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Persistence of a continuous stochastic process with discrete-time sampling
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We introduce the concept of ‘‘discrete-time persistence,’’ which deals with zero-crossings of a continuous
stochastic process,X(T), measured at discrete times,T5nDT. For a Gaussian Markov process with relaxation
rate m, we show that the persistence~no crossing! probability decays as@r(a)#n for large n, where a
5exp(2mDT), and we computer(a) to high precision. We also define the concept of ‘‘alternating persis-
tence,’’ which corresponds toa,0. Fora.1, corresponding to motion in an unstable potential (m,0), there
is a nonzero probability of having no zero-crossings in infinite time, and we show how to calculate it.
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Persistence of a continuous stochastic process has g
ated much recent interest in a wide variety of nonequilibri
systems including various models of phase ordering kinet
diffusion, fluctuating interfaces, and reaction-diffusion pr
cesses@1#. Persistence has also been recently used in field
diverse as ecology@2# and seismology@3#. Persistence is
simply the probabilityP(t) that a stochastic processx(t)
does not change sign up to timet. In most of the systems
mentioned above,P(t);t2u for large t, where the persis-
tence exponentu is nontrivial. Apart from various analytica
and numerical results, this exponent has also been meas
experimentally in systems such as breath figures@4#, liquid
crystals @5#, soap bubbles@6#, and more recently in laser
polarized Xe gas using NMR techniques@7#.

Persistence has also remained a popular subject am
applied mathematicians for many decades@8#. They are most
interested in the probability of ‘‘no zero crossing’’ of
Gaussianstationaryprocess~GSP! between timesT1 andT2
@9#. It is well known that this probability usually decays a
;exp(2uT) for large T5uT22T1u, where u is nontrivial
@9,8#. The persistence of some of thenonstationaryprocesses
mentioned in the preceding paragraph, such as the diffu
processes, can be mapped to that of a corresponding
@10#. This makes the two sets of problems related to e
other and the power law exponent in the former probl
becomes the inverse decay rate in the latter. Even thougu
is, in general, hard to compute analytically, it is very easy
evaluate numerically in most cases. Given this fact, and
combined interest of both statistical physicists and app
mathematicians, much recent effort has been devoted
computingu numerically to extremely high precision.

This raises a natural question: How accurately can
measureu? Is there a natural limitation and if so, can it b
overcome? This issue arises from the following simple
servation. All the stochastic processes mentioned above
cur in continuous time. However, when one performs n
merical simulations or experiments on persistence, one ha
discretize time in some way and sample the data only
these discrete time points to check if the process has reta
its sign. Due to this discretization, some information is lo
For example, the process may have crossed and recro
zero ~or a spin may have flipped sign many times! between
1063-651X/2001/64~1!/015101~4!/$20.00 64 0151
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two consecutive discrete time points. These crossings~or
sign flips! go undetected due to the discrete sampling of
data. The question is how serious is this loss of informati
Is it possible to estimate quantitatively the error involved d
to the discretization?

The purpose of this Rapid Communication is twofold:~i!
to point out that there is indeed a very general and nontri
effect, due to the discretization of time, on the measu
persistence of any continuous stochastic process, and~ii ! to
provide a quantitative estimate of its magnitude in a sim
Markov model. The effect turns out to be nontrivial even f
this simple toy model. We also develop two new analytic
approaches, perturbative and variational, which provide
sults to extremely high precision. We emphasize that, e
though we restrict ourselves here to a simple model by w
of an example, this effect is very general and should be
servable in simulations or experiments on more realistic s
tems.

To formulate a precise quantitative question, let us c
sider a stationary stochastic process in continuous timT
which is sampled at timesT1 , T2 , . . . ,Tn5T separated by
a uniform window size,Ti2Ti 215DT such thatT5nDT.
The continuous persistenceP(T) is then approximated a
P(T)'Pn , where Pn is the probability that the proces
X(T) is positive at all then discrete points. Note that, fo
finite DT, Pn is different fromP(T) since the process ca
cross zero more than once between two successive dis
times. One expects that the approximationP(T)'Pn will
improve as the window size,DT, decreases, and in the lim
DT→0, n→` keepingT5nDT fixed, Pn→P(T). By con-
trast, if the window sizeDT@t wheret is the correlation
time of the process, the stochastic variables at different
crete points become completely uncorrelated and we ex
Pn→22n, since the probability that at each point the proce
is positive is just 1/2. We then ask: How does the discr
persistencePn interpolate between these two limits asDT
varies continuously from 0 tò ? We show that for a GSP, in
general, Pn;@r(DT)#n for large n, where the function
r(DT) is nontrivial with the limiting behavior

r~DT!'H 12uDT, DT→0

1/2, DT→`,
~1!
©2001 The American Physical Society01-1
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whereu is the usual persistence exponent. AsDT→0, one
recovers the continuous persistence,Pn→(12uDT)n

;exp(2uT) whereT5nDT. The general goal would be t
compute this functionr(DT), the knowledge of which will
provide an estimate of the difference, due to the finite w
dow sizeDT, between the measured persistencePn and the
P(T) of the underlying continuous process.

The nonstationary processes discussed in the first p
graph are related to the equivalent stationary ones viT
5 ln t @10#. A uniform spacing,DT, between measuremen
in the latter systems, therefore, corresponds to measurem
uniformly spaced inlog time in the former. Such a measure
ment regime has indeed been used in a recent experim
study of diffusive persistence@7#, with a spacing in log-time
equivalent toDT'0.24. The present paper is the first step
understanding how such discretization affects the meas
result. To compare directly with the experiment, we need
compute the functionr(DT) for the diffusion equation
which is hard due to the non-Markovian nature of the p
cess. However, to understand the general nature of this f
tion r(DT), it would be useful to find a toy model where
can be computed explicitly. We consider below a sim
Gaussian Markov process for which progress can be mad
that direction. The physical process we study is the o
dimensional Ornstein-Uhlenbeck motion of a noisy, ov
damped particle in a potentialV(X)5mX2/2, where the po-
sition X of the particle evolves via the Langevin equation

dX

dT
52mX1h~T!. ~2!

The white noiseh(T) has zero mean and a correlat
^h(T)h(T8)&52Dd(T2T8).

For this process, we first evaluate the continuous per
tence and then compute the functionr(DT). For the continu-
ous persistence, a backward Fokker-Planck~BFP! approach
is useful. LetQ(X,T) denote the probability that, starting a
X at T50, the particle has not crossed the origin,X50, up
to time T. We expect different behavior depending o
whetherm.0 ~stable potential! or m,0 ~unstable potential!.
In the former case, the particle will eventually cross the o
gin and henceQ(X,T) will decay exponentially with time. In
the latter case, however, the particle has a finite probab
to escape to infinity, and hence persistence should decay
nonzero number. The latter case is also related to the p
lems of escape from metastable states studied before@11#.

The probabilityQ(X,T) satisfies the BFP equation,

]Q

]T
5D

]2Q

]X2 2mX
]Q

]X
, ~3!

with boundary conditionsQ(0,T)50 andQ(`,T)51 for all
T, and initial conditionQ(X,0)51 for all X.0. The solution
is

Q~X,T!5erfF e2mT

A2D8~12e22mT!
XG , ~4!

where D85D/m and erf@x# is the error function. Form
.0, Q(X,T) becomes separable inX and T for large
01510
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T, Q(X,T);e2mTX, and decays exponentially withT for
fixed X. This gives the persistence exponentu5m. For m
,0, however,Q(X,T) approaches the steady state soluti
Q(X)5erf(X/A2uD8u) asT→`. We also note from Eq.~2!
that the critical casem50 corresponds to ordinary Brownia
motion, and taking the limitm→0 in Eq. ~4!, one recovers
the known result,Q(X,T)5erf@X/A4DT#, which decays as
a power law,Q(X,T);X/AT, for largeT.

For later purposes, we will also need the Green’s funct
G(X2 ,T2uX1 ,T1), the probability that the particle starting a
X5X1 at T5T1 will reach X2 at T2, with T2.T1. This
propagator can be easily computed exactly from Eq.~2! and
we get,

G~X2 ,T2uX1 ,T1!5
1

A2pD8~12a2!
e2[(X22aX1)2/2D8(12a2)] ,

~5!

wherea5e2m(T22T1). Note that form>0, 0<a<1, while
for m,0, a.1 ~andD85D/m,0).

We now turn to the discrete persistencePn of the continu-
ous process in Eq.~2!. Let Qn(X) be the probability that
starting atX at T50, the process is positive at all the discre
points T15DT, T252DT, . . . ,Tn5nDT separated by the
uniform window sizeDT. Then the discrete persistence
Pn5*0

`Qn(X)P0(X)dX, whereP0(X) is the distribution of
the initial position of the particle and can be arbitrary. Usi
the Markov property of the process in Eq.~2!, it is easy to
write down a recurrence relation forQn(X),

Qn11~X!5E
0

`

G~Y,DTuX,0!Qn~Y!dY, ~6!

whereG is the propagator as in Eq.~5! with a5e2mDT and
Q0(X)51 for all X.0. This recurrence is the discrete an
log of the continuous BFP equation~3!. Indeed, it can be
checked that Eq.~6! reduces to Eq.~3! in the limit DT→0.
To simplify the algebra, we consider the rescaled variab

x5X/AD8(12a2), in terms of which the recursion reads

Qn11~x!5
1

A2p
E

0

`

exp@2~y2ax!2/2#Qn~y!dy, ~7!

where we have used the explicit expression forG from Eq.
~5!.

Let us first consider the casem.0, i.e., 0<a5e2mDT

,1, where, guided by the continuous case, we exp
Qn(x)→rnq(x) as n→` at any fixedx. Substituting this
asymptotic form into Eq.~7!, we get an integral-eigenvalu
equation forq(x),

rq~x!5
1

A2p
E

0

`

exp@2~y2ax!2/2#q~y!dy, ~8!

with eigenvaluer(a) that evidently depends continuously o
a. Although Eq.~8! admits many eigenvalues, we are inte
ested only in the largest eigenvalue since it dominates
asymptotic behavior ofQn(x) for largen. We also note that
Eq. ~8! determines the eigenfunctionq(x) only up to an
1-2
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overall multiplicative constant. Let us first consider the lim
a→0 or equivalentlyDT→`. In this case, Eq.~8! can be
solved exactly to giver51/2 andq(x)5const, thus recov-
ering the correct limiting behavior,Qn(x)→const 22n @and
the initial condition,Q0(x)51 for x.0, fixes the constant a
unity#. For smalla, by expanding Eq.~8! in a Taylor series,
it is easy to computer(a) perturbatively, givingr51/2
1(1/p)a1O(a2). The goal now is to evaluater(a) for ar-
bitrary a. To this end we develop below two analytical a
proaches and compare them with the direct numerical i
gration of Eq.~7!.

Perturbative approach. We expand the factor exp(axy),
from the exponential in Eq.~8!, as a power series and inte
grate term by term, to get

rq~x!5
exp~2a2x2/2!

A2p
(
n50

`
bn

An!
~Aax!n, ~9!

bn5
an/2

An!
E

0

`

dy yn exp~2y2/2! q~y!. ~10!

Substituting Eq.~9! into Eq. ~10! leads to the matrix eigen
value equation

rbn5 (
m50

`

Anmbm , ~11!

Anm5
1

A4p~11a2!
S 2a

11a2D (n1m)/2GS n1m11

2 D
An!m!

.

~12!

This approach converts an integral eigenvalue equation
a matrix eigenvalue equation, with matrix elements that
crease exponentially asn and m increase. Computing the
largest eigenvalue of the N3N submatrix (n,m
50,1, . . . ,N21) gives a rapidly converging series of es
mates forr asN increases. For a givenN, the result is exact
to ordereN21, wheree52a/(11a2). In this way one can
easily obtain results forr(a) correct to one part in 1012.
Convergence becomes progressively slower asa→1, which
is expected sincee→1 in this limit. Fora→1, however, we
have the analytical resultr→a @such that rn→exp
(2nmDT )5exp(2mT )#, since we must recover the con
tinuum result in this limit.

Variational approach. It is possible to derive a usefu
variational inequality forr. First we note that the integra
operator in Eq.~8!, asymmetric inx and y, can be made
self-adjoint via the substitution,q(x)5g(x)exp@(12a2)x2/4#
which gives,

rg~x!5
1

A2p
E

0

`

K~x,y!g~y!dy, ~13!

where K(x,y)5K(y,x)5exp$2@(11a2)/4#(x21y2)1axy%.
Let f (x) be any normalizable function,*0

` f 2(x)dx51. Us-
ing elementary properties of linear vector spaces and
01510
e-
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e

self-adjoint property of the integral operator, it becomes e
dent from Eq.~13! that the largest eigenvaluer satisfies the
inequality,

r>
1

A2p
E

0

`E
0

`

f ~x!K~x,y! f ~y!dxdy. ~14!

One can then use any trial functionf (x) containing one or
more variational parameters and then maximize the rig
hand side of Eq.~14! with respect to these parameters
derive a rigorous lower bound forr(a) for arbitrary 0,a
,1.

The limiting forms of the true eigenfunctiong(x) in Eq.
~13! for a→0 and a→1 can be easily worked out, an
suggest a trial function of the form f (x)5A(b
1x)exp(2lx2/2). The amplitudeA is fixed by the normal-
ization condition,*0

` f 2(x)dx51, while b andl are the two
variational parameters. The right-hand side of the inequa
in Eq. ~14! can then be evaluated in closed form and t
optimization with respect tob andl performed. The result-
ing variational estimate turns out to be very accurate for
0,a,1, when compared to numerical results, and agr
with the perturbative results to at least four or five decim
places.

Numerical integration. It is not difficult to integrate Eq.
~7! directly. However, sinceQn(x)→1 as x→`, numeri-
cally it is convenient to first make the transformatio
Qn(x)5Gn(x)exp@(12a2)x2/4# in Eq. ~7! and then study the
resulting equation forGn(x) by numerical iteration, with an
arbitrary initial condition. For largen, Gn(x) converges to
rng(x), whereg(x) is the solution of Eq.~13!. The eigen-
valuer is determined from the slope of the log-linear plot
An5*0

`Gn(x)dx;rn versusn. In Table I, we compare the
numerical, variational, and perturbative estimates ofr. The
differences are small in all cases, and the variational boun
satisfied.

The eigenfunctionq(x) of Eq. ~8! can also be calculated
by using the series~9!, with the coefficients$bn% obtained
from the corresponding eigenvector of the matrixA, Eq.
~12!. It is shown, fora50.5, as the lower curve in Fig. 1

TABLE I. Estimates of the eigenvaluer(a) for 21<a<1,
from numerical, variational, and perturbative methods. The latte
the most precise, being accurate to the number of figures quot

a rnum rvar rpert

1.0 1 1 1
0.8 0.852 454 7 0.852 440 0.852 454 696 506
0.6 0.740 595 9 0.740 589 0.740 595 939 159
0.4 0.647 766 6 0.647 765 0.647 766 585 747
0.2 0.568 490 3 0.568 490 0.568 490 321 623
0.0 1/2 1/2 1/2
20.2 0.440 813 2 0.440 813 0.440 813 209 205
20.4 0.390 058 0 0.390 004 0.390 057 988 652
20.6 0.346 967 9 0.346 814 0.346 967 773 049
20.8 0.310 643 9 0.310 444 0.310 643 770 245
21.0 0.280 085 9 0.279 890 0.280 085 758 710
1-3
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The asymptotic large-x behavior~dashed curve! can be ob-
tained analytically by noting that for largex we can set the
lower limit in Eq. ~8! to minus infinity with negligible error.
The resulting equation can be solved exactly@12#, with so-
lution q(x)5exp(X2/4)Dn(X), where X5(1
2a2)1/2x, Dn(X) is the parabolic cylinder function, andn
5 ln r/ln a. The asymptotic behavior isq(x);xn. The varia-
tional trial function, however, misses this asymptotic beh
ior ~see Fig. 1! even though the variational eigenvalue is ve
accurate.

Although Eq. ~7! was derived fora>0, one can also
study this equation or, equivalently, Eqs.~8! and ~13!, for
negativea. Is there a physical meaning for negativea? Let
Rn(x) denote discrete ‘‘alternating’’ persistence, being t
probability that, starting atx.0 (x is related toX as before!
at T50, the particle’s position changes sign at alternate d
crete points up to thenth step. ThenRn(x) evolves via the
recurrence equation,

Rn11~x!5
1

A2p
E

2`

0

exp@2~y2ax!2/2#Rn~y!dy. ~15!

FIG. 1. The eigenfunctionsq(x) for a50.5 ~lower curve! and
a52.0 ~upper curve, abscissa55x). Solid lines–perturbative re
sults; long-dashed–variational; dashed–asymptotic resultq(x);xn,
with n5 ln r/ln a.0.530 661 fora50.5.
u
t
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Changing y→2y inside the integral, and usingRn(y)
5Rn(2y) ~since the process has zero mean!, we find Eq.
~15! reduces to Eq.~7! with a replaced by2a. Thus,
Rn(x,a)5Qn(x,2a) and hence, the largest eigenvaluer(a)
for negativea governs the asymptotic decay of ‘‘alterna
ing’’ discrete persistence. We also note that while, fora
.0, Qn(x);rn(a)q(x) for large n only for a,1 @for a
.1, Qn(x) approaches a steady state, as will be seen l
on#, for negativea, Qn(x);rn(a)q(x) for all a,0. Fur-
thermore, from Eq.~12!, one has the symmetry relatio
r(1/a)5uaur(a), which can be used to obtainr ~and the
corresponding eigenfunction! for a,21 from the results for
21,a<0. In particular, r→1/2 for a→0 implies r
→1/2uau for a→2`.

Finally, we turn to the unstable potential,m,0, i.e., a
5e2mDT.1. As in the continuous case, we expect that
solution of Eq.~7! for a.1 will reach a steady state for larg
n, Qn(x)→q(x), whereq(x) will satisfy Eq. ~8!, but with
r51. Evidently q(x) will depend ona, and in the limita
→11 ~i.e., DT→0) it reduces to the continuous result o
tained from Eq.~4!. For generala.1, it is again possible to
obtain accurate variational and very accurate perturbative
timates forq(x). We omit the details here since they a
somewhat similar to thea,1 case. In Fig. 1, we plot the
perturbativeq(x) for a52 ~upper curve!. The variational
result, and the numerical result obtained from direct iterat
of Eq. ~7!, are both indistinguishable from the plotted curv
Note that the casea,21, discussed in the preceding par
graph, corresponds to alternating persistence in an unst
potential, which doesnot approach a steady state.

In summary, we have shown that the discrete persiste
due to the finite size of the time windows differs conside
ably from the continuous persistence usually studied, and
have computed explicitly this nontrivial effect analytical
for a simple Markov model. The work extending some of t
techniques developed here to more realistic non-Markov p
cesses is in progress. We conclude by noting the recent
amples of discrete time persistence in dynamical syste
@13#.
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