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Persistence of a continuous stochastic process with discrete-time sampling
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We introduce the concept of “discrete-time persistence,” which deals with zero-crossings of a continuous
stochastic procesX(T), measured at discrete timds=nAT. For a Gaussian Markov process with relaxation
rate u, we show that the persistendao crossing probability decays a$p(a)]” for large n, where a
=exp(—uAT), and we compute(a) to high precision. We also define the concept of “alternating persis-
tence,” which corresponds @®<0. Fora>1, corresponding to motion in an unstable potentia(0), there
is a nonzero probability of having no zero-crossings in infinite time, and we show how to calculate it.
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Persistence of a continuous stochastic process has genéwo consecutive discrete time points. These crossimgs
ated much recent interest in a wide variety of nonequilibriumsign flips go undetected due to the discrete sampling of the
systems including various models of phase ordering kineticgjata. The question is how serious is this loss of information.
diffusion, fluctuating interfaces, and reaction-diffusion pro-Is it possible to estimate quantitatively the error involved due
cesse$l]. Persistence has also been recently used in fields 48 the discretization?
diverse as ecology2] and seismologyf3]. Persistence is The purpose of this Rapid Communication is twofalid:
simply the probabilityP(t) that a stochastic procesgt) to point out that there is indeed a very general and nontrivial
does not change sign up to tinteln most of the systems effect, due to the discretization of time, on the measured
mentioned aboveP(t)~t~? for larget, where the persis- persistence of any continuous stochastic processiantb
tence exponend is nontrivial. Apart from various analytical provide a quantitative estimate of its magnitude in a simple
and numerical results, this exponent has also been measurbtfrkov model. The effect turns out to be nontrivial even for
experimentally in systems such as breath figyddsliquid  this simple toy model. We also develop two new analytical
crystals[5], soap bubbleg6], and more recently in laser- approaches, perturbative and variational, which provide re-
polarized Xe gas using NMR techniqugs. sults to extremely high precision. We emphasize that, even

Persistence has also remained a popular subject amoiigough we restrict ourselves here to a simple model by way
applied mathematicians for many decafigls They are most  of an example, this effect is very general and should be ob-
interested in the probability of “no zero crossing” of a servable in simulations or experiments on more realistic sys-
Gaussiarstationaryproces§GSP between time§; andT, tems.

[9]. It is well known that this probability usually decays as  To formulate a precise quantitative question, let us con-
~exp(—4T) for large T=|T,—T,|, where 6 is nontrivial sider a stationary stochastic process in continuous fime
[9,8]. The persistence of some of thenstationaryprocesses Which is sampled at time$,, T,, ... ,T,=T separated by
mentioned in the preceding paragraph, such as the diffusiod uniform window sizeT;—T;_;=AT such thatT=nAT.
processes, can be mapped to that of a corresponding GIie continuous persistend®(T) is then approximated as
[10]. This makes the two sets of problems related to eact’(T)~P,, where P, is the probability that the process
other and the power law exponent in the former problemX(T) is positive at all then discrete points. Note that, for
becomes the inverse decay rate in the latter. Even theugh finite AT, P, is different fromP(T) since the process can
is, in general, hard to compute analytically, it is very easy tocross zero more than once between two successive discrete
evaluate numerically in most cases. Given this fact, and thgmes. One expects that the approximatB(r)~ P, will
combined interest of both statistical physicists and appliedmprove as the window sizé\ T, decreases, and in the limit
mathematicians, much recent effort has been devoted tAT—0, n—« keepingT=nAT fixed, P,— P(T). By con-
computing® numerically to extremely high precision. trast, if the window sizeAT> 7 where 7 is the correlation

This raises a natural question: How accurately can onéime of the process, the stochastic variables at different dis-
measured? Is there a natural limitation and if so, can it be crete points become completely uncorrelated and we expect
overcome? This issue arises from the following simple obP,—27", since the probability that at each point the process
servation. All the stochastic processes mentioned above oés positive is just 1/2. We then ask: How does the discrete
cur in continuous time. However, when one performs nu-persistenceP,, interpolate between these two limits A§
merical simulations or experiments on persistence, one has t@ries continuously from 0 te? We show that for a GSP, in
discretize time in some way and sample the data only ageneral, P,~[p(AT)]" for large n, where the function
these discrete time points to check if the process has retaingq AT) is nontrivial with the limiting behavior
its sign. Due to this discretization, some information is lost.

For example, the process may have crossed and recrossed (AT)~ 1-0AT, AT—0 )
zero (or a spin may have flipped sign many timdégtween P 1/2, AT—oo,
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where ¢ is the usual persistence exponent. A3—0, one T, Q(X,T)~e #TX, and decays exponentially with for
recovers the continuous persistenc®,—(1-60AT)"  fixed X. This gives the persistence exponeht w. For u
~exp(—6T) whereT=nAT. The general goal would be to <0, howeverQ(X,T) approaches the steady state solution
compute this functiorp(AT), the knowledge of which will Q(X)=erf(X/\2]D']) asT—c. We also note from Eq2)
provide an estimate of the difference, due to the finite Winyp4t the critical casg.=0 corresponds to ordinary Brownian
dow sizeAT, between the measured persisteReand the  motion, and taking the limiz—0 in Eq. (4), one recovers
P(T) of the underlying continuous process. _ the known resultQ(X,T)=erf{X/\/4DT], which decays as
The nonstationary processes discussed in the first par%'power law,Q(X,T)~ X/ T, for largeT.
graph are related to the equivalent stationary onesTvia = "cojaver nirposes, we will also need the Green's function

.:mt [10]. A uniform spacing AT, between measurements G§X2,T2|X1,T1), the probability that the particle starting at
in the latter systems, therefore, corresponds to measuremelﬁ_x at T=T. will reach X» at T». with T->T.. This
— /A1 — 2 21 2 1

uniformly spaced irlog timein the former. Such a measure- :
ment regime has indeed been used in a recent experimen{aﬁfpaegator can be easily computed exactly from @gand
study of diffusive persistend&], with a spacing in log-time get
equivalent taAT=~0.24. The present paper is the first step in
understanding how such discretization affects the measure@ (X2, T2lX1,T1) = T
result. To compare directly with the experiment, we need to mD'(1~a%) 5)
compute the functionp(AT) for the diffusion equation

which is hard due to the non-Markovian nature of the pro-wherea=e #(T2~T1), Note that foru=0, 0<a<1, while
cess. However, to understand the general nature of this fungor <0, a>1 (andD’=D/ux<0).

tion p(AT), it would be useful to find a toy model where it We now turn to the discrete persisterigeof the continu-
can be computed explicitly. We consider below a simpleous process in Eq2). Let Q,(X) be the probability that
Gaussian Markov process for which progress can be made itarting atX at T=0, the process is positive at all the discrete
that direction. The physical process we study is the onepoints T,=AT, T,=2AT, ..., T,=nAT separated by the
dimensional Ornstein-Uhlenbeck motion of a noisy, over-yniform window sizeAT. Then the discrete persistence is
damped particle in a potential(X) = uX?/2, where the po-  p,_= [2Q, (X)Py(X)dX, wherePy(X) is the distribution of
sition X of the particle evolves via the Langevin equation,  the initial position of the particle and can be arbitrary. Using

e—[(XZ—axl)ZIZD’(l—aZ)] ,

dX the Markov property of the process in E®), it is easy to
g7~ H#XE (). (20 write down a recurrence relation f@,(X),
The white noises(T) has zero mean and a correlator Qn+1(X)=f0 G(Y,AT[X,00Qn(Y)dY, (6)

(n(T)n(T'))=2D8(T-T').

For this process, we first evaluate the continuous persiyhereG is the propagator as in E¢5) with a=e T and
tence and then compute the functief T). For the continu- 5 /%) — 1 for all X>0. This recurrence is the discrete ana-
ous persistence, a backward Fokker-PlafkP) approach o' of the continuous BFP equatid). Indeed, it can be
is useful. LetQ(X,T) denote the probability thgt,. starting at -hecked that Eq(6) reduces to Eq(3) in the limit AT—0.

X atT=0, the particle has not crossed the origh¥=0, Up ¢ gimplify the algebra, we consider the rescaled variable,

to time T. We expect different behavior depending on ; . . .
whether,.>0 (stable potentialor <0 (unstable potential X~ %/ VD (1-a%), in terms of which the recursion reads
In the former case, the particle will eventually cross the ori- 1 (=
gin and henc® (X, T) will decay exponentially with time. In Qn+1(X)= —f exd — (y—ax)?/2]Q,(y)dy, (7)
the latter case, however, the particle has a finite probability VamJo

to escape to infinity, and hence persistence should decay towehere we have used the explicit expression@from Eq
nonzero number. The latter case is also related to the prolz-S) '
lems of escape from metastable states studied bgidie Let us first consider the case>0, i.e., O<a=e #AT

The probabilityQ(X,T) satisfies the BFP equation, <1, where, guided by the continuous case, we expect
dQ _3*Q aQ Qn(X)—p"q(x) asn—x at any fixedx. Substituting this
oT D W_’U“Xa_x’ 3 asymptotic form into Eq(7), we get an integral-eigenvalue

equation forg(x),

with boundary condition®(0,T) =0 andQ(e,T)=1 for all
T, and initial conditionQ(X,0)=1 for all X>0. The solution

1 o)
- _ _ 2
ic pq(x) = ﬂfo exd —(y—ax)“/2]q(y)dy, ®

OX.T)=er e M7 X @) with eigenvaluep(a) that evidently depends continuously on
' J2D’(1—e 2+T) a. Although Eq.(8) admits many eigenvalues, we are inter-
ested only in the largest eigenvalue since it dominates the
where D'=D/u and erfx] is the error function. Foru asymptotic behavior 0Q,(x) for largen. We also note that
>0, Q(X,T) becomes separable iX and T for large Eq. (8) determines the eigenfunctiog(x) only up to an
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overall multiplicative constant. Let us first consider the limit  TABLE |. Estimates of the eigenvalup(a) for —1<as<1,
a—0 or equivalentlyAT—o. In this case, Eq(8) can be from numerical, variational, and perturbative methods. The latter is

solved exactly to givep=1/2 andq(x)=const, thus recoy- the most precise, being accurate to the number of figures quoted.
ering the correct limiting behavioQ,(x)—const2 " [and

the initial condition,Qq(x) =1 for x>0, fixes the constant at 2 Pnum Puoar Ppert

unity]. For smalla, by expanding Eq(8) in a Taylor series, 1 1 1 1

it is easy to computep(a) perturbatively, givingp=1/2 44 0.852 454 7 0.852 440 0.852 454 696 506
+(1/m)a+0(a?). The goal now is to evaluaie(a) for ar- 0.6 0.740595 9 0.740 589 0.740 595 939 159

bitrary a. To this end we develop below two analytical ap- 0'4 0.647 766 6 0.647 765 0.647 766 585 747

proa}ches and compare them with the direct numerical mted2 0,568 490 3 0.568 490 0.568 490 321 623
gration of Eq.(7). 0.0 17 12 172
Perturbative approachWe expand the factor exgxy), B
from the exponential in EQ8), as a power series and inte- 0.2 0.4408132 0.440813 0.440813 209205
grate term by term, to get -0.4 0.3900580 0.390 004 0.390 057 988 652
' —0.6 0.346 9679 0.346 814 0.346 967 773049
exp(—a2x%2) & b, -0.8 0.3106439  0.310444  0.310643770245
pU(X)= ———= > —=(Jax", 9 -10 02800859  0.279890  0.280 085758710
2T n=0 n!
n/2 .. . . .
_ar - 2 self-adjoint property of the integral operator, it becomes evi-
bn Jnt'Jo dy y*exp( —y*/2) a(y). (10 dent from Eq.(13) that the largest eigenvalyesatisfies the
inequality,
Substituting Eq(9) into Eq. (10) leads to the matrix eigen- 1 e (e
value equation = —J f f(X)K(x,y)f(y)dxdy. (14)
. v2mJo Jo
an:mE:O AnmPrm. 1D One can then use any trial functidifx) containing one or
more variational parameters and then maximize the right-
n+m+1 hand side of Eq(14) with respect to these parameters to
1 2a (n+my2l’ 2 derive a rigorous lower bound fg¥(a) for arbitrary 0<a
Anm= <1.
Vam(1+a?) \1+a? nim! The limiting forms of the true eigenfunctiag(x) in Eq.

(12 (13) for a—0 anda—1 can be easily worked out, and

) ) ) .. suggest a trial function of the formf(x)=A(b
This approach converts an integral eigenvalue equation intg. X) exp=

ML ) . ! /2). The amplitudeA is fixed by the normal-
a matrix eigenvalue equation, with matrix elements that deization condition,f%f2(x)dx=1, while b and\ are the two
crease exponentially as and m increase. Computing the -0 '

I ¢ el | f the NXN bmatri variational parameters. The right-hand side of the inequality
argest — eigenvalue 0 1€ submatrix 0.m . in EQ. (14) can then be evaluated in closed form and the
=0,1,...N—1) gives a rapidly converging series of esti-

f N - Vel th It optimization with respect tb and\ performed. The result-
mates or,rzl_als Increases. For a %'V » the result Is exact ing variational estimate turns out to be very accurate for all
to ordere” *, wheree=2a/(1+a“). In this way one can

: . ) 0<a<1, when compared to numerical results, and agrees
easily obtain results fop(a) correct to one part in 16,

. X with the perturbative results to at least four or five decimal
Convergence becomes progressively slowea-asl, which places
is expected since—1 in this limit. Fora—1, howe;ver, we Numerical integration It is not difficult to integrate Eq.
have the analytical resulpp—a [such that p"—exp

2 i (7) directly. However, sinceQ,(x)—1 asx—o, numeri-
(—nuAT)=exp(-T)], since we must recover the con- cqyy it is convenient to first make the transformation

tinuum result in this limit. _ N 2AT i
o . . ) Qn(X) =G, (x)exd (1—a%)x7/4] in Eq. (7) and then study the
Variational approach It is possible to derive a useful oqjing equation fofs,(x) by numerical iteration, with an
variational inequality forp. First we note that the integral g pitrary initial condition. For largm, G,(x) converges to
oplt?raéqr_ n Eq'(ﬁ)’ asglm_me_:tnc mx_and y, can b% rg/ade p"g(x), whereg(x) is the solution of Eq(13). The eigen-
self-adjoint via the substitutior(x) =g(x)exp(1-a")x74] valuep is determined from the slope of the log-linear plot of

which gives, An=[5Gh(x)dx~p" versusn. In Table I, we compare the
1 [ numerical, variational, and perturbative estimateg offrhe
pg(x)= _f K(x,y)g(y)dy, (13) differences are small in all cases, and the variational bound is
V2o satisfied.

The eigenfunctiorg(x) of Eqg. (8) can also be calculated
where K(x,y) =K(y,x) =exp{—[(1+a%)/4](x?>+y?) + axy}. by using the serieg9), with the coefficientgb,} obtained
Let f(x) be any normalizable functiorf,;f?(x)dx=1. Us-  from the corresponding eigenvector of the matfx Eq.
ing elementary properties of linear vector spaces and thé€l2). It is shown, fora=0.5, as the lower curve in Fig. 1.
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q(x)

X, 5x

FIG. 1. The eigenfunctiong(x) for a=0.5 (lower curve and
a=2.0 (upper curve, abscissa5x). Solid lines—perturbative re-
sults; long-dashed—variational; dashed—asymptotic rgéx)t~x",
with v=1In p/In a=0.530 661 fora=0.5.

The asymptotic large-behavior(dashed curvecan be ob-
tained analytically by noting that for largewe can set the
lower limit in Eq. (8) to minus infinity with negligible error.
The resulting equation can be solved exa¢fl?], with so-
lution q(x)=expX44)D ,(X), where X=(1
—a?)Y%, D,(X) is the parabolic cylinder function, anl
=In p/lna. The asymptotic behavior §(x) ~x". The varia-
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Changing y— —vy inside the integral, and usingR,(y)
=R,(—Y) (since the process has zero mgane find Eq.
(15) reduces to Eq.7) with a replaced by—a. Thus,
Rn(x,a) =Q,(x,—a) and hence, the largest eigenvajy@)
for negativea governs the asymptotic decay of “alternat-
ing” discrete persistence. We also note that while, éor
>0, Qn(x)~p"(a)q(x) for large n only for a<1 [for a
>1, Q,(x) approaches a steady state, as will be seen later
on], for negativea, Q,(x)~p"(a)q(x) for all a<0. Fur-
thermore, from Eq.(12), one has the symmetry relation
p(1/a)=|alp(a), which can be used to obtajm (and the
corresponding eigenfunctipfor a< — 1 from the results for
—1<a=<0. In particular, p—1/2 for a—0 implies p
—1/2|al for a— —co.

Finally, we turn to the unstable potential, <0, i.e.,a
=e #AT>1. As in the continuous case, we expect that the
solution of Eq.(7) for a>1 will reach a steady state for large
n, Q,(x)—q(x), whereq(x) will satisfy Eq.(8), but with
p=1. Evidentlyq(x) will depend ona, and in the limita
—1% (i.e.,, AT—0) it reduces to the continuous result ob-
tained from Eq(4). For generah>1, it is again possible to
obtain accurate variational and very accurate perturbative es-
timates forg(x). We omit the details here since they are
somewhat similar to the<1 case. In Fig. 1, we plot the
perturbativeq(x) for a=2 (upper curvé The variational

tional trial function, however, misses this asymptotic behavtesult, and the numerical result obtained from direct iteration

ior (see Fig. 1even though the variational eigenvalue is very of Eq. (7), are both indistinguishable from the plotted curve.

accurate. Note that the casa<—1, discussed in the preceding para-
Although Eq. (7) was derived fora=0, one can also graph, corresponds to alternating persistence in an unstable

study this equation or, equivalently, Eq8) and (13), for
negativea. Is there a physical meaning for negata@ Let

potential, which doesot approach a steady state.
In summary, we have shown that the discrete persistence

Rn(x) denote discrete “alternating” persistence, being thedue to the finite size of the time windows differs consider-

probability that, starting at>0 (x is related toX as beforg

ably from the continuous persistence usually studied, and we

at T=0, the particle’s position changes sign at alternate dishave computed explicitly this nontrivial effect analytically

crete points up to thath step. TherR,(x) evolves via the
recurrence equation,

0

1
Ros1(0= = e (y—ax?/2]Ry(y)dy. (15)

for a simple Markov model. The work extending some of the
techniques developed here to more realistic non-Markov pro-
cesses is in progress. We conclude by noting the recent ex-
amples of discrete time persistence in dynamical systems
[13].
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