PHYSICAL REVIEW E 66, 041102 (2002

Exact occupation time distribution in a non-Markovian sequence
and its relation to spin glass models
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We compute exactly the distribution of the occupation time in a disereteMarkoviantoy sequence that
appears in various physical contexts such as the diffusion processes and Ising spin glass chains. The non-
Markovian property makes the results nontrivial even for this toy sequence. The distribution is shown to have
non-Gaussian tails characterized by a nontrivial large deviation function that is computed explicitly. An exact
mapping of this sequence to an Ising spin glass chain via a gauge transformation raises an interesting question
for a generic finite sized spin glass model; at a given temperature, what is the distritovéomlisorder of the
thermally averaged number of spins that are aligned to their local fields? We show that this distribution remains
nontrivial even at infinite temperature and can be computed explicitly in few cases such as in the Sherrington-
Kirkpatrick model with Gaussian disorder.
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[. INTRODUCTION external thermal noise. In this case, the particle reaches equi-
librium at long times when the two-time correlation simply
The occupation tim@ of a stochastic procesgt) is sim-  becomesC(t,t") =exd —\[t—t'[].
ply the time that the process spends above its mean value In the nonstationary case, one expects that in the

(say O when observed over the perip@t], asymptotic limitt—o, T—o but keeping the ratio =T/t
fixed, the distributionP(T,t) has the generic scaling behav-
t ior,
Tzf o(x(t"))dt’, (1)
0
1 /(7T
: - . P(T,t)~—f —), 2
where 6(x) is the Heaviside step function and we assume, tt

for simplicity, that the process starts @t0)=0. Since the

seminal work of Ley [1] who computed the exact probabil- where the scaling functiof(r) has nonzero support only in
ity distribution of T in the case wher(t) is just an ordinary  the ranger €[0,1]. For example, in the case of ordinary
Brownian motion, there has been a lot of interest in theBrownian motion, the scaling functidi{r) can be computed
mathematics community to study the occupation time forexactly[l], f(r)=1/mr(1—r). This is known as the Arc-
various processé®,3]. Recently the study of the occupation Sine law of Lery since the cumulative distribution has an
time has seen a revival in the physics community in theg csine form J5f(r’)dr’ =2 sin %(\r)/#. Note that for the
context of nonequilibrium systenj4,5] due to its potential gyqwnian case the scaling actually holds fortaind T. The
applications in a wide range of physical systems which in-ynq\ytical calculation of this scaling functidi(r) is, how-
clude, amongst others, optical imagif], analysis of the oy nontrivial even for this simple Brownian case. Follow-
morphology of growing surfacdg] and analysis of the fluo- 4 the work of Lay, there have been various generaliza-
rescence intermittency emitting from colloidal semiconduc+ons of this ArcSine law. For example, the scaling function
tor dots(g]. _ f(r) has been computed exactly for the so callegyLpro-

The occupation time is clearly a random variable. ItS  cegsed3], and recently for a more general class of renewal
probability distribution P(T,t) evidently depends on the n,cessef]. The occupation time distribution has also been
wmdovy sizet. It turns out that qqlte gene'rlcally there are syydied recently for a Brownian particle moving in a random
essentially two types of asymptotic behaviors of this distri-gjn ;i type potential and the corresponding scaling function
butionP(T,t) depending on whether the underlying stochas—f(r) has been computed exacfly3].
tic process«(t) is nonstationaryor stationary A nonstation- For stationary processes, on the other hand, the distribu-
ary process is that where the two-time correlation function;gp, P(T,t) is expected to have the following generic
C(t,t")=(x(t)x(t")) depends on both timesandt’. An  5symniatic behavior in the appropriate scaling lifits o,
example is the ordinary Brownian motionx/dt= 7(t), t—o0 with the ratior =T/t fixed [10],
where 7(t) is a Gaussian white noise witty(t))=0 and
(n(t)p(t"))=35(t—t"). In this caseC(t,t’)=min(t,t’). In
a stationary process, on the other hand, the two-time corre-
lation function depends only on the time difference,
C(t,t")=C(|t—t'|). A simple example of a stationary pro- where®(r) is a large deviation function with, in general,
cess is the Orstein-Uhlenbeck procesg/dt=—AXx+ 7(t), non-Gaussian tail§10]. For example, for the Ornstein-
where a particle moves in a parabolic potential in presence dffhlenbeck stationary process discussed in the previous para-

P(T,t)~e ' *(, ()
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graph, the functiomb (r) has recently been computed exactly  In particular, in Ref[15] a specific discrete sequence was
by utilizing a mapping to a quantum mechanical path integrabbtained as a limiting case of the diffusion equation on a
problem[10]. hierarchical lattice. This rather simpley sequence, even
The calculation of either the scaling functidifr) for ~ though non-Markovian, had the remarkable property of be-
nonstationary processes or the |arge deviation fungﬁon) |ng solvable for certain statistical properties such as the per-
for stationary processes is a challenging theoretical problengistence15] and the distribution of the number of zefd$].
So far, exact results exist only for Markov processes, wher&Urthermore, these exact results were rather nontrivial

the value of the procesg(t) at timet depends only on its [15,14 even for this toy sequence. It is always important to
value at the previous time step, saytatAt, whereAt is an have such a solvable non-Markovian toy model that can then

infinitesimal time step, but is completely independent on the®® Useéd as a benchmark to predict the possible expected be-
previous history of the process. For example, the ordinan’@viors of various observables in a more complex non-
Brownian motion and the Orstein-Uhlenbeck processes ar¥larkovian process. In this paper, we show that the occupa-
both Markovian. On the other hand, most processes in Naion time dlstr|b.ut|on can also.b.e computed exactly for th|s.
ture are non-Markovian and the Markov processes are mor@y model and_ll!<e other quanytle; such as the persistence, it
of exceptions rather than rules. Non-Markov processes ar€ rather nontrivial even for th's. simple toy _model.

known to be notoriously difficult for the analytical calcula- Ve further make an interesting observation that the occu-
tion of even simpler quantities such as persistence, i.e., thgation time for this toy sequence is related to a specific
probability that the process does not change sign up to timghysmal o.bservat_)le in an Ism.g spin glass chain Wlth. nearest
t [11]. Naturally the analytical calculation of the occupation N€ighbor interactions. In a given sample of the spin glass

time distribution for non-Markovian processes is even moréhain, one can ask: what is the averagieerma) number of
difficult. spins that are aligned to the direction of their local fields?

For a certain class of “smooth” non-Markovian processesThis physical object is a random variable that fluctuates from

such as the diffusion equation, it is possible to compute th@ne sample o_f.diso_rde.r to.another. A natural qugstion is: what
occupation time distributiof4] using the independent inter- 'S the probability distributior(over disorder of this thermal

val approximation(llA) that assumes that the intervals be- average? It turns out that this distribution is nontrivial even
tween successive zero crossings are statistically independefk Infinite temperature. In fact, we show that at infinite tem-
[12]. But these IIA results are only approximate. To oyr Perature this distribution in the spin glass chain coincides
knowledge, there exists no exact result for the occupatio§*actly with the occupation time distribution of the toy se-
time distribution for a non-Markov process, either stationaryduence mentioned above. This connection is useful as it
or nonstationary. In this paper, we obtain an exact analyticdj2iS€S @ general question for any spin glass méaied not
result for the occupation time distribution for a stationarylUSt restricted to a chainwhat is the probability distribution
non-Markovian process. To be more precise, we actuall;?f the averagétherma) number of spins that are aligned to

study the occupation time distribution of a discrete stationary€ir 1ocal fields? In this paper, we show that the analytical
non-Markovian sequence and not a continuous stochastfemputation of this distribution in the limit of infinite tem-
process. Nevertheless the asymptotic behavior as given Hrature, though sill nontrivial, is tractable in few cases. In
Eqg. (3) still remains true and we compute analytically the particular, we calculate analytically this infinite temperature
corresponding large deviation functidr(r). distribution in the Sherrington-KirkpatrickSK) model of

Recently the importance of studying the statistical prop-Meéan field spin glassdd7]. _
The layout of the paper is as follows. In Sec. Il, we define

erties such as the persistence and the distribution of the num- x :
ber of zeros ofdiscrete stochastic sequences opposed to e toy sequence, recall some of its properties and known
the more traditionalcontinuous stochastic processesas '€Sults and then compute the occupation time distribution
been emphasized in a number of artidéé—16. There are exactly. In Sec. Ill, we establish the connection to a spin

two principal reasons for studying a stochastic sequenc@lass chain and raise the general question regarding the dis-

First, in various experiments and numerical simulations,trib“tion of the average number of spins aligned to their local

even though the underlying physical process is continuous if€!dS in @ generic spin glass model. In Sec. IV, we compute
time, in practice one actually measures the events only 4f!iS distribution analytically in the SK model at infinite tem-
discrete time points. The result of this discretization can lead®€rature and show that it is nontrivial even at infinite tem-
to subtle and important differences between the “true” prop_perature. Finally we conclude in Sec. V with a summary and
erties of the process and the “measured” properfle§. To ~ SO™Me open questions.

estimate these differences, it is important to study the prop-

erties of a discrete sequence. The second reason follows from THE TOY SEQUENCE AND ITS EXACT OCCUPATION

the observatiof15] that many processes in Nature such as TIME DISTRIBUTION

weather records are stationary under translations in time only S _ o

by an integer multiple of a basic period. For example, the The toy sequence we study in this section was originally
seasons repeat typically every one year. For such processéirived as a limiting case of the diffusion process on a hier-
it was observed in Ref15] that the persistence of the un- archical lattice[15]. This is a sequencgy;} of correlated
derlying continuous process coincides with that of the disf@ndom variables constructed via the following rule,

crete sequence obtained from the measurement of the process

only at times that are integer multiples of the basic period. vi=di+d_4, 1=12,... N, 4
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whereg(i)’s are independent and identically distributed ran-must have®b (r)=®(1-r), i.e., the large deviation function

dom variables, each drawn from the same symmetric conever the allowed range8r<1 must be symmetric around

tinuous distributiono(¢). Note that even thougth(i)’s are  r=1/2.

uncorrelated, the variableg's are correlated. The two point To compute the distributioiP(R,N) we use a transfer

correlation function,C; j=(#;¢;) can be easily computed matrix method that has already been used successfully to

from Eq. (4), calculate other quantities for this sequence such as the per-
sistence[15] and the distribution of the number of sign

Cij=02[28 ;+8_1;+ 6 j-1], (5)  changeq16]. To start with, we definQ \ (o) denoting

respectively the joint probability that the first member of the

where &;; is the Kronecker delta function andr®>  sequencey; is positive (negativé and that the sequence of

=[”_d*p(¢h)d¢ which we assume to be finite. Thus the sizeN has a totaR number of positive members, given the

sequence ;} has only nearest neighbor correlation. Alsovalue of ¢,. Let us also defineQR'N(¢o)=Q§'N(¢o)

note that for large sequence siliethe sequence istation-  + Qg (o) that denotes the probability of havifgpositive

ary sinceC; ; depends only on the differen¢ie-j|, and not members in a sequence of sike given ¢,. The required

individually on i or j. The sequencg;} is also non-  occupation time distribution is then given by,
Markovian To see this, one can try to express a specific

member of the sequence, say, only in terms of other )
members of the sequenEEs]. This can be easily done using P(R,N)= f Qrn(Bo)p(bo)debo. (10)
Eq. (4) and one gets for any=2, —w

i-1 ' The reason for this small detour is simply that one can write
= 2 (—D) Y+ i+ (— 1) ey. (6) quite easily a recursion relation for the joint probabilities
= Qr (o). However it is not easy to write a recursion di-

) ) ) rectly for the distribution P(R,N). The probabilities
This relation clearly demonstrates the history dependence (25‘:

satisfy the following recursion relations:
the sequence in the sense tilatlepends not just only on the r( o) fy g
previous membery; _;, (as would have been in the Markov
case, but on the whole history of the sequence preceding Q4 N(%):f

i

[

, dp1p(#1)Qr-1n-1(P1)
0

We now turn to the exact computation of the occupation
time distribution for the sequence in E¢). The occupation b0
time R in this case is simply the number @f’s that are QF}N(%):f dp1p(h1)Qrn-1(P1). (11)
positive out of the total numbeX and is given by the dis- o

crete counterpart of Eql),

The above recursion relations are valid for a#tR<N and
N N=1 with the initial conditions(ga0(¢0)=1 andQg o ¢o)
R=> 6(4). (7 =o.
=1 These recursion relations in E(L1) are easy to follow.
Consider first the relation f(ﬁQFﬁ’N(%). In order for the first
member ¢, to be positive, it follows from the definition,
1= 1+ ¢, that 1> — ¢ for a given ¢y. This explains
the integration range on the right hand side of the first line in
N Eq. (11).tAt\IsIg oncg the firstbmember is p;fitive, in ozge: ;[r?
_ ave a totaR positive members, we need to ensure that the
P(R’N)_f 5[R_i21 0(¢i-1+ i) H p(Bdei. rest of the chain of siz&— 1 (excluding the first membgr
(8)  has exactlyR—1 positive members. The probability of this
latter event, for a givenp,, is simply Qg n(¢1). This ex-
Analogous to the asymptotic behavior in E8) for continu-  plains the integrand on the right hand side of Erl). The
ous stationary processes, we will show that in the appropriateecond line of Eq(11) can be understood following a similar

ClearlyR is a random variable over the rangee®<N. Let
us denote its probability distribution By(R,N) that is for-
mally given by

scaling limit R—o, N— but keeping the ratio =R/N line of reasoning. Note that the recursion relations in (&)
fixed, the distributionP(R,N) has the scaling behavior also satisfy the one sided boundary conditioQ,y(— )
=0 andQg n() =0. The first condition follows from the
P(R,N)~e NPRN) (9) fact that if po— — e, then the first member of the sequence

1= @1+ ¢ can be positive only with a vanishing probabil-
where the large deviation functio®(r) can be computed ity. On the other hand iipy—oe, then¢; can be negative
analytically. Note also that singe(¢) is symmetric around only with probability zero thus giving rise to the second
the origin, the number of positive members of the sequenceondition. Note however that the values at the other bound-
must have the same distribution as the number of negativaries, namerQ,{N(oc) and Qg (—) are unspecified.
members, i.e.,P(R,N)=P(N—R,N). Consequently, we We define the generating functions as follows:
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Sy (u,y)=N"Nf*(u), where we have suppressed thele-
pendence for convenience of notations. Substituting this
form in Eqg. (15), we get a nonlocal eigenvalue equation

bwo,y):;() Qrnl( PV, (12)

with the understanding th@éyN(%):o for R>N sinceR N
can take values only in the ranges®R<N. We also define df —y\[fH(—w+f(—u)]
Qn(¢0.Y) = Qu (¢0.y) +Qn(o.y). Using Eq. (11), it is du

easy to see that the generating functions satisfy the recur-
sions

df~ . )
G =M CwH ),

(16)
where the eigenvalug is yet to be determined. We also have
the boundary conditiong,” (— 1/2)=0 andf ~(1/2)=0. Itis
easy to see from Eq(16) that the sum,f(u)=f*(u)
+f7(u) satisfies the nonlocal first order equatidh(u) =
—wf(—u), wherew=A(1-Yy). Differentiating this equa-
tion once more, we get a local second order equation,
f”(u) = — w?f(u) whose most general solution is given by
f(u)=A cosu)+Bsin(wu), where A, B are arbitrary con-
stants. One further notices that this general solution will also
satisfy the first order non-local equatidh(u)= — wf(—u)
provided B=—A. Thus we arrive at the solutiort,(u)
=A[cos(u)—sin(wu)]. Substituting this solution on the
right hand side of the first line in Eq16) and solving the

6§(¢0a)/):)/fw(b d¢1P(¢1)6N71(¢’1aY)

13

~ %0 ~
QN(¢0,Y):I730 do1p(#1)Qn-1(d1,Y),
with the boundary condition®;;(—,y)=0 andQy (=,y)
=0 for all y=0. These generating functions also satisfy the
condition 60(¢0,y)=1 for all y. The following step is to
differentiate the recursion relations in E@.3) with respect

to ¢o which gives

9Q (b0.Y) o
M:yp(— $0)Qn-1(—0.Y)

ddg resulting equation using the boundary conditioh(— 1/2)
~ =0, we get
Qu(doy)

by - PPl mdoy) (14 f+(u):%[sin(wu)—cos(wu)+sin(w/2)+cos(w/2)].

17

Further simplifications can be made by using the symmetry
p(—¢o)=p(¢o) and by making a change of variable from

¢ to u(¢0)=fg°p(¢)d¢. Note that since(¢) is symmet-
ric around the origin,¢o— — ¢g corresponds tal— —u.
Thusu(¢g) is a monotonic function o,. Note further that

The other functionf ~(u) then follows from the relation,
f(u)=f(u)—f"(u), where f(u)=A[cosu)—sin(wu)]
andf*(u) is given by Eq.(17). The functionf ~(u) still has
to satisfy the boundary conditioh (1/2)=0. In fact, this

as ¢o— £, u—*=1/2, where we have again used the fact
thatp(¢g) is symmetric around the origin. Let us also write
Qu(d0.y)=SN(uy) and Qu(o,y)=Sn(u,y), where
Sa(u,y) =Sy (u,y) + Sy (u,y). Then the relations in E¢14)
simplify to

condition determines the eigenvalNeand we get tang/2)
"=(1-y)/(1+y), wherew=\(1-Y). For largeN, only the
smallest eigenvalug will dominate which is given by

1-y

1
tan 1ty

N

= 1=y . (18

Using the exach(y) from Eq.(18), we are now ready to
compute the largé& behavior of the occupation time distri-
bution P(R,N). In Eqg. (10), after making a change of vari-
able ¢o—u, we find the generating function,
SuP(RN)yR= 2 S (u,y)du. We substitute the larghl
behavior Sy(u,y)=X"Nf(u) and carry out the integration
using the exact expression 6fu) to obtain the following
exact largeN result,

aSy(u,y)
o =YSa(-uy)

Sy (u,y)

0 (15

=-Sy_1(—uy),

which are valid over-1/2<u<1/2. In terms of the variable
u, the boundary condition€),;(—=,y)=0 and Qy(,y)
=0 translate toSy(—1/2y)=0 and Sy(1/2y)=0 for all
y=0. Note also the interesting fact that the distribution
p(¢) has completely disappeared in Ed5). The conse-
guence of this, as we will see later, is that occupation time
distribution P(R,N) is completely universal, i.e., indepen-
dent of the distributiorp(¢) as long as it is symmetric and where\(y) is given by Eq.(18). By inverting the generating
continuous. function and carrying out a standard steepest decent analysis
The recursion relations in E@l5), though much simpli- for large N, large R but keeping the ratio=R/N fixed, we
fied, are still nontrivial since they are nonlocal in We  get the desired resulB(R,N)~exd —N®(R/N)], where the
employ the following technique of separation of variables,large deviation functiorb(r) is given by the exact formula

- 2A
2 PRNYR~—=sinw2)\y)]™, (19
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The other limitr —1/2 is also interesting and can be de-

rived independently from a central limit theorem. To see this
05 | we find from Eq.(7) that R—(R)=3N,(x;—(x;)), where
(R)=N/2, x;=6(¢;), and (x;)=1/2. In general the sum-
mands & —(x;)) are of course highly correlated and one
cannot employ the central limit theorem to evaluate the sum.
However, one can do so in the limit whéi— (M) when
the variables X;—(x;)) become only weakly correlated.
Then the central limit theorem predicts a Gaussian distribu-
tion for the sum,P(R,N)~exp[—(R—N/2)2/2<r§], where
o4={((R—NJ/2)?) is the variance. One can calculate this
variance independently by computing the correlation func-
tions ((x; — 1/2)(x;— 1/2)), wherex;= 6(¢;). It is shown in
the Appendix that for larg8, aﬁ,zSN/lZ. Hence the central
_ _ _ limit theorem predicts that in the limiR—1/2, P(R,N)
0 0.5 1 ~exgd —6N(r—1/2)%/5] thus yielding exactly the same limit-

I’ ing form of ®(r) for r—1/2 as in Eq(21).

Thus the occupation time distributioR(R,N), though
solid line corresponds to the large deviation function for thd 1- Gaussian near the mean valie=N/2, becomes non-

sequence and is obtained from E@O) using Mathematica. The Gaussian as=R/N deviates away from its mean and ap-

dotted line corresponds to that of the SK model obtained using?foaches the tails—0 orr—1. This crossover from Gauss-
Mathematica in Eq(35) after the shiftd(r)=0(2r —1). lan behavior near=1/2 to non-Gaussian behavior near

—0,1 is characterized by the large deviation functib(r)
changing from a quadratic function nees 1/2 to nonqua-

) (20) dratic behavior near—0,1 as given by Eq(21). We con-
clude this section by noting the important fact that the large
deviation function®(r) in Eq. (20) and in fact the full oc-

We first note that the functiory(y,r)=2y'tan [(1  cupation time distributiorP(R,N) is completely universal,

—y)/(1+y)]/(1—y) inside the “In” in Eq. (20) is invariant  i.e., independent of the distributigr{ ¢) [as long ap(¢) is

under the transformatiop— 1/y andr—1—r, i.e.,Y(y,r)  symmetric and continuolis Moreover, this universality

=Y(1ly,1—r). This obviously indicates tha®(r)=®(1  holds for any arbitrary\ and not just asymptotically for large

—r) as expected. Determining(r) in closed form seems N.

difficult, though it can be obtained quite trivially using Math-

ematica, as displayed by the solid line in Fig. 1. [ll. RELATION TO SPIN GLASS MODELS

It is however easy and instructive to obtain analytical ex-
pressions ofP(r) in the regimes near=0 andr=1/2. It
turns out that these limits correspond, respectivelyy-te0
andy—1 in the functionY(y,r). Keepingr fixed we expan

Y(y,r) for smally and neay— 1 in a Taylor series and then

take the logarithm and maximize to obtain the following lim-

iting behaviors:

(r)

FIG. 1. The large deviation functioh (r) plotted against. The

r

(1-y)

1-y
1+y

tan !

(I)(r)=ma>{ln

y

We start this section by raising a physical question for a

general spin glass model defined on a finite lattic&l aites:

d What is the distributior{over disorder of the thermally av-
eraged number of spins that are aligned to their local fields?
This distribution depends on the temperature and on the sys-
tem sizeN. It turns out that the distribution remains non-
trivial even in the infinite temperature limit. In fact, for a
nearest neighbor Ising spin glass chain, we show that this

d(r)=In T +rin >+ .or—0 infinite temperature limiting distribution is precisely that of
2 (4—m)e the occupation time distribution of the toy sequence com-

6 12 puted in the previous section. The infinite temperature limit,
= _< r—=| +---,r—1/2. (22) though nontrivial, is tractable in few other cases such as the

S 2 SK model of Ising spin glass, which will be discussed in

detail in the following section.
These limiting forms have interesting physical implications.  Consider a spin glass model on a latticeNo$ites defined
Consider the limitr —0 or equivalentlyR—0. Note that by the Hamiltonian,
P(O,N)=P(N,N)~exd —®(0)N] is just the probability that
all the members are either negative or positive up to lehgth
which is precisely the persistence of the sequence. The per-
sistence for this sequence was earlier computed in [REF.
and it was found to decay for largé as exp—6N] with the  whereS’s are the spin variable@ot necessarily Isingand
persistence exponert=In(w/2). Thus the limiting form of  J; ; denotes the coupling between sitand sitej. In the
®(r) asr—0 in Eq. (21 is consistent with the persistence nearest neighbor model, the sum in E2Q) runs over near-
exponent,§=®(0)=In(7/2). est neighbor pairs. On the other hand, for long range mean

E=—<Z> JiiSS;, (22)
]
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field models such as the SK model, the sum runs over afiree boundary conditions. Various properties of this spin

pairs of sites. The variablek ;'s are independent and each is
drawn from the identical distributiop(J), which we assume

glass chain such as the statistics of the number of metastable
states have been studied analytically by[18] and by Der-

to be symmetric and continuous. Henceforth we will use theida and Gardnef19]. Recently it was also shown that the

short hand notatiod andS to denote, respectively, the set of
couplings and the set of spins. Thus thie have the joint
distributionQ[j]dj:Hi,jp(Ji,j)dJi,j . The local field that a
spin at sitei sees is simplyh;=%;J;;S;. If the spin gets
aligned to its local field, we must havgeS,>0. Hence the
total number of spin$\|a[3,§] in a given configuration that
are aligned to their local fields can be formally written as,

. (23

N[J,8]=2 o[hiS]=2 0{32 38,

persistence in the toy sequence studied in this paper is the
same as the average fraction of metastable spins in the Ising
chain[15]. In the present context, we find the distribution
Po(R,N) in Eq. (26) reduces to

N
P0<R,N)=J s R—gl 0(pi 1+ ¢p) |QLpldg. (27)

Comparing Egs.(27) and (8) one immediately finds
Po(R,N)=P(R,N), whereP(R,N) is precisely the occupa-
tion time distribution that was computed in Sec. Il. This thus

Evidently N, is a random variable that depends on the couestablishes the promised link between the spin glass problem

plings J, as well as the spin§. Let us first compute the
thermal average oN, over the spin configurations for a

fixed quenched disorde,
_ 1 . .
Na(J)= = 2 No[J,S]e 59, (24
S
whereZ=Sze P59 is the partition function angs is the

inverse temperature. This thermal averi?gt(zj) is a random
variable that varies from one realization of disorder to an

other. We then ask: what is the probability distribution of this

random variablgover disorder at a given inverse tempera-

ture B? This probability distribution Prolb_{a= R)
=Pg(R,N) can be formally represented as
PB(R,N)=f S[R—N,(J)]Q[J]1dJ. (25)

The analytical calculation ofP4(R,N) at arbitrary g
seems difficult. Let us, therefore, consider a simpler limit
namely, the limit of infinite temperature or equivalengy
—0. In this limit, the thermal average in ER4) becomes

simple,N,(J)==zN,[J,S]/Nc, whereN¢ is the total num-

discussed in this section and the non-Markovian toy se-
quence discussed in Sec. Il. The infinite temperature distri-
bution (over disorder of the thermally averaged number of
locally aligned spins is identical to that of the occupation
time distribution of the toy sequence discussed in Sec. Il.
From the exact results d?(R,N) derived in Sec. Il, one
therefore knows the distributioRy(R,N) exactly as well.

A question naturally arises: Are there other solvable cases
for Py(R,N) apart from the 1d chain? In the following sec-
tion we show that indeed the infinite range SK model is one
such case where the distributiét(R,N) can be computed
analytically.

IV. THE SK MODEL

In this section we calculate the infinite temperature distri-
bution Py(R,N) of the thermally averaged number of locally
aligned spins in the infinite range SK model defined by the
Hamiltonian in Eq.(22), where(i,j) runs over all pairs of
Lthe total number oN sites. The coupling3; ;'s are indepen-
dent of each other and we assume that each is drawn from a

Gaussian distributionp(J) = VN2we N2, The choiceJ
~N~2is necessary to ensure that the free energy is exten-

ber of spin configurations. Thus all spin configurations areSive in the largeN limit. It is clear from Eq.(26) that if we

equally likely. However, the distributioRy(R,N) as in Eq.
(25), even in this infinite temperature limit, is still nontrivial.
Let us now focus on Ising spins, where
=+1. Here Nc=2", where N is total number
of lattice sites. The EQ.(25), using Eg. (23), then
becomes simpler for the Ising casePy(R,N)
= [R—(L/2M)=g=N 1623, ;SS,)1Q[I]dI. The next
step is to make a gauge transformatign; =J; ;S;S; . Since
the spins are Ising, i.e§=*1, ¢; ;'s have the same distri-

define ;== .i¢; ;, where each of the; ;’s are indepen-
dent Gaussian variables with the distributiop(¢)
= UN2me N2, thenR=3N ,6(4;). It turns out that for
technical reasons it is easier to consider the variddle
=Ei’\‘zlsgn(¢i), where sgnf)=26(x)—1. HenceM=2R
—N. In what follows we will compute the distribution
Po(M,N) and derive the corresponding distributionRftis-
ing the simple shiftM =2R—N.

Since we are eventually interested in the limit>o,

bution as theJ; ;'s. The advantage of this gauge transforma-M—> but keeping the ratiim=M/N fixed, we setM
tion is that one can then do away with the configuration sun=mN and write

over the spins and we simply get

N
P0<R,N>=f 5[R—§l 6 ; m,—) Ql¢ldd. (26)

Now consider the special case of a nearest neighbor Ising

spin glass chain of sizl, whereE=—2%;J; ;155 with

N

> sgn(¢)—mN

=1

Po(m,N)=< 5(

,

N
» d . )
:f, %e_lﬂm’\‘< el,uzl Sgn(¢i)>w, (28)
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where we have used the representation of the delta functiotKeeping m fixed we then use the Stirling’s formula to ap-
8(x)=J”..e"**dul2m and(), denotes the expectation over proximate the combinatorial factor in E¢34) for large N
the distributions ofy;’s. Using the identity,(e'#s9"¥)) ~ and then use the steepest descent method to evaluate the
=3 ,-_1:€"7(6(yo)),, one can rewrite E(28) as integral in Eq.(34) for large N. This gives, ignoring pre-
exponential factors, a erg(ilrgr as%mptotri]c blehavi(()jr as in the
= du — 1-d case,Po(m,N)~e "™ where the large deviation
Po(m,N)= f_xﬂe iumN 3 <H gl Ko g(¢iai)> , function (rag in tr)1is case is given by ’

{oi=-1,1 i
(29) 1 (1-mo)
— P 2
We use the representatiofi(x) = [5dI [ _(d\/27r)e** D o(m) 2mz|n z +U=Z:l,l(1 ma)ln(Zerfqm/ \/E)”

in Eq. (29, make the transformation;o;—\; and u— (35

— u and then sum over the; variables to obtain L . o
In terms of the original variable=(1+m)/2, the distri-

= du o bution is then given byPy(r,N)=Pys(m=2r—1N)/2

Po(m,N)=f ﬁze"”““H <U dli2 cogu+\ily) ~exg —N&(r)] with ®&(r)=0(2r—1), where O(x) is
o ' 0 given exactly by Eq(35). The function®(r) is symmetric
=dh aroundr =1/2 since®(m) in Eg. (35) is symmetric around

X Lwﬁe ¥ > (30 m=0. Asinthe 1d case, it seems difficult to obtain a closed

form expression ofb(r). However, it can be easily evalu-
The following step is to evaluate the expectation valuegﬁ?eg(ljirr?e |I5r?|(:3|5) f S;\r/l]grz)?/tgfz]i?r?ﬁ; ?OS tﬂlesgiﬁg t:)yn;he
(Ie™i¥y,. Using ¢=3.i¢;;, we note thatlle™i g- - ' ’

=11, _ e ®i+2)d1. Using the Gaussian distributiqn(é; ), can evaluateP(r) analytically near =1/2, as well as near
! : : ) the tail regionsr —0,1. Omitting the details of algebra, we
one can easily evaluate the expectation value to finally o

tain, (I;e™i%y = exq—Eié()\iH\j)ZMN]. We expand the find

sum=;; (N +X)?=2NZ;\{+2(2\;)? and use a Hubbard-

Stratonovich transformation efp(ZiN)%2N] d(ry=a+rinf—[+---r—0

— J(N2m) [* . dze?=N~NZ12 o finally write the expected ,

value of the product as I ) 1, (36)
T+2 2

i N * 2124z i— 2
<H e'”“”‘> = gf_mdze‘“'z’z 2 M2 where a=In(2)+2/2—In[erfc(zy/\2)], b=erfc(zy/\2)/
4

erfc(—zy/+/2), andz, is the root of the equation

31
2
We then substitute Eq31) in Eq. (30) and carry out the \/z e % -0 37)
Gaussian integrations over the variablgs and\;'s to get Terfdzy/\2)

N (> du . o 2 Solving Eg. (37) numerically yields zy=—0.506 0% ...
Po(m,N) = \/Ef_xge'“m“f_mdze YAz WY, which givesa=0.4939... andb=2.2636.....

(32) Thus the limiting behaviors o (r) nearr=1/2 andr
—0,1 in the SK model in Eq:36) are qualitatively similar to
where the functiomA(z, u) is given by those in the 1d case in Eq(21). Using similar arguments as

in Sec. |, one can understand the behavior meat/2 as a
. z ) z
e'”erfc(— +e 'Herfcl — —
V2 C( ﬁ)

consequence of a central limit theorem that predicts a Gauss-
. (33 jan behavior for Po(R,N) ~exd —(R—N/2)%/20%], where

with erfc(x)=(2/\/F)fxe*“2du being the complementary

error function.

o3={((R—N/2)?) is the variance. Comparing with E(36)
We expand the right hand side of E®3) in a binomial

we find that the variance for largd is given exactly by,
a',%l=(77+ 2)N/4r. This result for the variance can also be
series, substitute the resulting series in &§) and carry out
the integration with respect ta to obtain

1
Az,p)=5

derived by a direct method as shown in the Appendix, thus
providing an additional consistency check. The results for
the statistics oRin the 1d case and in the SK model can be
jointly summarized as: The mean is always given {y)

N =N/2 and the variance for larg¥ is given by
Po(m N)=i\/l " dze NP (1-m)N
o 2NNoxn)_. — UZZEN 1d
2 N 12 ’
x[erfo(z/\/2)] 1 ™N erfg( — z//2) AT MN2 SN
(34) = ?N, SK. (38)
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The behavior in the tail region near-0 (or equivalently  tion of a non-Markovian process. In our case, the stochastic
nearr—1) is also interesting. Let us, for simplicity, consider process is not continuous in time, but rather a discrete toy
ther—1 limit whereR=N. It is clear from the expression sequence. Nevertheless this toy sequence retains the non-
of Po(N,N) in Eq. (26) that the delta function will contribute Markovian property, which makes the results nontrivial. Be-
only when each of thé function inside the sum are satisfied, sjdes the fact that exact results are always usef_ul and inst_ruc—
ie., if I;6(3.¢,;)=1. Thus evidently Po(N,N) tive, this toy sequence also appears in various physical
=(I1;6(2;1¢;)). But this quantity is just the average contexts such as dlffusuon process and spin g_lasses, thus ex-
number ofmetastableonfigurations in the spin glass. To see [€Nding the range of applications of our resulis. We also
this clearly, consider again the spin glass Hamiltonian in Eqs;itr?bgljllzgidcﬁgine)lﬁﬁzgmaaggll;]geOtfratglssfosrrilliﬁ)r:feT;% %ZCISLZQ_
(22)'.A spin <_:onf|gurat|on IS _call_ed m_etastabl_e_ if the €NeTYWtion time distribution in the sequence then translates, via this
required to flip any of thé\ spins is strictly positive. In other

. . . ) - _mapping, into the distribution of the thermally averaged
words, all the spins must be aligned to their local fields in &, her of spins that are aligned to their local fields in the

metastable configuration. Hence, for a fixed disorder, theyin glass chain at infinite temperature when all spin con-
fraction of metastable configuratiofsut of the total number  fig rations are equally likely. This observation raises an in-
of 2N spin configurations is given by, f(J) teresting question for any generic finite sized spin glass
=2"N34l1,6(h;s;)) whereh’s are the local fields. Finally, model: at a given temperature, what is the distribution of the
the averagegover disorder fraction of the metastable con- thermally averaged number of locally aligned spins? Our ex-

figurations is given by(f(j))szf(j)Q[j]dj. Using once act results in one dimension show that this distribution re-
again the gauge transformation for lIsing sSping; mains nontrivial even at infinite temperatuf@i) We then
i]

=] .SS ; ; : ere able to compute analytically this infinite temperature
J1jSS; one can easily express this average fraction a%ivistribution in the SK model of spin glasses with Gaussian

<f(J)>J:<_Hi_‘9(Ej¢i¢_i,j)>¢>: Po(N,N). Our results on the gisorder and argued that for very lamyethe associated large
large deviation function near=0,1 in Eq.(36) indicates that  geviation function is again universal, i.e., independent of the
Po(N,N)=Po(ON)~e™®N for large N with a precise form of the disorder distribution.

=0.4939D.... On theother hand, the average number of  We leave open the possibility of computing this distribu-
metastable configurations in the SK model was computedion at a finite temperature for any spin glass model. For
long ago by Tanaka and EdwarfZ0] and also by Bray and example, it would be interesting to know how this distribu-
Moore [21] and this average is known to increase exponention changes as one goes below the spin glass transition tem-
tially for largeN as~e*N, wherea=0.1992[21]. Hence the perature.

average fraction scales ase*N/2N=e N with c=In2—« The study of the number of metastable spins in various
=0.4939[21]. Thus the constartin Eq.(36) is precisely the ~Other spin glass models is an open question. We mention a
same as the constantind hence the limiting behavior of our féw cases, where exact results along these lines may be pos-
large deviation function near the taits=0,1 is completely ~Sible as the average number of metastable states is calcu-

consistent with the calculation of average number of metal-ablef: the_ SK model in the presence of external fidl2g),
stable states. p-spin spin glass model23], spin glasses on random graphs

: : : - [24], mean field spin glasses with Wginteractiong25], the
s ot seclon i i ol COmITeT o el Tetuor Modd2s) and the Random O
the full occupation time distributiorP(R,N) and conse- thogonal Model[27]. The study of spin glass models on

! o . random graphs of fixed connectivityare of particular inter-
guently the associated large deviation function is completel)éSt as they interpolate between the one dimensional toy

independent of the d.istributiopn(qb). In th_e case of t.he SK' model studied here, at=2, and the SK model in the limit
model, we have derived the large deviation function for a;_, o

specific form of the disorder distribution, namely the Gauss-

ian form. Naturally the question arises as to how universal is APPENDIX: DIRECT CALCULATION OF THE
this large deviation function as one changes the disorder dis- VARIANCE OF M

tribution. Evidently for finiteN the results in the SK case,
unlike the 1d case, will depend on the details of the distri-
bution p(J). However, due to the YN scaling in the defi-
nition of the distribution of theJ; ;, the largeN results in-
cluding the large deviation are univergapto rescaling by a

In this appendix we compute the variances of the occupa-
tion time both in the one dimensional toy sequence and in the
SK model by a more direct method. These results are iden-
tical to those obtained from the limiting forms of the large
deviation functions near=1/2.

constant factgy provided the variance of thg, ;'s is finite. We have in general,

In the case of mean field spin glasses with power law or

Lévy interactions[25], the variance of tha; ; is no longer > E 1\2
finite and it would be interesting to study the occupation time ONT i 0Ci) — 2

distribution in this context.
N 1
=2 +22 (6 6(u)— 5
V. SUMMARY AND CONCLUSION 1<)

N 1
=273 ; (sgr(y)san 4;), (A1)

The three main points of this paper afg:we have been
able to derive exact results for the occupation time distribu-

041102-8



EXACT OCCUPATION TIME DISTRIBUTION INA . .. PHYSICAL REVIEW E 66, 041102 (2002

where we have made use of the identit{@§;))=1/2 for  ary terms exactly, one can show thaf,=5N/12—1/6 for

all i and sgnk)=26(x)—1. anyN. Note that this result, for arbitrany, is independent of
In the one dimensional model only neighboring sites arethe precise form of the distribution(¢).
correlated and hence one has We now turn to the SK model wheig ==, ¢; ; and the
N L random variables; ;'s are independent and identically dis-
Uﬁ:_JFZZ (O() 0(th 1)) — 7 tributed 7WIt2h the  Gaussian 2dlstrlbutlon p(d)
4 i = N2re N¢2_ Clearly, one has(y?)=(1—1/N) and

(¢i;)=1IN. We use the well known identity that holds only

=— ;+2N(9( P1) 0(ih)), (A2)  for Gaussian random variables as follows:
- tos | 2 [ (x)
where we have used the isotropy of the sites in the latge _Z i\
limit. One now has that (sgrX)sgny)) 7o JOX(Y?) ) (A0)
(00 002) = [ A s0n( B0)p(0)0( 2 Using this identity we get for #},
2 1
X 0(hot+ 1) O(p1+ P2) <Sgr(¢i)39“¢j)>:;Sin_l<m>- (A6)
=" agontan) | dounan This yields
— _¢0
. , N 1 1
Xf dbop( o). (A3) oR=7+ 5-N(N-1) sin (—N_l) (A7)
_¢1

We introduce the functiorF(¢)= [~ ,d¢'p(¢’) and use which gives the resuliy=N(+ 2)/4m in the limit of large

the relationso(#) = p(— ¢) anddF/dé=p() to carry out N. We note that the result in E¢A7) for finite N is valid
the integration and thus obtain only when the distribution of the; ; is Gaussian. The finite

N result for arbitrary distribution of the); ; will depend in
1 general on the details of the distribution and hence, in con-
(0(41) 0(4h)) = 3 (A4) trary to what happens in the one dimensional toy model, will
not be universal. However, as argued in Sec. 1V, the lhige
Putting this altogether gives the largé asymptotic result results including the result for the variance, i.e§,=N(w
0,2\‘=5N/12. In fact using the generating function technique+2)/4x is universal as long as the variance of te; is
used in this paper, and hence taking into account the boundinite.
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