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Exact Solution of a Drop-Push Model for Percolation
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Motivated by a computer science algorithm known as ‘‘linear probing with hashing,’’ we study a new
type of percolation model whose basic features include a sequential ‘‘dropping’’ of particles on a substrate
followed by their transport via a ‘‘pushing’’ mechanism. Our exact solution in one dimension shows that,
unlike the ordinary random percolation model, the drop-push model has nontrivial spatial correlations
generated by the dynamics itself. The critical exponents in the drop-push model are also different from
those of the ordinary percolation. The relevance of our results to computer science is pointed out.
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FIG. 1. The dropping and the subsequent hopping moves in the

function measures the construction cost of the table as well
as the time to search for an item later [5,6]. The statistics of

drop-push model. Also shown a particle cluster of size 7 and a
hole cluster of size 5.
The ordinary site or bond percolation and its various
generalizations are among the most well studied problems
in statistical physics [1,2]. Motivated by a well known
computer science algorithm known as ‘‘linear probing
with hashing’’ (LPH) [3], we introduce and study in this
Letter a new type of percolation model. Borrowing a name
from the models of activated flow through traps [4], we call
this a ‘‘drop-push’’ model since it has two basic features: a
sequential dropping of particles on a substrate followed by
the transport of the dropped particles via a ‘‘pushing’’
mechanism caused by the local hard-core repulsion be-
tween particles on the substrate. Unlike in the ordinary
percolation, we show that the dynamics of the drop-push
model generates nontrivial spatial correlations between
sites. Our exact solution in one dimension shows that the
critical exponents associated with the percolation transi-
tion in the drop-push model are different from those of the
ordinary percolation. As an additional bonus, our approach
also rederives, in a straightforward way, a key result on the
cost function in the LPH algorithm obtained recently by
computer scientists using more involved combinatorial
techniques [5,6]. Our model is also easily generalizable
to higher dimensions.

The LPH algorithm was originally introduced by Knuth
[3] and has remained popular in computer science due to its
simplicity, efficiency, and general applicability [5]. It can
be described as follows: ConsiderM items x1; x2; . . . ; xM to
be placed sequentially into a table with L cells labeled
1; 2; . . . ; L. For each item xi, a cell with label hi 2
f1; 2; . . . ; Lg is selected. The label hi is called the hash
address and is usually chosen randomly from the set
f1; 2; . . . ; Lg. The item xi is inserted at the hith cell pro-
vided it is empty. Otherwise, one tries cells hi � 1, hi � 2,
etc., until an empty cell is found (the locations of the cells
are interpreted modulo L) where the item xi is finally
inserted. From the computer science point of view, the
object of interest is the cost function S�M;L� defined as
the total number of unsuccessful probes encountered in
inserting the M items into a table of size L [5,6]. This cost
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this cost function were found to be very different in the
sparse table (when the density M=L� 1) compared to the
full table (when M=L! 1) [5]. We show below that,
when interpreted as an interacting particle system, this
crossover from the sparse to full table corresponds pre-
cisely to a percolation transition which belongs to a differ-
ent universality class than that of the ordinary site or bond
percolation.

In our equivalent drop-push model (Fig. 1), we interpret
the table as a lattice of size L with periodic boundary
conditions. The cells are the lattice sites and each site
can contain at most one particle. One starts with an empty
lattice. At each step a particle is dropped into a randomly
selected site. If the target site is empty, the incoming
particle occupies it. If, however, the site was already occu-
pied, the particle keeps hopping to the right until it finds an
empty site where it then stays (see Fig. 1). One then repeats
the same procedure with the next particle and so on. The
dropping process in this model is similar to that of random
sequential adsorption (RSA) and the car parking processes
[7]; however, the adsorption mechanism in the drop-push
model is quite different from the usual RSA models. In the
car parking language, in this drop-push model, a new car
arrives at a random spot on a one way lane and moves
forward till it finds an empty parking spot. Unlike usual car
parking models, here a car always manages to find a spot
and thus the system never gets stuck in a jammed state.
Note that, although we have defined the hopping of the
particle to be unidirectional, one can also consider an
 2002 The American Physical Society 115701-1
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FIG. 2 (color online). The exact solutions for the normalized
cluster densities pn 	 Pn=N (filled triangles) and qn 	 Qn=N
(filled squares) are compared with numerical results (circles and
diamonds, respectively) obtained via the Monte Carlo simulation
of the drop-push model on a lattice with L 	 100 000 at the
filling factor t 	 0:5. The inset shows a plot of the numerical
domain density N�t� and the exact result N�t� 	 �1
 t��1

e
t�. The two curves are indistinguishable.
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unbiased version where a particle, if dropped onto an
occupied cluster, performs an unbiased random walk on
the occupied cluster until it finds an empty site where it is
then attached. We show below that in one dimension the
results are independent of this bias.

Each addition of a new particle corresponds to incre-
menting the density t 	 M=L by the amount �t 	 1=L.
Thus, in the thermodynamic limit L! 1, the density t
becomes a continuous ‘‘time’’ like variable that increases
monotonically from t 	 0 (empty lattice) to t 	 1 (full
lattice). For convenience, we will henceforth refer to the
density t as time with 0 � t � 1. The central objects of our
analysis are Pn�t� and Qn�t� denoting respectively, the
number (per unit length) of particle and hole clusters of
size n at time t (see Fig. 1). The total number of particle
(hole) clusters is denoted by N�t� 	

P
n Pn�t� 	

P
n Qn�t�.

Note that, as t increases continuously from 0 to 1, one
expects that N�t� starting from N�0� 	 0 should increase
initially but will eventually decrease to 0 again as t! 1
when the lattice is nearly full. Thus N�t� has an interesting
nonmonotonic behavior in 0 � t � 1 with a maximum
(when the system has the largest number of clusters) at
an intermediate time t� (see the inset of Fig. 2). We also
note the sum rules corresponding to the particle and the
hole densities:

P
n nPn�t� 	 t and

P
n nQn�t� 	 �1
 t�.

The key observation that allows the exact solution in
one dimension is the fact that the ‘‘cluster’’ or ‘‘domain’’
densities Pn’s and Qn’s are statistically independent at all
times 0 � t � 1. This follows from the fact that the ad-
sorption of a new particle at the edge of a particle (hole)
cluster does not introduce correlations between the adja-
cent particle and hole clusters. A rigorous justification of
this fact, details of which will be published elsewhere [8],
follows from the observation that the domain walls in the
drop-push model can be viewed as the zero crossings of a
Markov process in space (at a fixed time t). Thus if one
labels a configuration C by the set fnig where ni’s denote
the lengths of the alternate particle and hole clusters, then
the probability of C is given by the product measure,
Prob�C; t� / Pn1�t�Qn2�t�Pn3�t�Qn4�t� . . . . In other words,
the independent interval approximation (IIA) is exact in
this model. The next step is to write down the exact rate
equation of evolution of Pn’s and Qn’s by accounting for
all the gain and loss terms due to the addition of a new
particle and exploiting the factorization property of the
probabilities. Similar types of IIA equations have been
used in one-dimensional coarsening problems [9]. The
rate equation for the Qn’s turns out to be simple:

dQn

dt
	 


�
n�

t
N

�
Qn � 2

X1
m	n�1

Qm �
t
N
Qn�1; (1)

valid for all n � 1. The first term denotes the loss of a hole
cluster of size n due to an adsorption of a particle by a
direct hit at any of the available n sites and also due to a hit
at any occupied site of the neighboring particle cluster to
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the left which then transports the particle to the leftmost
site of the hole cluster. The latter happens with rateP
k kPk=N 	 t=N. The second term denotes a gain in Qn

due to a direct hit inside a hole cluster of size bigger than n.
The factor 2 denotes that there are only two places avail-
able for the incoming particle in order to generate a hole
cluster of size n from a bigger hole cluster. The third term
indicates a gain of a hole cluster of size n from that of size
n� 1 due to a particle adsorption at its left edge. One can
similarly write down the equations for the Pn’s, though
they turn out to be trickier. Omitting the details [8], we
present only the final results:

dPn
dt

	 


�
n� 2�

tQ1

N2

�
Pn �

�
1


Q1

N

�
�n� 1�Pn
1

�
Q1

N2

Xn
2

j	1

�j� 1�PjPn
1
j; n � 2;

dP1

dt
	 


�
3�

tQ1

N2

�
P1 �

X1
m	2

�m
 2�Qm: (2)

Although the above equations are written down for the
unidirectional version of the model, a careful analysis
shows that they remain unchanged for the general case in
which the dropped particle moves to the right with proba-
bility p or to the left with probability �1
 p� [8].

As an important consistency check, one can verify that
both Eqs. (1) and (2) satisfy the respective sum rules
115701-2
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P
n nQn 	 �1
 t� and

P
n nPn 	 t. One can also write

down the evolution equation for the total domain density
via direct inspection of the process,

dN
dt

	 
2N 

t
N
Q1 � 1
 t: (3)

It is easy to check that both Eqs. (1) and (2) when summed
over n satisfy Eq. (3), thus providing yet another useful
consistency check.

We note that Eq. (1) for the Qn’s does not involve the
Pn’s, but is, however, implicitly nonlinear due to the
occurrence of N 	

P
n Qn on the right-hand side.

However, Eq. (1) admits a very simple pure exponential
solution as found in many RSA models [7]. The ansatz
Qn�t� 	 A�t� exp�
nB�t�� satisfies Eq. (1) for all n � 1
with the choice A�t� 	 2�1
 t��cosh�t� 
 1� and B�t� 	 t.
One then gets the exact solution for the domain density
N�t� 	

P
n Qn�t� 	 �1
 t��1
 e
t� which is nonmono-

tonic in 0 � t � 1 and is asymmetric about its unique
maximum at t� 	 0:4428 . . . (see Fig. 2). Note that in the
ordinary site percolation in 1D with occupation probability
t, the domain density is simply given by N�t� 	 t�1
 t�
which is symmetric about the maximum at t� 	 1=2.

We next substitute the exact solution for the Qn’s into
Eq. (2) and first solve for n 	 1 and n 	 2. The
exact solutions P1�t� 	 t�1
 t�e
2t and P2�t� 	 3t2�1

t�e
3t=2 suggest the ansatz: Pn�t� 	 an�1
 t�tne
�n�1�t.
Indeed, this ansatz solves Eq. (2), provided the an’s satisfy
the nonlinear recursion relation,

nan 	 �n� 1�an
1 �
Xn
2

i	1

�i� 1�aian
1
i; (4)

starting with a1 	 1. The first few values are a2 	 3=2,
a3 	 8=3, a4 	 125=24, etc. From Eq. (4) it follows that
the generating function ~aa�z� 	

P
1
n	1 anz

n is given by
~aa�z� 	 
1� T�z�=z where T�z� is the well known tree
function given by the solution of the equation
T�z� exp�
T�z�� 	 z. It is easy to see that the function
T�z� has a singularity at z 	 1=e where T�z� � 1
��������������������
2�1
 ez�

p
� . . . . This tree function appears in problems

related to the counting of rooted labeled trees [10] with
various applications in computer science [3,5] as well as
many physics problems such as aggregation models [11]
and the classical hard sphere fluid in large dimensions [12].
Using the known properties of T�z�, we then get an 	 �n�
1�n
1=n! for all n � 1. We have also checked that the exact
solutions

Qn�t� 	 �1
 t��et 
 1�2 e
�n�1�t; (5)

Pn�t� 	 �1
 t�tne
�n�1�t �n� 1�n
1

n!
(6)

match perfectly with the numerical results obtained via the
Monte Carlo simulation of the drop-push model (see
Fig. 2).
115701-3
Clearly at t 	 1, there is only one infinite particle clus-
ter, and the system percolates. We now analyze the scaling
behavior of the cluster distributions near the critical point
t 	 1. From Eq. (6), we find that for large n, Pn�t� �
�1
t������
2�

p n
� exp�
n=n��t�� where n��t� 	 1=�t
 1
 logt�
and the Parisi-Sourlas exponent [13] is given exactly by
� 	 3=2. Note that, for the ordinary percolation in one
dimension, Pn�t� 	 �1
 t�2tn indicating � 	 0. In the
limit t! 1, the typical cluster size diverges as n��t� �
2�1
 t�
2 and one obtains the Stauffer scaling form [1] for
the cluster size, Pn�t� � n
�f�n�1
 t��� with the Fisher
exponent � 	 2 (as in the ordinary percolation) and � 	 2
(in contrast to the ordinary percolation where � 	 1). The
exact scaling function here f�z� 	

�����z
2�

p
e
z=2 also differs

from that of the ordinary percolation where f�z� 	 z2e
z

[1]. Consequently, the susceptibility exponent [1] given by
the scaling relation  	 �3
 ��=� also differs in the two
models. For the drop-push model  	 1=2, whereas  	 1
for the ordinary percolation.

We now turn to the correlation function Gn�t� denoting
the probability that two occupied sites separated by a
distance n belong to the same cluster at time t. For con-
venience we introduce the binary variable �i such that
�i 	 1 if the site i is occupied and �i 	 0 otherwise.
Then by definition Gn 	 h�i�i�1 . . .�i�ni. We also note
that by definition the particle cluster density Pn 	
h ���i�i�1 . . .�i�n ���i�n�1i where ���i 	 1
 �i. As a conse-
quence, one obtains the exact relation Gn�1 �Gn
1 

2Gn 	 Pn. Using the exact scaling form of Pn and inte-
grating twice with respect to n, we find that in the scaling
limit t! 1, n! 1, Gn�t� � g�n�1
 t�#� where the cor-
relation length exponent # 	 2 and the exact scaling func-
tion g�z� 	 �1� z�erfc�

��z
2

p
� 


����
2z
�

q
e
z=2. These results

should be compared to those for the ordinary percolation
with occupation density t where Gn�t� 	 tn indicating that
# 	 1 and g�z� 	 e
z trivially.

To elucidate the nontrivial spatial correlations in
the drop-push model we have also computed the conven-
tional two point correlation function, Cn�t� 	 h�i�i�ni 

h�iih�i�ni, the connected part of the joint probability that
two sites at distance n are both occupied. Note that, for the
ordinary percolation, Cn�t� 	 0 for all n � 1 and 0 � t �
1. In contrast, we show that Cn�t� is nontrivial in the drop-
push model. In order to compute it, we add up the possi-
bilities that there may be no holes between the two sites, or
maybe only one hole cluster, or two hole clusters, etc. This
method of expressing the correlation function in terms of
the interval size distributions was used before in other
contexts [14,15]. Omitting details, we present only the
final expression for the generating function ~CC�z� 	P
n Cn�t�z

n:

~CC�z� 	
1
 t
1
 z

�
zt
 1�

t�1
 z�
t
 T�zte
t�

	
; (7)

where T�z� is the tree function defined earlier. Using the
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properties of the tree function, it is straightforward, though
somewhat tedious [8], to derive the asymptotic scaling
properties of Cn�t�. We find after some algebra that in the
scaling limit t! 1, n! 1 but keeping z 	 n�1
 t�2

fixed, Cn�t� � �1
 t�2F�n�1
 t�2� where the exact
scaling function F�z� 	 1������

2�z
p e
z=2 
 1

2 erfc�
��z
2

p
�. The func-

tion F�z� � 1=
���������
2�z

p
as z! 0 and F�z� � 1�����

2�
p

z3=2
e
z=2 as

z! 1.
We now turn to the total cost function S�t� in the LPH

algorithm, i.e., in the drop-push model with unidirectional
transport. The cost �S�t� to insert a new particle at time t is
precisely the expected number of unsuccessful probes, i.e.,
the expected number of hops that the new particle under-
goes before getting adsorbed into the right edge of a
particle cluster. Consider a particle cluster of size k at
time t. The incoming particle can drop anywhere on this
cluster and the number of hops is simply the distance of the
target site from the right edge of the cluster. Noting that
the cluster size can vary from 1 to infinity, one then
gets �S�t� 	

P
1
k	1�

P
k
j	1 j�Pk�t� 	

1
2

P
1
k	1 k�k� 1�Pk�t�.

Using the exact result for Pk�t� from Eq. (6), we get
�S�t� 	 t�2
 t�=�2�1
 t�2�. The total cost function is
then given by S�t� 	

R
t
0 �S�t

0�dt0 	 t2=�2�1
 t��, in
agreement with the result derived by the computer scien-
tists using rather involved combinatorial techniques [5,6].
More details on the statistics of this cost function for finite
size tables have also been derived recently [5,6].

Finally, this drop-push model can be easily generalized
to higher dimensions. Let us consider, for simplicity, the
unbiased version. One starts with an empty lattice of linear
size L in d dimensions with periodic boundary conditions.
At each step one drops a particle at a randomly chosen site.
The incoming particle occupies the target site, provided it
was empty. Otherwise, the dropped particle performs a
random walk starting at the target site until it finds an
empty site and sticks there. One then adds another particle
and the process continues. It follows from the simple
electrostatic analogy that when a particle drops onto an
occupied cluster, it has equal probability to subsequently
stick to any of the surface sites of this cluster. In this sense,
this model is similar to the celebrated Eden model [16].
However, unlike the Eden model, here one can have many
different seed sites from which a new cluster can grow.
Also the probability that a given cluster will grow by
absorbing a new particle is proportional to the volume of
the cluster in the drop-push model. Note that this model is
also different from the previously studied cooperative ad-
sorption models [17], the cluster-cluster aggregation mod-
els [16], and the random dynamical percolation model
[18]. It is clear that there will be a critical density t 	
tc < 1 at which the particle clusters start to percolate. An
outstanding question is whether this percolation transition
in higher dimensions, as in the 1D case, belongs to a
115701-4
different universality class than that of the ordinary site
percolation. Our preliminary numerical simulations in 2D
indicate that indeed this may be the case [8]. We defer
these results and other details for a future communication.

We thank M. Barma and D. Dhar for useful discussions.
Note added.—We thank E. Hellen for pointing out that a

somewhat similar model in one dimension was considered
by Rodgers and Filipe [19], though the questions addressed
were different.
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