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Correlations between two labelled panicles are studied in a one-dimensional lattice gas with nearest 
neighbour hopping. Fluctuations in the distance between the first particle (at time t) and the other 
(at time 0) are studied analytically and by Monte Carlo, with unbiased and biased hopping. In the 
latter case, the tag-tag correlation shows a nonmonotonic dependence on t. A stochastic harmonic 
theory, based on an exact mapping to an interface model, suggests a scaling form for the correlation 
as a function of t and the difference between the labels. Monte Carlo data are consistent with scal- 
ing. In the unbiased case, the scaling function given by the harmonic theory seems to be exact. 

I. Introduction 

The general problem of interactions between random walkers is of interest from 

several points of view [ 1 ]. A simple but important  instance is hard core exclusion in 

a lattice gas - particles hop between nearest neighbour sites of a lattice, subject to the 

constraint  that no site is more than singly occupied. Of particular interest in this sys- 

tem is the study of tracer diffusion, in which the dynamics of a single tagged particle 

is followed. 

A number  of results pertaining to the tagged process are known in one dimension 

[2 -5] .  Let there be Ns sites of which Np=pNs are occupied by particles. A randomly 

chosen particle attempts to hop, rightward with probabili ty p ( >i ½ ), and leftward 

with probabili ty q, with p + q =  1; the hard core constraint  is ensured by allowing the 

hop to complete only if the sought site is unoccupied. Np at tempted hops constitute 

one t ime step. In steady state, the drift velocity vv of any particular tagged particle is 

known [5] to be ( p - q ) ( 1  - p )  and the mean squared displacement of a tagged par- 

ticle around its mean position grows asymptotically as Dt, with D =  ( p - q ) ( l - p ) .  

But if the bias is zero, the variance grows anomalously slowly [ 2 ], as A t ~/2, with A = 
(2/~)1/2(1 - p ) / p .  

In physical terms, this slow growth can be understood as a cage effect arising from 

hard core exclusion, as in one dimension a particle is always hemmed in by its neigh- 

bouts. More surprising is the fact that the anomalously slow growth of fluctuations 

seems to disappear the moment  the bias is nonzero. The resolution of this puzzle 

involves an exact mapping [6 ] between the tagged particle problem and a model of 
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one-dimensional interface dynamics. The mapping also suggests the definition of a 

"sliding tag" process in which one of the tags is a function of t. The mapping to the 
interface model and the sliding tag process are discussed in section 2. The sliding tag 
process clearly shows how anomalous fluctuations (growing as t ~/3) arise in the biased 

case. 
In order to have a signature of anomalous time dependence in the tagged particle 

problem, it is essential, in general, to consider correlations involving two particles 
with distinct labels. Accordingly, in section 3, we study, both analytically and by Monte 

Carlo simulation, the fluctuations in the separation between a labelled particle at time 
t and another labelled particle at time 0. In the unbiased case, we find that fluctuations 
increase monotonically in time. By contrast, in the biased case, two-tag fluctuations 

decrease, reach a minimum value and then increase. One can understand these effects 
by analyzing a harmonic, stochastic model of the equivalent interface. The theory 
suggests that scaling forms should hold, and Monte Carlo results are found to conform 
with this. In the unbiased case, the scaling function can be found analytically, using a 

harmonic theory; in the biased case, the harmonic theory provides a qualitative un- 
derstanding of the phenomena, but does not correctly predict the scaling variable. 

2. Mapping to interface model 

In this section we describe an exact mapping between the tagged particle problem 

and an interface model [ 6 ]. The mapping suggests the definition of the sliding tag 
process, which helps in the understanding of universality classes in this problem. 

Label particles sequentially n=  l, 2 ..... Np, and let y ( n )  denote the location of the 
nth particle. The interface model is defined by interpreting n as a horizontal coordi- 
nate, and y ( n )  as the interface height at n. Each allowed configuration of particles 

maps into an interface configuration, and vice versa. The heights satisfy y ( n +  1 ) >1 

y (n) + l, and the interface as a whole has mean slope l /p.  In each time step, the local 
height tends to increase or (decrease) by l with probability p (or q), and actually 
changes if and only i f y ( n +  1 ) - y ( n )  > l remains valid for all n. 

The bias has a strong effect on interface dynamics. When bias is absent (p=  q= ½ ) 
the interface fluctuates around its mean position but does not move bodily. When the 
bias is nonzero, the interface moves with the particle drift velocity vp, and the dynam- 
ics describes a growing interface. Local height fluctuations in the interface model 
translate directly into tagged particle correlations. In this respect, our model differs 
from earlier equivalences [7,8] between the particle and interface problems. 

Analysis of  a continuum model by Kardar, Parisi and Zhang [ 9 ] (KPZ)  has led to 
an improved understanding of interface dynamics in one dimension. The equation of 
motion of the interface is 
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8y 1 82y +al Oy {0)2\ 2 
8t - 2 On 2 ~n +a2 ~ n ]  +q(n ,  t ) ,  

(1) 

where the coefficients a~ and a2 are nonzero only if the interface is growing with a net 

velocity, and r/(n, t) represents Gaussian, uncorrelated noise. This cont inuum model 

seems to represent quite well, in a general way, the physics of  several discrete ( 1 + 1 )- 

dimensional interfacial models, and it is interesting to see what the KPZ results pre- 

dict for the tagged particle problem. 

In the unbiased case, we have a nongrowing but fluctuating interface, correspond- 

ing to a~ : a 2 : 0  in eq. ( 1 ). The rms fluctuations o f  the local height in the resulting 

interfacial model (considered by Edwards and Wilkinson [ 10], and earlier, in a dif- 
ferent context, by Hammersley [ 1 1 ] ) are proportional to I I/4. This is precisely the 

answer for the tagged particle problem in this case. 

With nonzero bias in the tagged particle problem, we have a growing interface, for 

which both a~ and a2 are nonzero in eq. ( 1 ). In this case, rms fluctuations of  height 

at fixed n grow as t j/2, which accords with the known, normal diffusive growth of  

fluctuations in the tagged particle problem. 

The more interesting and important  point is that the aj term can be eliminated by 

the Galilean shift n' =n+a t t ,  t' =l. The KPZ analysis then shows that the rms fluc- 

tuations grow anomalously slowly, as t ~/3, in the shifted frame of  reference. There are 

interesting implications for the tagged particle problem. The Galilean shift corre- 

sponds to a shift in tag space, and so leads to the consideration of  the sliding tag 

correlation function 

a~,(t) = < [y (n , ,  t) - y ( n o ,  0)  - ( l  - b ) v , , t ] :  > .  (2) 

Here b is a parameter which characterizes the Galilean shift, in terms of  which the 

shifted tag n, is no-bpvpt.  The last term in eq. (2)  is the shift in position caused by 

going into a moving frame with velocity Vv= ( l - b ) v p .  Only for b=bc=-a~/pt~, can 

one completely eliminate the a~ term in eq. ( 1 ) by Galilean shift, and only for this 

critical value do the height fluctuations azc(t) vary as 12/3; for b ¢  b~, ~, (t) varies as 

t. From particle-hole symmetry,  it follows [6] that ( 1 -p)b~,(p) +pbc( 1 - p )  = 1. For 
the half-filled case p =  ~, this condition leads to bc( ~ ) = 1. For other values o f  p, a 
numerical study reveals b , . (p )=p / (  1 - p ) .  The corresponding velocity of  the critical 
inertial frame is vc (p) = ( 1 - be) vp = ( 1 - 2p) ( p -  q), which coincides with 0 (pup)/Op, 

the average drift speed of  density fluctuations [ 12,13 ]. 
In summary, for most values of  the sliding tag parameter b, mean squared fluctua- 

tions grow linearly in t. But for the critical value bc (which corresponds to the elimi- 
nation o f  the aj term in eq. ( 1 ) ) the variance grows as t2/< 
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3. Two-tag correlation functions 

In this section, we show that there is a signature of anomalous behaviour in corre- 

lations involving two particles with fixed tags no and no-An.  Define a correlation 

function which monitors fluctuations in the distance between no at time 0 and no -  An 

at time t, 

a2( An, t) --- ( [y(no - An, t) - y ( n o ,  O) + A n ~ p -  Up/] 2 ) . (3) 

In the steady state, the expectation value of the quantity within parentheses is zero. 

Fig. 1 shows Monte Carlo results for the variation o f a  2 with t, and brings out a strong 

difference between the unbiased (fig. la) and biased (fig. lb) cases. While a2 in- 

creases monotonically with t in the absence of bias, it is strongly nonmonotonic when 

bias is nonzero. In both cases, results depend on the separation An of the two tags. In 

the unbiased case, the large time behaviour follows ~r~ ~ t ~/2. In the biased case, the 

lower envelope of the curves describes the critical locus ab2c of the sliding tag process 
and varies as t 2/3. 

We now attempt an analytical description of this behaviour, based on the equiva- 

lent interface model of section 2. As we shall see below, a harmonic stochastic treat- 

ment of interface dynamics explains quantitatively the behaviour of 0 2 in the un- 
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Fig. 1. Monte Carlo data for a system with Ns=90 000, Nv=45 000. (a) Unbiased case, p=0.5.  Each 
point is an average over 10 runs. Different sets (moving upwards) correspond to tag separations An = 4, 
8, 12, 16, 20. (b) Biased case, p=0.75. Each point is obtained from a single run. Different sets (moving 
upwards) correspond to tag separations An = 10, 20, 30, 40, 50. The lower envelope of the curves varies 
as/j/3. 
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biased case, and provides a qualitative understanding of  the trends in the biased case. 

In the harmonic theory, the height y'(n, t) depends linearly on the heights at neigh- 

bouring n's, and is modulated by noise, 

y(n ,  t) = Q y ( n -  1, t -  1 ) + P y ( n +  1, t -  1 ) + q ( n ,  t ) ,  (4) 

where the couplings P and Q satisfy P +  Q =  1. The difference P -  Q is a measure of  

the bias. Periodic boundary conditions are used, so y(0,  t) stands for y(Np, t ) - N s  

and y ( N , +  1, t) for y'(1, t ) + N s .  The noise q(n, t) satisfies (~l(n, t ) )  =0,  and 

( ~l(n, t) q(n ' ,  t' ) ) = w2d,,,,,~,,,,. The initial condition is taken to be y(n,  0 ) = n/p. The 

mean value (y (n ,  t) ) is given by v(n 0) + ( P - Q ) t / p ,  and the deviation h(n,  t) = 

y (n ,  t) - ( y ( n ,  l) ) is found by Fourier transform to be 

1 ? dOe i°'O(k,O) 
h ( n , t ) =  2 e-  j , I5 ) 

2~N~7 l _ ( Q e i , + p e  i,)ei0 
- r e  

where O(k, O) = v i~,~ 

becomes 

a~(An, t)= lira 
to *,~ 

\~t~c= 1 ?l(tl, l ) e  i(n/'+/Hj. The correlation function of  interest 

[ h ( n o - A m  t + t o ) - h ( n o ,  t,~) ]2) , (6) 

the limit to-~oe being taken to ensure steady state. The result, in the thermodynamic 

limit, is 

a5= PO ,.=o P 'Q '  ' l ~ ( t - A n ) - r l  . (7) 

At large times t, the variable z =  ( r - P t ) / x / - P Q t  is distributed normally, and we find 

a~ = w 2 \ 2~PQ] x/-pQt " 

In the unbiased case ( P = Q =  ~ ) the large-time result can be written in the scaling 
f o r m  

a~(An, t ) = w  2 An Y , ( t / ( A n )  ~-) (9) 

with the scaling function given by 

Yo(z)  = 2  [erf( 1/x~zz ) + x /~- /~  e - , /2=] .  (10) 

Yu(z)  approaches a constant as z - , 0  and varies as z 1/2 as z--+<z>. As suggested by eq. 

(9),  we resealed the Monte Carlo data and plotted cr~_/An versus z = t~ (An) :  for sev- 
eral values of  An, and found data collapse. Representative results are shown in fig. 2a 

(only two values o f  An are shown for clarity). The analytical scaling function Y~ of  
eq. (10) is also plotted for comparison. In general, there would be a uniform time- 

rescaling factor to account for the difference of  time steps in the Monte Carlo and 
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Fig. 2. Scaling functions. (a) Unbiased case: Yu=a2/An obtained from Monte Carlo data of  fig. la for 
An = 8 (open circles ) and An = 12 (triangles) plotted against z = t / (An  )z. The continuous curve is a plot 
of  Yu(Z/2 ) defined in eq. (10).  (b) Biased case: Yb = a]/(An)Z/3, obtained from Monte Carlo data of  
fig. lb for An=  10 (open circles), A n = 2 0  (triangles) and A n = 3 0  (diamonds) ,  plotted against z=  
[ t - t * (  An ) ]~(An) 2/3 with t*( z~n ) = An/pZ(p--q)  =8An.  

stochastic harmonic model; in this case, the factor is 2, and the continuous curve is a 
plot of Y, ( z /2 ) .  The agreement with the Monte Carlo data is very good, and we con- 

jecture that Y, is the exact scaling function for the two-tag process. 
In the biased case (PC Q), the difference P - Q  is a measure of the bias, but there 

is no unique way to determine P and Q in terms of p, q and p. The continuum limit of 
eq. (4) lacks the nonlinear term of eq. ( 1 ), known to be important for a complete 

description of the dynamics of a growing interface. Nevertheless, harmonic theory 
provides a reasonably good qualitative description. For instance, analysis of eq. (8) 
yields a nonmonotonic dependence of a 2 on t, with a minimum at t=  t* and a scaling 

form in the vicinity of the minimum, 

a~( An, t) "~ (An)°Yb(z)  , 
t -- t*(An) 

z=  (11) 
(zXn)0 

Here t* is proportional to An for sufficiently large An, implying a variation 
a~ ~ (t*)° for the envelope of the curves in fig. lb. The harmonic theory incorrectly 
predicts ~ = 1/2. Matching to the known result for the envelope [ 6 ] yields ~ = 2 / 3. 
Monte Carlo data, rescaled in accordance with eq. ( 11 ), are plotted in fig. 2b. Results 
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are  cons is ten t  wi th  scaling. 

4. Conclusion 

Two- tag  cor re la t ions  clearly show the  s ignature  o f  a n o m a l o u s  b e h a v i o u r  in both 

non -d r iven  ( u n b i a s e d )  and d r iven  (b i a sed )  o n e - d i m e n s i o n a l  lat t ice gases, in con-  

trast  to single-tag cor re la t ions ,  which  show only  d i f fus ive  spreads  in d r iven  systems. 

Two- tag  cor re la t ions  grow m o n o t o n i c a l l y  in the  unb iased  case, and  n o n - m o n o t o n i -  

cally in the biased case. Scal ing desc r ip t ions  are  val id  for both.  In the unbiased  case, 

it is con j ec tu r ed  that  the  s tochas t ic  h a r m o n i c  theory  gives the exact  fo rm (eq.  (10 )  ) 

o f  the scaling funct ion .  
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