
PHYSICAL REVIEW E, VOLUME 65, 051112
Large-deviation functions for nonlinear functionals of a Gaussian stationary Markov process
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We introduce a general method, based on a mapping onto quantum mechanics, for investigating the large-T
limit of the distributionP(r ,T) of the nonlinear functionalr @V#5(1/T)*0

TdT8 V@X(T8)#, whereV(X) is an
arbitrary function of the stationary Gaussian Markov processX(T). For T→` at fixed r we obtainP(r ,T)
;exp@2u(r)T#, whereu(r ) is a large-deviation function. We present explicit results for a number of special
cases includingV(X)5XH(X) @whereH(X) is the Heaviside function#, which is related to the cooling and the
heating degree days relevant to weather derivatives.
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I. INTRODUCTION

The ‘‘persistence’’ of a continuous stochastic process
been the subject of considerable recent interest among
theoreticians and experimentalists in the field of nonequi
rium processes. Persistence is the probabilityP(t) that a sto-
chastic variablex(t) of zero mean does not change sign up
time t. Systems studied include reaction-diffusion process
phase-ordering kinetics, fluctuating interfaces, and sim
diffusion from random initial conditions@1#. Experimental
measurements have been carried out on breath figures@2#,
liquid crystals@3#, soap froths@4#, and diffusion of Xe gas in
one dimension@5#. In ‘‘coarsening’’ systems like these
which do not possess a definite length or time scale,
persistence has a power-law decay,P(t);t2u, at late times,
and the persistence exponentu is in general nontrivial. In
such systems, the normalized two-time correlation functi
C(t1 ,t2)5^x(t1)x(t2)&/@^x2(t1)&^x2(t2)&#1/2 has the ‘‘scal-
ing’’ form, C(t1 ,t2)5 f (t1 /t2), depending only on the ratio
of the two times. In such systems, a simplification
achieved by introducing the logarithmic time scaleT5 ln t,
and the normalized variableX(T)5x(t)/^x2(t)&1/2, since the
correlation function ofX depends only on the time differenc
T22T1, i.e., the processX(T) is stationary. Thus one is le
to consider stationary stochastic processes. These proc
are, of course, also of interest in their own right. In the n
time variable, the persistence decays exponentially,P
; exp(2uT).

In this paper we consider the integrated quantity

r 5
1

TE0

T

dT8 V„X~T8!… , ~1!

whereV(X) is an arbitrary function of the stochastic variab
X(T). Hence r is a functional ofV. For the special case
V(X)5H(X), whereH(X) is the Heaviside step function,r
is just the fraction of time for whichX(T8).0 in the time
interval O<T8<T. In this case, the probability distributio
P(r ,T) of r for given T is just the ‘‘residence-time’’ distri-
bution which, together with the related ‘‘sign-time’’ distribu
tion, whereV(X)5sgn(X), has attracted a lot of attentio
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earlier in the mathematics literature@6,7# and more recently
in the statistical physics community@8#. Here we consider a
general functionV(X). We restrict our attention, however, t
the class of processes whereX(T) is a stationary Gaussia
Markov process, for which some analytic progress can
made. A case of some interest, which we analyze in detai
V(X)5XH(X). This case is relevant to weather derivativ
as we now explain.

It has been estimated that about 1012 dollars of the
731012 dollar US economy is weather related@9#. For ex-
ample, weather conditions directly affect agricultural outp
and the demand for energy products and indirectly aff
retail businesses@10#. Weather derivatives, first introduced i
1997, are financial instruments that allow hedging~by, for
example, energy suppliers! against adverse weather cond
tions over a period of time. Here ‘‘adverse’’ might mean
unusually warm winter, when low demand for energy wou
affect the supplier’s profits, as well as an unusually cold o
when the supplier is unable to meet the demand. Tempera
derivatives, the most common form of weather derivativ
are based on the concepts of ‘‘heating degree days’’
‘‘cooling degree days,’’ which are~rough! measures of the
cumulative demand for heating and cooling respectively.

Let X(T) be the temperature at timeT in a given city. On
a given dayn, the meanXn of the highest and lowest tem
peratures is recorded. The number of cooling degree d
~CDD!, over a period of N days, is given byMCDD

5(n51
N max(Xn2Xo,0), whereXo is a reference, or base line

temperature, while the number of heating degree d
~HDD! is nHDD5(n51

N max(Xo2Xn,0). In the present pape
we will, for simplicity, use an integral over continuous tim
rather than a sum, so that the cooling degree days are g
by MCDD5*0

T dT8@X(T8)2Xo#H„X(T8)2Xo…, whereH(X)
is the Heaviside step function. Thus CDD is the integra
temperature excess~over the reference temperature! re-
stricted to those periods where the temperature is above
reference level. It is a crude measure of the amount of co
ing ~air conditioning! required during the periodT and also
of the energy required to produce this cooling. Note that
power consumption of an air conditioner actually varies,
small temperature differences, as the square of the temp
©2002 The American Physical Society12-1
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ture difference between the room and ambient temperatu
so a better measure of the energy required would
*0

TdT8@X(T8)2Xo#2H„X(T8)2Xo…, instead of CDD. In the
notation of this paper, MCDD5rT, with V(X)5(X
2Xo)H(X2Xo) in Eq. ~1!. The number of HDD is similarly
given byMHDD5*0

T dT8@Xo2X(T8)#H„Xo2X(T8)…, which
is a measure the amount of heating required in the perioT
and of the energy required to produce this heating. Estim
ing the likelihood of large deviations from the mean in CD
or HDD is clearly of interest to energy companies.

To make further progress, a realistic statistical model
temperature fluctuations is required. At this stage, howe
any realistic model is too intractable to allow analytic
progress. To illustrate the general approach we will inst
employ a simple, though unrealistic, model in which the te
peratureX(T) is taken to be a stationary Gaussian Mark
process. We will discuss the limitations of this model, a
possible improvements, in the Conclusion. As a further s
plification, we take the reference temperatureXo to be the
mean ofX(T), though this simplification is not essential an
can be relaxed.

The outline of the paper is as follows. In Sec. II we intr
duce the general approach to the problem of computing
distributionPT(r ) of the quantityr defined by Eq.~1!. Using
a path-integral representation, the calculation ofPT(r ) is
mapped onto a problem in quantum mechanics, in which
functionV(X) appears in the potential energy. In the limit
large T, only the quantum ground-state energy is requir
The final result takes the formPT(r );exp@2u(r)T#, where
the functionu(r ) is a large-deviation function. For the cas
of the sign-time distribution, corresponding toV(X)
5sgn(X), r lies in the range21<r<1, and it is clear that
u(1) is just the usual persistence exponentu, since r 51
requiresX(T8).0 for 0<T8<T. In Sec. III, the method is
illustrated on a number of special cases, of whichV(X)
5aX andV(X)5bX2/2 are studied first as exactly solvab
tutorial illustrations before turning to the CDD problem~in
the simple form outlined above! and finally the sign-time
distribution. The last two examples can be solved anal
cally in various regimes, and numerically elsewhere. Sec
IV concludes with a discussion and summary of the resu

II. GENERAL APPROACH

Consider the general stationary Gaussian Markov proc
~Ornstein-Uhlenbeck process! dx/dt52mx1j(t), where
j(t) is the Gaussian white noise with zero mean, and c
relator ^j(t)j(t8)&52D d(t2t8). After the change of vari-
ablest5T/m, x5(2D/m)1/2X, the equation takes the form

dX

dT
52X1h~T!, ~2!

where^h(T)&50 and

^h~T!h~T8!&5d~T2T8!. ~3!

The probability distribution ofX(T8) for 0<T8<T is
given by
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P@X#5N expH 2
1

2E0

T

dT8@Ẋ2~T8!1X2~T8!#J , ~4!

where Ẋ(T8)[dX/dT8, and N is a normalization constant
Our goal is to calculate the probability distribution ofr, de-
fined by Eq.~1!. In practice it is convenient to look at th
distribution Pu(u) of the quantityu5rT. Its Laplace trans-
form is

P̃u~s!5^exp~2rsT!&5Z~s!/Z~0!, ~5!

whereZ(s) is given by the path integral

Z~s!5E DX~T!expH 2
1

2E0

T

dT8~Ẋ21X212s V@X# !J .

~6!

We are interested in the limitT→`. It is convenient to
impose periodic boundary conditions,X(T)5X(0), since
this restriction will not change the results in the large-T limit.
Furthermore, the exponential in Eq.~4! should strictly con-
tain the combination (Ẋ1X)2 instead of (Ẋ21X2). The
missing term, 2XẊ, is however a perfect derivative, whos
integral vanishes for periodic boundary conditions. Fina
with these boundary conditions the functionZ(s) is the
imaginary-time Feynman path integral that gives the pa
tion function of a quantum particle with HamiltonianH
5p2/21X2/21sV(X) at inverse temperatureT, p being the
canonical momentum conjugate toX. For T→` the ground
state dominates to give, in this limit,

^exp~2rsT!&5exp$2T@E~s!2E~0!#%, ~7!

whereE(s) is the ground-state energy for the Schro¨dinger
equation

2
1

2

d2c

dX2
1U~X!c5E~s!c, ~8!

with potential

U~X!5X2/21sV~X!. ~9!

For s50 the problem reduces to a simple harmonic osci
tor, andE(0)51/2.

The stochastic processx(t) studied above corresponds
the position of a Brownian particle in an external potent
mx2/2. For the case of a pure Brownian motion (m50), Kac
derived a formalism@6# to study the distributions of arbitrary
functionalsV@x# which also used a mapping to the Schr¨-
dinger equation. Note, however, that the method presen
above for themÞ0 case differs in details from the origina
Kac formalism.

To illustrate the method, we discuss two simple examp
before turning to some nontrivial cases, including the CD
problem.
2-2
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III. SPECIAL CASES

A. V„X…ÄaX

For this case we have

u5rT5aE
0

T

dT8 X~T8!. ~10!

This case is actually trivial sinceu, being a sum of zero-
mean Gaussian variables, is itself a zero-mean Gaussian
able. All we require, therefore, is the variance, given by

^u2&5a2E
0

T

dT1E
0

T

dT2^X~T1!X~T2!&. ~11!

For the Ornstein-Uhlenbeck process~2!, with noise cor-
relator ~3!, one easily findŝ X(T1)X(T2)&5(1/2)exp(2uT1
2T2u). Inserting this result in Eq.~11!, and extracting the
leading large-T behavior, giveŝ u2&→a2T, and therefore
^r 2&→a2/T. Hence the asymptotic distribution ofr is given
by ~neglecting prefactors!

PT~r !;exp~2Tr2/2a2!, T→`. ~12!

We now show how the general machinery we have se
in Sec. II recovers this result. The potentialU(X) in the
Schrödinger equation~8! takes the form

U~x!5X2/21saX5~X1sa!2/22s2a2/2. ~13!

This is just a harmonic oscillator with a shifted origin, s
E(s)51/22s2a2/2 and, using~7!,

^exp~2rsT!&5exp~Ts2a2/2! ~14!

for large T. To recoverPT(r ) we can invert the Laplace
transform as follows. Neglecting preexponential factors,

PT~r !5TE
2 i`

i` ds

2p i
exp@T~rs1s2a2/2!#. ~15!

This integral can, of course, be evaluated exactly. Here, h
ever, we use the method of steepest descents, which is
for largeT and can be readily generalized to the other, l
trivial, cases that we will discuss. Writing the integrand
the form exp@Tg(s)#, we haveg(s)5rs1s2a2/2. The inte-
gral is dominated by the saddle point ats52r /a2, where
g52r 2/2a2. The integration contour is deformed to pa
over the saddle point, which lies on the reals axis. The
saddle point is thus a minimum ofg(s) with respect to varia-
tions of s along the real axis. The final result, ignoring no
exponential prefactors, is identical to Eq.~12!.

The structure of Eq.~12! is

PT~r !;exp@2u~r !T#, ~16!

with

u~r !5r 2/2a2. ~17!
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We can easily generalize this method to arbitraryV(X).
The path-integral approach gives the general result~neglect-
ing prefactors!

PT~r !;E
2 i`

i`

dsexp@Tg~s!#, ~18!

where

g~s!5rs1E~0!2E~s!. ~19!

Using the steepest-descent method for the integral gives

u~r !5max
s

@E~s!2 1
2 2rs#, ~20!

where we have insertedE(0)51/2. The next example is a
simple application of this idea.

B. V„X…ÄbX2Õ2

This case illustrates the power of the method. The pot
tial energy is now

U~X!5~11bs!X2/2, ~21!

so we have a harmonic oscillator again, but with a modifi
frequencyv5(11bs)1/2, giving E(s)5(11bs)1/2/2. Thus

u~r !5max
s

@ 1
2 ~11bs!1/22 1

2 2rs#5SA r

b
2

1

4
Ab

r D 2

.

~22!

Note thatu(r ) now has its minimum atr 5b/4, which is just
the mean value ofr @noting that̂ X2&51/2 follows from Eqs.
~2! and~3!#, while large (r→`) and small (r→0) values of
r are strongly suppressed. An expansion ofu near its mini-
mum value gives a Gaussian distributionPT(r )
;exp@24T(r2b/4)2/b2#. This agrees with the result ex
pected from the central limit theorem, i.e.,PT(r );exp@2(r
2m)2/2s2#, with meanm5b/4 and variances25b2/8T. For
T→`, the distribution becomes very narrow such that,
fixed r, the central limit theorem fails to give the corre
asymptotics. The form~16! thus gives the behavior in th
extreme tails of the distribution at largeT. The functionu(r )
is a ‘‘large-deviation function’’ that controls the distributio
of r for largeT.

We note that this special case withV(X)5bX2/2 was also
studied recently by Farago@11# in the context of power fluc-
tuations in the Langevin equation~2! by a somewhat differ-
ent method. The probability density function of the dis
pated power in Ref.@11# is precisely the distributionPT(r )
studied here and the corresponding large-deviation func
u(r ) has the same expression as in Eq.~22!. However, our
derivation seems simpler and easily generalizable to o
forms of V(X) as we show below.

C. V„X…ÄXH „X…: Cooling degree days

In this case the quantityrT gives the integrated value ofX
over the intervalT, restricted to those values whereX.0. If
2-3
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SATYA N. MAJUMDAR AND ALAN J. BRAY PHYSICAL REVIEW E 65 051112
X is the excess temperature over some baseline value w
cooling becomes necessary,rT is a crude measure of th
total energy consumption required to provide the cool
@V(X)5X2H(X) would be a better measure, as discussed
the Introduction#. In the present simple model we have tak
the mean temperature equal to the reference tempera
@with X(T) being the deviation from the mean#, though this
is not an essential restriction. The Schro¨dinger equation~8!
takes the form

c92X2c22sXc12E~s!c50, X>0, ~23!

c92X2c12E~s!c50, X<0, ~24!

where c9[d2c/dX2. The required solutions can be e
pressed in terms of parabolic cylinder functions,Dp(x), us-
ing the standard solutions of the parabolic cylinder equa
y92(x2/41a)y50 @12#. Selecting the solutions that satis
the physical boundary conditionc(6`)50 gives

c~X!5c1~X!5A Dp1
„A2~X1s!…, X>0, ~25!

5c2~X!5B Dp2
„2A2X…, X<0, ~26!

whereA,B are constants and

p15E~s!2
1

2
1

s2

2
, ~27!

p25E~s!2
1

2
. ~28!

The ratioA/B and the energy eigenvaluesE(s) are obtained
from matching the wave function and its derivative atX
50, i.e., we requirec1(0)5c2(0) andc18(0)5c28(0).
This yields the eigenvalue equation

Dp1
8~A2s!

Dp1
~A2s!

52
Dp2

8 ~0!

Dp2
~0!

. ~29!

The determination ofE(s) from these equations is not po
sible analytically for generals. However, in the regimess
→`, ands→2`, which determine the small-r and large-r
behaviors respectively, ofu(r ), analytical progress is pos
sible. We consider these in turn.

1. The limit r\`

As we shall see, in this limit it is sufficient to compu
E(s) in the limit s→2`. This can either be done directl
from Eq. ~29!, or using the following~simpler! physical ar-
gument.

Recall that, forV(X)5XH(X), the potentialU(X) in the
Schrödinger equation is

U~X!5X2/21sX, X>0,

5X2/2, X<0. ~30!
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For s→2`, the potential has a deep minimum, of dept
2s2/2, located atX52s. The wave function is exponen
tially small at X50, c(0);exp(2s2/2), and the change in
the potential in the regimeX,0 has an exponentially sma
effect on the ground-state energy. Thus

E~s!52s2/211/21O~e2s2
!, s→2`. ~31!

The same result can be obtained, after some algebra, dir
from Eq. ~29!. Inserting the result in Eq.~20! gives u(r )
5maxs(2s2/22rs)5r 2/2. Since the maximum occurs ats
52r , the calculation is self-consistent forr→`. Thus we
obtain

u~r !→r 2/2, r→`. ~32!

This large-r result has the same form as Eq.~17!, which
gives the general-r result for potentialV(X)5aX ~with a
51 here!. This correspondence is not so surprising: For
→`, the dominant processesX(T8), for 0<T8<T, will cor-
respond to large positiveX, so the step functionH(X) in
V(X) plays no role in this limit.

2. The limit r\0

We shall see that this limit corresponds tos→`. Again,
one can use physical arguments as a short cut. Fors→`, one
has U(X)5X2/2 for X,0, with essentially a hard wall a
X50. This gives, to leading order,E(s)→3/2. We need,
however, the leading correction to this result. Since the w
function does not penetrate far into the wall, we can neg
the X2 term in the potential forX.0, i.e., writeU(X)5sX.
The Schro¨dinger equation then simplifies to

c922sXc12E~s!c50, X>0, ~33!

c92X2c12E~s!c50, X<0. ~34!

The wave function forX<0 is again a parabolic cylinde
function, while forX>0 it can be expressed as an Airy fun
tion:

c~X!5A Ai „~2s!1/3X…, X>0, ~35!

5B Dp2
~2A2X!, X<0 ~36!

where A,B are constants, andp25E(s)21/2 as before.
Matching the wave function and its first derivative atX50
gives the eigenvalue equation

~2s!1/3Ai 8~0!

A2Ai~0!
52

Dp2
8 ~0!

Dp2
~0!

5

A2GS 12p2

2 D
GS 2

p2

2 D , ~37!

whereG(x) is the Gamma function. In the limits→`, the
left-hand side of Eq.~37! tends to infinity, so the right-hand
side ~RHS! must also diverge in this limit. The ground sta
corresponds to the first divergence, wherep2→1. Therefore
we write p2512e in Eq. ~37!, and seek the leading behav
2-4



.

s-

th
r

ap

y

tic
e

e

ft

han
m-
een
tric
the
e

LARGE-DEVIATION FUNCTIONS FOR NONLINEAR . . . PHYSICAL REVIEW E 65 051112
ior as e→0. This gives RHS→2(2/p)1/2/e. Inserting this
result in Eq.~37! gives, to leading order,

e5221/6A2

p

Ai ~0!

Ai 8~0!
s21/3

5A2

p

21/6

31/3

G~1/3!

G~2/3!
s21/3[as21/3,

~38!

the last equation defining the constanta. Finally we have
E(s)5p211/253/22e. Inserting this in Eq.~20! gives, for
r→0,

u~r !5max
s

~12as21/32rs!512br1/4, ~39!

where

b54S a

3D 3/4

5
4A2

3p3/8S G~1/3!

G~2/3! D
3/4

52.047 63 . . . . ~40!

Note that the value ofs at which the maximum occurs in Eq
~39! is s5(a/3r )3/4, justifying our use of a large-s analysis
of E(s) for the limit r→0.

That u(r )→1 for r→0 is intuitively clear, sincer 50
requiresX(T)<0 for all T. This reduces to the usual persi
tence probability of the Markov process~2!, for which u
51.

3. u„r … for r near Šr ‹

Equations~32! and~39! give analytical results foru(r ), in
the limits of large and smallr, respectively. For generalr, u
has to be computed numerically. There is, however, one o
regime where analytical progress is possible, namely, for
close to its mean value, where the central limit theorem
plies.

The mean value is given by

^r &5^V~X!&5^XH~X!&

5 1
2 ~^X&1^uXu&!. ~41!

The Gaussian distribution forX gives immediatelŷ X&50
and ^uXu&5A2/p^X2&1/251/Ap. Thus

^r &5
1

2Ap
. ~42!

In a similar way, the variance ofr can be calculated, by
exploiting the Gaussian properties of the processX(T). A
tedious but straightforward calculation gives, forT→`,

s2[^r 2&2^r &25
1

2pT
~p1 ln 222!. ~43!
05111
er
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The central limit theorem then gives the behavior ofPT(r )
for r nearr c asPT(r )5(2ps2)21/2exp@2(r2^r&)2/2s2#. In-
serting the explicit expressions for^r & and s2 gives PT(r )
;exp@2u(r)T#, with

u~r !5S p

p1 ln 222D S r 2
1

2Ap
D 2

, ~44!

correct to leading nontrivial order in (r 2^r &).
The full result foru(r ) can be obtained by numericall

solving Eq.~29! for the ground-state energyE(s) for each
value of r, then using Eq.~20! to find the corresponding
u(r ). The result is displayed in Fig. 1, with the asympto
forms for r→` andr→0 indicated. Note the very sharp ris
to the value unity asr→0, as indicated by Eq.~39!.

In terms of the CDD problem, the behavior below th
minimum ~i.e., for r ,^r &) determines the probability of an
unusually small CDD~cool summer!, while the region above
the minimum corresponds to an unusually large CDD~hot
summer!. The fact that the functionu(r ) initially increases
less rapidly to the right of the minimum than to the le
indicates that~within this very simple model! summers with
a slightly larger than average CDD are more probable t
those with a slightly smaller than average CDD. This asy
metry is a consequence of the nonlinear relation betw
CDD and the temperature fluctuations, which are symme
about the mean in our model. It should be stressed that
integration periodT has been taken to be large, to justify th

FIG. 1. The functionu(r ) for the CDD problem, showing the
asymptotic behavior for small and larger.
2-5
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steepest descent calculation. In practice this means thT
~the length of a summer, say! must be large compared to th
correlation time of the temperature~a few days, perhaps!,
which is not totally unreasonable.

D. V„X…Äsgn„X…: The ‘‘Sign-time distribution’’

The structure of the calculation is similar to that of t
preceding section. The Schro¨dinger equation is

c92X2c22@s2E~s!#c50, X.0, ~45!

c92X2c12@s1E~s!#c50, X,0. ~46!

The solutions are parabolic cylinder functions;

c~X!5c1~X!5A Dp1~A2X!, X>0, ~47!

5c2~X!5B Dp2
~2A2X!, X<0,

~48!

where now

p65E~s!7s21/2. ~49!

Matching the wave function and its derivative atX50 gives
the eigenvalue equation

Dp1
8~0!

Dp1
~0!

52
Dp2

8~0!

Dp2
~0!

, ~50!

which, using standard identities relatingDp(0) andDp8(0)
to G functions@12#, reduces to

GS 12p1

2 D
GS 2

p1

2 D 52

GS 12p2

2 D
GS 2

p2

2 D . ~51!

Although this equation cannot be solved analytically for ge
eral s, the limits s→0 and s→` are tractable. Note tha
E(s)5E(2s) by symmetry, so there is no need to consid
s→2` separately.

The analysis starts from the potential well,U(X)5X2/2
1s sgn(X). For smalls, the ground-state energyE(s) is per-
turbatively close to, but slightly smaller than,E(0)51/2.
Therefore, we write

E~s!51/22d~s!, ~52!

where we anticipated(s)5O(s2) from the symmetryE(s)
5E(2s). Inserting this form in Eq.~49!, Eq. ~51! becomes

GS 11s1d

2 D
GS s1d

2 D 52

GS 12s1d

2 D
GS 2s1d

2 D . ~53!

Expanding to fourth order ins and second order ind gives
05111
-

r

d5s2 ln 22cs41O~s6!, ~54!

where

c5
1

3
~ ln 2!31

p2

12
ln 22

1

4
z~3!50.269 865 . . . , ~55!

andz(n) is the Riemann zeta function. Inserting this result
Eq. ~20! gives

u~r !5max
s

@2rs2s2 ln 21cs41O~s6!#

5
r 2

4 ln 2
1cS r

2 ln 2D 4

1O~r 6!. ~56!

The maximum occurs ats52r /2 ln 21O(r3), so our study at
small s is self-consistent at smallr.

Fors→`, on the other hand, the potential develops a h
wall at the origin, and has a depth of2s next to the wall.
Therefore we writeE(s)52s13/22e, with e small. Put-
ting this form in Eq.~49!, Eq. ~51! becomes

G@s1e/2#

G@s1~e21!/2#
52

G@e/2#

G@~e21!/2#
. ~57!

Taking the limitss@1, ande!1 readily leads to

e5~ps!21/2 ~58!

to leading order for larges. Using this in Eq.~20! gives

u~r !5max
s

@12~11r !s21/~ps!1/2#

512
3

2 S 2

p
~11r ! D 1/3

1•••. ~59!

The maximum occurs ats5@2Ap(11r )#22/3], which tends
to infinity as r→21 so the calculation is self-consistent
this limit. The symmetry of the problem underr→2r leads
to the more general result

u~r !512
3

2 S 2

p
~12ur u! D 1/3

1•••, r→61. ~60!

The functionu(r ) is plotted in Fig. 2, with only the region
r>0 shown explicitly. The limiting behavior for smallr and
r close to unity is also shown.

IV. CONCLUSION

In this paper we have presented a general method
computing the asymptotic behavior of the probability dist
bution of the quantity r 5(1/T)*0

TdT8 V„X(T8)…, where
V(X) is an arbitrary function andX(T) is an Ornstein-
Uhlenbeck stochastic process representing the motion
Brownian particle in the presence of a stable parabolic
tentialmX2/2. The main result is that form.0, the distribu-
tion of r, for large window sizeT has the formPT(r )
;exp@2u(r)T#, whereu(r ) is the large-deviation function
2-6
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The calculation proceeds via a mapping onto a quantum
chanical problem described by the Schro¨dinger equation~8!
for a particle moving in the potential~9!, where s is the
Laplace variable conjugate torT. The inverse Laplace trans
form can be performed using steepest descents in the
T→`.

Two nontrivial applications have been presented. The fi
is a calculation of the large-deviation functionu(r ) for the
cooling degree days problem, based on a simple mode
temperature fluctuations. The model used assumes tha
temperature fluctuationX(T) is described by the Ornstein
Uhlenbeck process~2!, i.e., thatX(T) is a stationary Gauss
ian Markov process with time-independent noise streng
This may not be a realistic model for several reasons.

~i! A simple Markov process is not thought to be an op
mized model of temperature fluctuations, which tend to
hibit stronger autocorrelations than a Markov process
more plausible statistical model, according to@10#, gives the
fluctuationXn of the mean~average of daily high and low!
temperature on dayn as the linear combinationXn

5(m51
k wn2mXm1hn , where the ‘‘memory kernel’’wn2m is

a decreasing function ofn2m andhn is uncorrelated Gauss
ian noise. The Markov case corresponds tok51. HereXn is
the difference between the measured mean temperatur
day n and its expected value. The latter should contain
365-day seasonal variation~roughly sinusoidal!.

~ii ! The noise strength should also contain a 365-day s
sonal variation: the variance of the temperature fluctuati
can be different at different times of the year.

FIG. 2. The functionu(r ) for the sign-time distribution, show
ing the limiting behavior forr→0 andr→1.
u
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~iii ! The reference temperature for the calculation of CD
and HDD should in general be different from the expec
temperature. We hope to incorporate some of these feat
in future studies.

The second nontrivial application is to the ‘‘sign-time
distribution. In the context of ‘‘sign time,’’ we point out tha
the asymptotic form of the ‘‘sign-time’’ distribution has
markedly different behavior in the Ornstein-Uhlenbeck p
cess~where a Brownian particle moves in a stable parabo
potential mX2/2) studied here compared to the ordina
Brownian motion (m50). In the latter case, the ‘‘sign-time’
distribution PT(r ) is independent of the window sizeT for
all T and is given byPT(r )51/pA12r 2 @7#. In the former
case (m.0), on the other hand, the ‘‘sign-time’’ distributio
depends explicitly on the window sizeT and PT(r )
;exp@2u(r)T# for largeT where the large-deviation functio
u(r ) has been computed exactly in this paper.

We further note that for this ‘‘sign-time’’ problem, the
function u(r ) can also be obtained using the ‘‘independe
interval approximation’’~IIA ! @13,14#, which exploits the
fact that the intervals between zero crossings are statistic
independent for a Markov process. In fact, for renewal-ty
processes where the successive intervals are statisticall
dependent, the ‘‘sign-time’’ distribution has been comput
by Godrèche and Luck@15# using the interval size distribu
tion as an input. Their result can be simply extended to c
culate the ‘‘sign-time’’ distribution for the Ornstein
Uhlenbeck process. The IIA also has the virtue that it can
used to obtain approximate results for non-Markov p
cesses. Persistence exponents, for example, are often g
rather accurately by the IIA@1#. However, it is not straight-
forward to adapt this IIA method to general nonlinear fun
tionsV(X), whereas the path-integral approach and mapp
onto quantum mechanics adopted here is readily applic
to anyV(X).

Here we have only considered Gaussian Markov p
cesses mainly because they are simple and amenable to
lytical calculations. Recently the calculations of th
asymptotic distributions for the ‘‘sign-time’’ and other re
lated quantities such as ‘‘local time’’ have been extended
non-Gaussian Markov processes where a Brownian par
moves in an arbitrary stable or unstable potential a
moreover, exact results have been obtained@16# when the
underlying potential is random as in the Sinai model. T
extension of these methods and results presented here to
Markov processes, however, still remains as one of the
standing challenges for the future.
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