis of this function shows [29] that I (n )  

behaves as 1/log n as n - - -~ .  Using this in (4.17) we get 

1 n 
~2(y = Yc, n) ~ aa[Y¢(4) _ 1] log n " (4.18) 

For d/> 5, again putting y = y¢ and following the same procedure,  we get the 
following leading order  term for large n: 

n 
~2(y = y~, n)  ~- a a [ y c ( d )  _ 1] " (4.19) 

We can calculate the partition function per link in the thermodynamic limit, 
w(E), by the formula 

w(,)  = lirn [g2(,, n)] 1/n . (4.20) 

Then the function w(e) can be easily calculated and shown to be continuous at 
= 0 for all d/> 3. For d ~< 2, there is no E < 0 phase. The qualitative behaviour 

of the function w(e) is shown in fig. 2a and b. 
We now show that the partition function has a simple scaling form near 

T = T c in all dimensions except for d = 4. 
For d = 1, we define the scaling variable x = E ( n / 2 )  1/2 with ~ = ( y  - y c ) / y c  

= y -  1 t>0 (for d = 1, Yc = 1) and perform the limiting operation lim[e---~0, 

(a) 

~(~) 

J 
J 

(b) 

Fig. 2. The qualitative behaviour  of w(e), near  ~ = 0, for (a) d <~ 2, (b) d I> 3. 
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n - - ~ ,  x fixed] on the partition function g2(e, n) to get the scaling function 

~(x) .  Using F ( z )  = 1 - ~/1 - z 2 for d = 1 [26] in eq. (2.18), we get after some 

algebra 

12(x) = l i m  [ g2 (x (n /  2 ) - ' /2, n)] = eX2[1 + erf(x)] .  (4.21) 

It is easy to check that this scaling function has the proper  limits as x ~  0 and 
x---) ~ using the asymptotic expansion of erf(x) [31]. 

(i) As x - * 0 ,  J2(x)---~ 1, which agrees with (4.15). 
(ii) As x---)~ ef t(x)--)1 and g2(x)--~ ~ X2 ~ "2n/2 , ze = z e  , which agrees with eq. 

(4.9) as expected. 
For d = 2 ,  we define the scaling variable x =  n e  ~/'. In this case, the 

partition function ~(~,  n), with a proper  prefactor e/~r, scales as follows: 

12(e, n)  ~ w_ f ( n  e - ~ / ' )  , 

where 

f ( x )  = e ' -  l ( x ) .  (4.22) 

It is interesting to note that the Ramanujan function I (x )  appears here also. To 
check the proper  limits we use the asymptotic analysis of the Ramanujan 
function as derived in appendix C and refs. [30, 31]. 

(i) As x---r0, then 1 2 ( x ) - - - ~ - l / l o g x  = e/zr  (see appendix C) and hence 

g2(e, n)---) 1, which agrees with (4.15). 
(ii) As x- - - )~ ,  I ( x )  varies as 1/log x and hence ~ (e ,  n)---) (rr/e) e" e -~ ,  which 

agrees with eq. (4.10). 
For d = 3, the scaling variable is x = en~/ek/-A-~3, where A 3 is defined in eq. 

(4.11). The scaling function is found to be 

a ( , ,  n) = 1,2f(, l,2v 3) ' 

where 

1 1 {eX2[1 + e f t ( x ) ] -  1} . 
f ( x )  - as[Yc(3) _ 1] x 

(4.23) 

The limits x - * 0 ,  ___oo are easily seen to agree with eqs. (4.16), (4.11) and 
(4.14), respectively. 

For d -- 4, one cannot define a single scaling variable x as in the other  cases 
and get a scaled function f ( x )  independent  of e and n, because of the presence 
of the term (1 - z) ln(1 - z) in the denominator  of the integrand in the integral 
representation of the partition function, as shown explicitly in appendix B. So, 
the partition function does not have a scaling form in d = 4. 
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For d/>5, defining the scaling variable x = Aden,  and repeating the same 
analysis one obtains the following scaling function: 

g](~, n) -~ nf(Ad~n ) , 

with 

1 ( e X - 1 )  (4.24) 
f (x)  - ad(Y c _ 1) \ ~ / '  

which can be easily verified to have the correct limits as x->O, -+~ agreeing, 
respectively, with eqs. (4.19), (4.13) and (4.14). 

5. Mean square end-to-end distance 

The mean square end-to-end distance ~2(y, n) and the partition function 
g2(y, n) are connected by the following simple equation: 

1 
O(y ,  n') . (5.1) ~-2(y, n) = O(y,  n) ,,=0 

This follows immediately from the relation 

Z x2e(x,  Y, n) = ~ Z P(x, y, n ' ) ,  (5.2) 
t o  n n ' = 0  co n , 

where E~, n refers to the sum over all possible n-stepped walks. This last 
equation can be easily derived by the method of induction. The expressions for 
O(y,  n), derived in section 4, can be usd in eq. (5.1) to compute k-2(y, n) and 
its scaling function near T¢. Alternatively, they can be directly derived from 
the asymptotic analysis of (2.19) for large n. 

Case 1: T <  T c 
Exactly similar analysis of eq. (2.19) as in the case of the partition function 

yields, for large n, the following expression for the mean square end-to-end 
distance: 

I _1+ 
_ )  1 -  z2+ 

?2(y, n) - [i---- ~+-+2z2+ 

for n odd,  

for n even. 

When y---~y+~, z+---~ 1- and then for y close to y¢ and large n, we get 

(5.3) 



220 S.N. Majumdar / Polymer chain near an attractive site 

F2(y, n) ~ - -  1 
l - z +  

2 
m 

E 

rr/E 
e 

1 

A 3  E2 

l - - Z +  

1 

A d e  

- -  , F ( z + )  = 1 

Y 

for  d = 1 , (5.4)  

for  d = 2 ,  (5.5)  

for  d = 3 ,  (5.6)  

for  d = 4 ,  (5.7)  

for  d ~> 5 ,  (5.8)  

where  A n ' s  have  been  def ined in ( 4 . 9 ) - (4 .13 ) .  

Case 2: T > T c 

For  d = 1, 2, this phase  is absent  as T c = ~.  For  d >~3, we in tegra te  eq. 
(2.19) by par ts  to reduce  the singulari ty at z = l  f rom ( l - z )  2 to ( l - z )  l 

and p roceed  as in the o the r  cases to get the fol lowing leading o rder  t e rm  for  

large n: 

F2(y, n) ~ n .  (5.9)  

Case 3: T = T ~  

For  d = 1, 2, Yc = 1, and this case co r r e sponds  to the nonin te rac t ing  r a n d o m  

walk on the lattice. H e n c e  

FZ(n, y = 1) = n .  (5.10) 

For  d = 3, from eq. (4.5) and p roceed ing  in a similar  fashion we get ,  to leading 

o rde r  for  large n, 

F2(y y c ( 3 ) , n ) = 2  = 3 r / .  (5.11) 

For  d = 4, similar a sympto t i c  analysis for  large n yields 

( 1 ) 
F 2 ( y = y c ( 4 ) , n ) ~ ½ n  1 + ~  + ' "  . (5.12) 

For  d >/5, in tegra t ion  by par ts  fo l lowed by large n analysis yields 

 2(y = yc(d) ,  ,,) (5.a3) 
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Defining 

R(e) = lim (72(,, n) ) , 
\ n (5.14) 

we find that, near e 

R(e)={OI for for 

"0 for 
= 2 for 

1 for 

0 for 
= ½ for 

1 for 

= 0, this function has the following behaviour: 

~ > 0  
e = 0  (d = 1 ,2 ) ,  

e > 0  
e = 0  (d = 3 ) ,  
e < 0  

e > 0  
~ = 0  (d~>4).  
~ < 0  

So the function R(e) is discontinuous at E = 0 in all dimensions. 
We use the same combinations of E and n, as used in case of the partition 

function, to define the scaling variable x in different dimensions (except for 
d = 4) and compute the following scaling function for the mean square 
end-to-end distance: 

R(x) = lim( ~2(~ n) ) , (5.15) 

where "lim" denotes the limiting operation (e---> 0, n ~ 0% x fixed). Using eq. 
(5.1), R(x), for all d # 4, can be expressed in terms of the corresponding g2(x) 
derived in section 4. Here we give the results skipping algebraic details, 

R ( x )  = 

x 

2 f x'O(x') dx' for d = 1 (5.16) 
0 

I f  ~ O ( x ' ) d x '  for d = 2 ,  (5.17) 
0 

2 f x'2g2(x ') dx'  for d = 3 (5.18) 
X3~'~ ( X )  

0 

x 

i f  x2/2(x ) x'12(x') dx' for d I> 5,  (5.19) 
0 
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where S2(x) is the scaling form of partition function in respective dimensions, 
as derived in section 4. For d = 4, as usual, F2(e, n)/n does not have a scaling 
form. For other dimensions, these integrals can be easily performed to give 
closed form expressions and can be shown to have the correct asymptotic 
behaviour as x---~0, -+~. 

6. Scaling function for average energy 

In this section, first, we compute the average energy of the chain for the 
three different regions T < T~, T > T~ and T = T~ in the limit of a large chain 
in all dimensions. We then calculate the scaling functions near T = T c. 

Case 1: T <  T~ 
Exactly similar analysis of eq. (2.20) as in the other cases yields to leading 

order in n the following expression for the average energy: 

/~(y, n) - In y n 
y V'(z+)" (6.1) 

When y-+y+, z+- -+ l -  and then using the asymptotic expansion of U(O, z) 
near z = 1, from eqs. (4.3) to (4.7) we get 

& y, n) 

2 
- - F I E  

- - - ? / e  

In yc(3) 
- -  - - 5 - " 2 - -  n ~  

\ a3Yc(3 ) / 

u ] l n y c ( 4 )  ) 

yc(4) a4 in~--- z+ ) 

_ ( u21n yc(d) ) n 
Yc(d) aa 

for d = 1, (6.2) 

for d = 2 ,  (6.3) 

for d = 3 ,  (6.4) 

n for d =  4,  (6.5) 

for d/> 5 ,  (6.6) 

where un's and an's have been defined in (4.3)-(4.7). 

Case 2: T > T c 
For d ~< 2, as usual, there is no T > T c phase. For d/> 3, one gets 



S.N.  Majumdar / Polymer chain near an attractive site 

E ( y , n ) ~ - - (  y l n y  ) 
y j ~ - y  • 

223 

(6.7) 

Case 3: T = T c 
For d~<2, Yc = 1 and hence from eq. (2.20), /~(y = 1, n ) = 0 .  However, in 

these cases, the interesting quantity to calculate would be the average number  

o f  returns to the origin, S ( y ,  n) = - E ( y ,  n ) / ( E / k B T ) ,  and hence from (2.20), 
using 12(y = 1, n) = 1, we get 

1 ~ F(z) 
S(y = 1, n )=  ~ z"+'(1 -z~ - F(z)l 

Co 

dz .  (6.8) 

Asymptotic analysis (n---> ~) of this integral can be shown to yield 

2 1t2 
,.~(y = 1, n) ~ ~ n 

1 l o g  n 
'IT 

for d = 1, (6.9) 

for d = 2. (6.10) 

For d i>3, putting y = Yc and hence b d = 0 in the respective equations and 
using the large n expansion, as in the other cases, one obtains 

/~(y = y¢, n) 

Defining 

(v'-~ Yc In Yc ) 1/2 
- -2a3(Y ~ _ 1) 2 n for d = 3, (6.11) 

( y ¢ l n y c ) n  
- 2 a - ~ - - ] )  2 ~ f o r d = a ,  (6.12) 

( y¢ InYl  ) - 2ad(Y ¢ )2 n fo rd~>5.  (6.13) 

I 

we find that, near E = 0, the function has the following behaviour: 

E(E) ~ for ~ > 0 (d = 1), 
for ~ = 0  

(6.14) 
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c "iT - ~ r / e  
--  e for  e > 0  

= e (d  = 2 ) ,  

.0  for  e = 0 
4 

{ 2 u 3  In  Y c ]  
~ - e  • for  • > 0 

\ a3y ~ / ( d = 3 ) ,  

0 for  • ~<0 

2 

t y~a  4 I n ( l - z + )  f o r e > O  ( d = 4 ) ,  

0 for  e ~< 0 

2 

( U y ~ y ~ )  for  e > O  

y c l n y  c ] (d~>5) - 
2ad(y~--l)2/ for e = O  

0 for e < 0  

The  qua l i t a t ive  b e h a v i o u r  of  the  func t ion  E ( e ) ,  nea r  E = 0, is ske t ched  in fig. 

3a,  b and c, respec t ive ly .  

(a) 

E(e) 1' 

(b) 

E(e) 

(c) 

Eie) l 
I 

Fig. 3. The schematic sketch of E(e),  near E = 0, for (a) d ~< 2, (b) d = 3, 4, (c) d >/5. 
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Clearly, the function E(e) is continuous at E = 0 for d ~< 4. Above d = 4, it 
becomes discontinuous at e = 0 and undergoes a jump signifying a first-order 
transition. In what follows, we show that exact finite-size scaling holds even for 
this first-order transition in d/> 5 and the scaling function can be computed 
easily. 

To compute the scaling function, we use the same combination of powers of 
and n to define the scaling variable x in different dimensions as used in the 

case of the calculation of the partition function. To avoid repetition, we just 
mention the results here, which can be easily verified. 

For d = 1, the scaling function is given by 

E(x) = lira/~(x(½n) -1/2, n) = - 2x 2 + ~ x e-X2[1 + erf(x)] -1 . (6.15) 

For d = 3, we get 

E ( x )  = !iin [ l~l-1/2E(x(nA3) -1/2, n)] 

=[In yc(3)] ~rX33 _1 [ 1 _ 2 x 2 _  (2x2 
X 

For d t> 5, the scaling function is 

+ - - ~ )  [eX2 + eX2 erf(x) - 1]] .  

(6.16) 

E(x) = !im [n-lE(x(nAd) -a, n)] 

2 
_ u dlnyc(d) 1 [ 1 - x e X ( e  x - l ) - ' ] .  (6.17) 

adYc(d) x 

These scaling functions, once again, have the correct limits, as can be 
checked easily. For d = 4, the average energy, like the other quantities, does 
not have a scaling form. Now d = 2 is somewhat different from the other 
dimensions so far as the scaling function of the average energy is concerned. In 

this case, we find 

/~(e, n) - 1 ~ ~r E(n e-X/'),  

where 

(X e "~- Ix(x ) 
E ( x ) = - \  ~-z-- / -~  ) ,  (6.18) 

where l(x) is, once again, the Ramanujan function and the function I,(x) is 
given by 
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d l  
I~ (x) = x d~ " (6.19) 

This scaling function can also be shown to have correct limits by using the 
asymptotic expansion of I (x)  and hence of It(x). 

7. Scaling functions for the probability distribution of the position of the 
chain-end 

As before,  the three distinct cases T <  T c, T >  Tc and T =  T c are first 
considered for a large chain in all lattice dimensions and then the scaling 
functions in different dimensions are computed separately. 

Case I: T <  T c 

To reach a point x on a hypercubic lattice, starting at the origin, one needs 
either odd or even number  of steps depending upon whether E d  xi is odd or 
even. Hence 

~,d 
U(x,  - z )  = ( - 1 )  ~-1 'U(x ,  z ) .  (7.1) 

Using this fact and eq. (2.21), it is easy to verify that for large n 

1 V(x,  ) 
Q(x ,  y ,  n)~-  ~(x ,  n) l - z +  + ' (7.2) 

where 

•(x, n) = [1 + ( - 1 )  n+U-'x'] (7.3) 

is an indicator function taking values 0 or 1 depending on the parity of n and x. 
The asymptotic expansion of U(x,  z)  to leading order,  for large Ix I and for 

z/> 0, is given by [22] 

DdZ-(~t+2)/a(1-- Z) (d-2)/4 (~( l zZ)  ) 
U(x,  z)  ~- Rd/2 1 Kd/2-1 R , (7.4) 

where D d = ~r  d/2d(d+2)/4, R = Ix] and K~ is the modified Bessel function of 
second kind of order  v. Keeping R at a fixed large value and fixing y close to Yc 
(whence z+ close to 1) we get, for large n, 
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Q(x, e, n).-~ 

DlE3/2R1/2 K ( E R ~  
r/(x, n) 23/4 1/2\~/~1 for d = 1,  (7.5) 

rl(x, n) D z e ~/'Ko(X/2 R e ~/2,) for d = 2 ,  (7.6) 

D - 5 / 4  5/2 
7/(x, n) 3 à3R 1/2e K1/2( 3V~-~3 eR) for d = 3 , (7.7) 

"O(X, n) D4(1 - z+)3/2 
R K112(1 - -  z+)I/2R] for d = 4 ,  (7.8) 

D A(d+2) /4_(d+2) /4  
d z *d ~: 

~(x, n) R ( d _ l ) / 2  K d / 2 _ l ( V r - ~ d  e R)  for d ~> 5.  (7.9) 

Case 2: T > T c 
For d ~< 2, there is no T > T c phase. For other dimensions, we find, for fixed 

large R, fixed small e and large n, such that n / R  2 >> 1, the following asymptotic 

behaviour: 

Q(x, ~, n) -~ D'arl(x, n) n -a/2 , (7.10) 

where D~ are positive numerical constants. 

Case 3: T = T c 
Here,  again for, n/R2>> 1, we get 

n) ~Cl~q(x, n) n -1/2 for d = 1 , (7.11) 

Q(x, 1 y 
' l 1 Cdrl(X , rt) Rd 2n for d / > 2 .  (7.12) 

While computing the scaling function for the probability distribution we note 
that Q(x, y, n) = 0  unless "o(x, n) = 1. In this case, Q(x, y, n) = 2Q+(x,  y, n) 
where Q+(x, y, n) represents the contribution to the integral in (2.21) which 
comes from the pole at z = z+ and the branch-cut across z = 1 (see fig. A.1). In 
deriving the scaling form of Q(x, y, n) we will always assume this to be the 
case. In other words, we will compute the scaling form of Q +(x, y, n). 

For d = 1, we define two scaling variables 

1 / 2  
x 1 = En , x 2 = e x .  (7.13) 
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Next  we define the limiting opera t ion  lim(e----~0, n---,oc, [x{-+oo with x~, x~ 
fixed). To  carry out  this limiting opera t ion  we use the general  expression of  

U(x, z) in any dimension [26], 

U d ( X  , Z) = (2,rr) d • 1 -- Z E i d l  COS 0 i ddO ( 7 . 1 4 )  
- 7  ix 

In d = 1, the scaling funct ion def ined as 

X2///1/2 ) ]  (7, a(x l ,  x2) ~-- ! i I n  Q , xin , n (7.15) 

can be compu ted  to be 

2 ( "- a l ( X l ,  x 2 )  
G(x,, x2) = e.~[1 + erf(x~)] e~' .2 _ l (x, ,  x2) + ~-x2 ) ,  (7.16) 

where  

1 f e -dy  s i n ( x / y x 2 )  
l(Xl' x2) = ~ y + 1 

0 

d y .  

For  d = 2, we define the scaling variables and the scaling funct ion as follows: 

-- "rr / E "~ / 2 E 
X I : H e  , x z : x e  

G(x, ,  x2) = lim [nx e =/ . . . .  c*l e /2e E, X e'~/e) | ~.X2 , 1 J • 

Then  the scaling funct ion can be compu ted  to be 

G ( Y l , X 2 ) -  2(2eXlKo(X/2x~)--'rrf e xl ; ) ( x , )  
0 

; e  -x'y In y J o ( g ~  x2) ) 
+ [(log y)2 + "rr ~] dy  , 

0 

e  'YV,,(giYx2) 
[(log y)2 + q..l 2] 

dy 

(7.17) 

where  I(xl)  is the R a m a n u j a n  funct ion and Jn(x) and Y,,(x) are the n th  o rde r  
Bessel functions of  first and second kind,  respectively.  

For  d = 3, we similarly define the scaling variables and the scaling funct ion as 
follows: 
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xi = na'21 lv  , x2 = I • lx ,  
3/2 1 1/2 

G+_ (xl,  x2) = lni~m~ ( n ~A3a((x2/x1)( 3n)2 ' +-xl(nA3)-l/2'  n) 
x 1 t , 

where  G+_(xI,x2) deno tes  the scaling funct ions  in the region for  • > 0  and 
• < 0, respect ively ,  and A 3 has been  defined in (4.11).  In this case they  cannot  
be  m a t c h e d  by a single funct ion as in the prev ious  cases. These  funct ions,  

c o m p u t e d  in the s ame  way,  are as follows: 

6+(xl, x2) = 

G _ ( x , ,  x2) = 

' OI(Xl, X2) ) 
D3x~ 2eX~-~ _ I(Xl,  x2) + Ox 2 ' 

x2{ed[1 + e r f (xO]  - 1} 
(7.18) 

OI(x I , X 2) 
O3x1 ( I (x l '  X2) + 0-'-X-; / "  

x2{1 - eX{[1 - er f (x l ) ]}  

For  d = 4, as usual ,  there  is no scaling fo rm for  Q(x,  y,  n). 
For  d />  5, scaled var iables  and the scaling funct ion are def ined as follows: 

xl=nl•lZ , x2= x, 

(nd /2A~/2-1Q(x2(n /dx l ) l /2 ,+xl /nAd,  n ) )  

"~1 

where  the funct ions G+(x 1, X2) are the  fo rm of the s ame  scaling funct ion on 

e i ther  side of  • = 0 and are given by 

G+(x 1 , x 2) = 
2CdX 1 

(e ~, - 1)X(2d-2)/2 

G_(Xl ,  x2) = 

( l f e-Xayy(d-2)/4Jd/2-1(x2M'-Y) dy) 
eXlKd/z-l(X2) -- 2 y + 1 ' 

o (7.19) 

>( 

2Cdx 1 
(1 - e-Xx)x~ a-z)/z 

( i f e-Xlyy(d-2)/4Ju/2_l(X2X/-Y) dy) 
× - ½~r e XlYd/2_l(X2) -- -~ y -- 1 ' 

0 

-d/2 jd/2 A (d-2)/2 where  C d = ~ a "~d and Y(x) ,  J (x)  and K(x )  are  different  kinds of  

Bessel  funct ions,  as have  a l ready  been  defined.  
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8. Summary and discussion 

In summary, in this paper we have studied the critical behaviour of an ideal 
polymer chain undergoing the adsorpt ion-desorpt ion transition. Our lattice 
model,  though idealized and not completely realistic, has the advantage that 
various finite-size scaling functions can be computed exactly in all dimensions 
(except at d = 4). An interesting feature of the model is that the transition 
changes from being second order  for d ~< 4 to first order  for d > 4. The scaling 
behaviour of a critical system undergoing a first-order phase transition is not 
well understood. Our model represents a simple physical system exhibiting 
finite-size scaling near a first-order transition in d > 4. 

An important  feature of the problem deserves comment  at this point. A 
naive, qualitative argument would suggest that in the collapsed phase the 
system has only one natural length scale £ denoting the average number  of 
steps between two successive returns to the origin. Then one would expect that 
e, the average energy per monomer  unit, goes as £ 1 and the mean square 
end-to-end distance ~ 2  L. This would imply that tZ2e- l .  However ,  our 
calculation shows that tV2e diverges near T c. It is easy to see where exactly the 

qualitative argument goes wrong. Let  P(L) denote the probability distribution 
of the number  of steps between two successive returns to the origin. Then,  one 
finds 

1 -2 
e -- and r 

f P(L) L 2 dL 

f P(L) L dL f P(L) L dL 

so that 

m 

- 2  L 2 

f e L 2  . 

Thus r2e ~ 1 when the system has strictly one length scale L. However ,  in our 
problem, P(L) typically is an exponentially decaying function with an 
amplitude decaying with a power law. For example, in 3D, o n e  finds, 
P(L) ~ L - 3 / 2  e x p ( - L / ~ )  with ~ ~ e-2 where ~ = (y - yc)/yc. Then L 2 >> £ 2  

which agrees with our calculation. Thus we find that fluctuations at all length 
scales less than or equal to ~c are important  near the critical point, which 
essentially leads to the divergence of i2e  as T--~ To. This emphasizes the role of 
fluctuations at various length scales in our problem and a simple, heuristic 
argument assuming only one length scale fails to predict the correct critical 
behaviour.  
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Appendix A 

To calculate the partition function from eq. (2.18) for the case y > yc or 
T < T~, we make the choice of contour in the complex-z plane as shown in fig. 
A.1. The contour C O encloses the origin. C_+ enclose the poles at +-z+, 
respectively. C 1 consists of a circular part with radius 1 + 6 and an indentation 
around the branch points at z = ---1 where 6 is a small positive number. Now 

C O C+ C_ C 1 

(A.1) 

We first evaluate ~c. and show that ~;c~ is negligible compared to them in the 
limit of large n. Since the integrand in eq. (2.18) has simple poles at ---z+ for 
Y > Yc, one easily gets 

_ ~ _  1 1 - F ( z + )  
n + l  t z+ y ( 1 -  z+)F (z+) 

C+ 

(A.2) 

Fig. A.1. The choice of the contour in the complex-z plane for T <  T~. 
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1 1 - F ( z + )  (A.3) 
- = ( -1)n  z"+ +--7 y(1 + z + ) F ' ( z + )  " 

C 

Thus the integrals along C+ are proportional to the (n + 1)th power of a 
number which is larger than unity as z+ < 1. It can be easily seen that in case of 
Cl,  the integral around the circular part of the contour is proportional to 
(1 + 6) -n, which is an exponentially small number  for large n. The integral 
around the remaining part of the contour C 1 is bounded in magnitude by a 
number independent  of n. Hence,  in the limit of n--+ ~c, we get the following 
expression of the partition function: 

y - I  ( 1  + ( - 1 )  n )  (A.4) 

where we have used the fact that y F ( z + )  = 1. 

Appendix B 

In order  to calculate the partition function for the case y < y~, or T > T c, we 
note that the only poles of the integrand in eq. (2.18) are at z = 0, 1 with 
branch point singularities at z -  -+ 1. The contour is chosen as shown in fig. 
B. 1. Consequently 

C o C 1 

C 1 

Q' R 
Q 

Fig. B . I .  The  choice  of  the c o n t o u r  in the  c o m p l e x - z  p l ane  for T ~ T., 
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The contour integral around C I is approximately equal to the integral from Q 
to R and Q'  to R' (see fig. B.1) around the cut for large n. The contribution of 
the circular part of the contour is exponentially small for large n. Also the 
contribution of the Q R  part is much larger than the Q 'R '  part because of the 
extra pole type singularity at z -- 1 in the integrand of eq. (2.18). Using this 
argument and substituting (4.2) in (2.18) we get 

R 

1 f ~ dz .  (B.1) 
O(Y 'n)~"  (Y---1)2rri z~+l(1 ( Y U(O,z))  o - z )  y------~ - 

Using the asymptotic expansion for U(0, z) near z = 1 as given by eqs. 
(4 .3)-(4.7) ,  we get the following expressions for the partition function in 
different dimensions. 

For d = 3 we have 

R 

1 f 1 
a ( y ,  n) ~- a3(Y - 1)2'rri z"+l(1 - -  z)[b 3 ~- (1 - -  Z )  1 /2 ]  d z ,  (B.2) 

Q 

where 

yc(3) - y  
b3 = a3(Y - 1)[yc(3) - 11 ' (B.3) 

There are two contributions to this integral, one from the circular part around 
z = 1 and one from the flat portion parallel to the cut. The contribution of the 
circular part is trivially given by 1 / a 3 b 3 ( y -  1). The contribution of the flat 
part If is given by (substituting z = 1 + z' in eq. (B.2)) 

R 

I f -  a3(Y - 1)2-rri (1 + z ' )"+'( -z ' )[b3 + ( - z ' )  '/2] 

6 
_ 1 ! X -1/2 

\ n + l l ~ 2  -I- X )  ~ra3(Y - 1) (1 + x) to3 

1 
2 1/2 " 

a3b3(y - 1)x/-~ n 

dx 

dz'  

(B.4) 

For the above asymptotic analysis, for large n, see the appendix of ref. [4]. So, 
to leading order for large n, we get 
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1 
g2(y, n) ~ _ [1 - 0'(n i /2)] .  (B.5)  

a 3 b 3 (  Y 1) 

The  phase  of ( - z ' )  1/2 in eq. (B.4)  is chosen  so tha t  it is real and posi t ive for  
• 1 / 2 real ,  negat ive  z' .  T h e r e f o r e ,  on the lower  por t ion  of the cut, ( - z ' )  I'2 = ix 

and on the uppe r  side, ( - - Z r )  1 / 2  = --iX 1'2, where  x is real and posit ive.  
A similar  analysis,  for  d = 4, gives 

R 

1 f l 
~2(y, n ) ~  a4(y  - l )2~r i  z"+l(1 - z ) [b  4 -  (1 - z ) I n ( l  - z)l d z ,  (B.6)  

o 

where  

yc(4)  - y 
b4 = a 4 ( Y -  1 ) [ y c ( 4 ) -  1] " (B.7)  

We note  that ,  for  y < Yc, b4 is positive• To  leading o rde r  for  large n, the main  
cont r ibu t ion ,  once again,  comes  f rom the circular  par t  of  the con tou r  C 1 
a round  the point  z = 1 and is given by 

1 
g2(y, n)~-  a4b4(y _ 1) " (B.8)  

For  d ~>5, we get 

R 

£2(y, n) ~ a, , (y  -1)2~ri z"+t(1 - z ) [b ,  - (1 - z)] d z ,  (B.9)  
o 

where  

y c ( d )  - y 

b ,  = a , ( y  - 1 ) [ y c ( a )  - 11 ' < B . 1 0 )  

Again  to leading o rde r  

1 
Y2(y, n)-~ a~,bd(y _ 1) " (B.11)  

In genera l ,  for  all d ~> 3, we get 

1 y c ( d ) -  1 
~2(y, n) ~ a j b j ( y  - 1) y~(d) - y (B.12)  

We note  that ,  for  d~<2,  there  is no T > T~ phase  as the T c itself is infinite. 
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Appendix C 

In this appendix, we calculate the leading asymptotic behaviour of the 
Ramanujan function 

l(x) = f e-Xr 1 dy 
y [(In y)2 + ,11.2] 

0 

in the limit x---~ 0. In the limit x---~ 0% it is known that [29] I ( x ) ~  1/log x to 
leading order. To compute the x---~0 limit, we make use of the following 
Ramanujan identity [30]: 

I(x) = e x - v(x) ,  (C.1) 

where 

x t  

,(x) = r( l) 
o 

- - d t .  (C.2) 

Substituting y = x' in (C.2) and noting that for small x, lim,._,~ X t =  0 we get 

1 

1 f dy (C.3) 
v(x) = Ilogxl 171 + Ilog y J / l l o g x l )  " 

As x'---~0, for fixed y, the denominator of the integrand tends to F(1). This 
leads to the following asymptotic behaviour of u(x) as x---~ 0: 

1 1 
lim v(x) . . . . .  (C.4) 
x-~0 Ilog x] log x 

Hence from eq. (C.1) we get the leading order asymptotic behaviour of I(x) in 
the limit x--~O, 

1 
- -  (C.5) I(x) = 1 + log x 
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