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Exact occupation time distribution in a non-Markovian sequence
and its relation to spin glass models

Satya N. Majumdar and David S. Dean
Laboratoire de Physique Quantique (UMR C5626 du CNRS), Universite´ Paul Sabatier, 31062 Toulouse Cedex, France

~Received 9 July 2002; published 7 October 2002!

We compute exactly the distribution of the occupation time in a discretenon-Markoviantoy sequence that
appears in various physical contexts such as the diffusion processes and Ising spin glass chains. The non-
Markovian property makes the results nontrivial even for this toy sequence. The distribution is shown to have
non-Gaussian tails characterized by a nontrivial large deviation function that is computed explicitly. An exact
mapping of this sequence to an Ising spin glass chain via a gauge transformation raises an interesting question
for a generic finite sized spin glass model; at a given temperature, what is the distribution~over disorder! of the
thermally averaged number of spins that are aligned to their local fields? We show that this distribution remains
nontrivial even at infinite temperature and can be computed explicitly in few cases such as in the Sherrington-
Kirkpatrick model with Gaussian disorder.
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I. INTRODUCTION

The occupation timeT of a stochastic processx(t) is sim-
ply the time that the process spends above its mean v
~say 0! when observed over the period@0,t#,

T5E
0

t

u„x~ t8!…dt8, ~1!

whereu(x) is the Heaviside step function and we assum
for simplicity, that the process starts atx(0)50. Since the
seminal work of Le´vy @1# who computed the exact probabi
ity distribution ofT in the case whenx(t) is just an ordinary
Brownian motion, there has been a lot of interest in
mathematics community to study the occupation time
various processes@2,3#. Recently the study of the occupatio
time has seen a revival in the physics community in
context of nonequilibrium systems@4,5# due to its potential
applications in a wide range of physical systems which
clude, amongst others, optical imaging@6#, analysis of the
morphology of growing surfaces@7# and analysis of the fluo
rescence intermittency emitting from colloidal semicondu
tor dots@8#.

The occupation timeT is clearly a random variable. It
probability distribution P(T,t) evidently depends on th
window size t. It turns out that quite generically there a
essentially two types of asymptotic behaviors of this dis
butionP(T,t) depending on whether the underlying stoch
tic processx(t) is nonstationaryor stationary. A nonstation-
ary process is that where the two-time correlation funct
C(t,t8)5^x(t)x(t8)& depends on both timest and t8. An
example is the ordinary Brownian motion,dx/dt5h(t),
whereh(t) is a Gaussian white noise witĥh(t)&50 and
^h(t)h(t8)&5d(t2t8). In this case,C(t,t8)5min(t,t8). In
a stationary process, on the other hand, the two-time co
lation function depends only on the time differenc
C(t,t8)5C(ut2t8u). A simple example of a stationary pro
cess is the Orstein-Uhlenbeck process,dx/dt52lx1h(t),
where a particle moves in a parabolic potential in presenc
1063-651X/2002/66~4!/041102~10!/$20.00 66 0411
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external thermal noise. In this case, the particle reaches e
librium at long times when the two-time correlation simp
becomes,C(t,t8)5exp@2lut2t8u#.

In the nonstationary case, one expects that in
asymptotic limit t→`, T→` but keeping the ratior 5T/t
fixed, the distributionP(T,t) has the generic scaling beha
ior,

P~T,t !;
1

t
f S T

t D , ~2!

where the scaling functionf (r ) has nonzero support only in
the ranger P@0,1#. For example, in the case of ordinar
Brownian motion, the scaling functionf (r ) can be computed
exactly @1#, f (r )51/pAr (12r ). This is known as the Arc-
Sine law of Lévy since the cumulative distribution has a
arcsine form,*0

r f (r 8)dr852 sin21(Ar )/p. Note that for the
Brownian case the scaling actually holds for allt andT. The
analytical calculation of this scaling functionf (r ) is, how-
ever, nontrivial even for this simple Brownian case. Follo
ing the work of Lévy, there have been various generaliz
tions of this ArcSine law. For example, the scaling functi
f (r ) has been computed exactly for the so called Le´vy pro-
cesses@3#, and recently for a more general class of renew
processes@9#. The occupation time distribution has also be
studied recently for a Brownian particle moving in a rando
sinai type potential and the corresponding scaling funct
f (r ) has been computed exactly@13#.

For stationary processes, on the other hand, the distr
tion P(T,t) is expected to have the following gener
asymptotic behavior in the appropriate scaling limitT→`,
t→` with the ratior 5T/t fixed @10#,

P~T,t !;e2tF(T/t), ~3!

where F(r ) is a large deviation function with, in genera
non-Gaussian tails@10#. For example, for the Ornstein
Uhlenbeck stationary process discussed in the previous p
©2002 The American Physical Society02-1
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graph, the functionF(r ) has recently been computed exac
by utilizing a mapping to a quantum mechanical path integ
problem@10#.

The calculation of either the scaling functionf (r ) for
nonstationary processes or the large deviation functionF(r )
for stationary processes is a challenging theoretical probl
So far, exact results exist only for Markov processes, wh
the value of the processx(t) at time t depends only on its
value at the previous time step, say att2Dt, whereDt is an
infinitesimal time step, but is completely independent on
previous history of the process. For example, the ordin
Brownian motion and the Orstein-Uhlenbeck processes
both Markovian. On the other hand, most processes in
ture are non-Markovian and the Markov processes are m
of exceptions rather than rules. Non-Markov processes
known to be notoriously difficult for the analytical calcula
tion of even simpler quantities such as persistence, i.e.,
probability that the process does not change sign up to t
t @11#. Naturally the analytical calculation of the occupatio
time distribution for non-Markovian processes is even m
difficult.

For a certain class of ‘‘smooth’’ non-Markovian process
such as the diffusion equation, it is possible to compute
occupation time distribution@4# using the independent inter
val approximation~IIA ! that assumes that the intervals b
tween successive zero crossings are statistically indepen
@12#. But these IIA results are only approximate. To o
knowledge, there exists no exact result for the occupa
time distribution for a non-Markov process, either stationa
or nonstationary. In this paper, we obtain an exact analyt
result for the occupation time distribution for a stationa
non-Markovian process. To be more precise, we actu
study the occupation time distribution of a discrete station
non-Markovian sequence and not a continuous stocha
process. Nevertheless the asymptotic behavior as give
Eq. ~3! still remains true and we compute analytically t
corresponding large deviation functionF(r ).

Recently the importance of studying the statistical pro
erties such as the persistence and the distribution of the n
ber of zeros ofdiscrete stochastic sequences, as opposed to
the more traditionalcontinuous stochastic processes, has
been emphasized in a number of articles@14–16#. There are
two principal reasons for studying a stochastic sequen
First, in various experiments and numerical simulatio
even though the underlying physical process is continuou
time, in practice one actually measures the events onl
discrete time points. The result of this discretization can le
to subtle and important differences between the ‘‘true’’ pro
erties of the process and the ‘‘measured’’ properties@14#. To
estimate these differences, it is important to study the pr
erties of a discrete sequence. The second reason follows
the observation@15# that many processes in Nature such
weather records are stationary under translations in time
by an integer multiple of a basic period. For example,
seasons repeat typically every one year. For such proce
it was observed in Ref.@15# that the persistence of the un
derlying continuous process coincides with that of the d
crete sequence obtained from the measurement of the pro
only at times that are integer multiples of the basic perio
04110
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In particular, in Ref.@15# a specific discrete sequence w
obtained as a limiting case of the diffusion equation on
hierarchical lattice. This rather simpletoy sequence, even
though non-Markovian, had the remarkable property of
ing solvable for certain statistical properties such as the p
sistence@15# and the distribution of the number of zeros@16#.
Furthermore, these exact results were rather nontri
@15,16# even for this toy sequence. It is always important
have such a solvable non-Markovian toy model that can t
be used as a benchmark to predict the possible expected
haviors of various observables in a more complex n
Markovian process. In this paper, we show that the occu
tion time distribution can also be computed exactly for th
toy model and like other quantities such as the persistenc
is rather nontrivial even for this simple toy model.

We further make an interesting observation that the oc
pation time for this toy sequence is related to a spec
physical observable in an Ising spin glass chain with nea
neighbor interactions. In a given sample of the spin gl
chain, one can ask: what is the average~thermal! number of
spins that are aligned to the direction of their local field
This physical object is a random variable that fluctuates fr
one sample of disorder to another. A natural question is: w
is the probability distribution~over disorder! of this thermal
average? It turns out that this distribution is nontrivial ev
at infinite temperature. In fact, we show that at infinite te
perature this distribution in the spin glass chain coincid
exactly with the occupation time distribution of the toy s
quence mentioned above. This connection is useful a
raises a general question for any spin glass model~and not
just restricted to a chain!: what is the probability distribution
of the average~thermal! number of spins that are aligned t
their local fields? In this paper, we show that the analyti
computation of this distribution in the limit of infinite tem
perature, though still nontrivial, is tractable in few cases.
particular, we calculate analytically this infinite temperatu
distribution in the Sherrington-Kirkpatrick~SK! model of
mean field spin glasses@17#.

The layout of the paper is as follows. In Sec. II, we defi
the toy sequence, recall some of its properties and kno
results and then compute the occupation time distribut
exactly. In Sec. III, we establish the connection to a s
glass chain and raise the general question regarding the
tribution of the average number of spins aligned to their lo
fields in a generic spin glass model. In Sec. IV, we comp
this distribution analytically in the SK model at infinite tem
perature and show that it is nontrivial even at infinite te
perature. Finally we conclude in Sec. V with a summary a
some open questions.

II. THE TOY SEQUENCE AND ITS EXACT OCCUPATION
TIME DISTRIBUTION

The toy sequence we study in this section was origina
derived as a limiting case of the diffusion process on a h
archical lattice@15#. This is a sequence$c i% of correlated
random variables constructed via the following rule,

c i5f i1f i 21 , i 51,2, . . . ,N, ~4!
2-2



n
o

t
d

e
so

ifi

g

e
e
v
in

io

ia

nc
ti

d

y to
per-
n

he
f
e

rite
es
i-

,

in
to
the

s

r

ce
il-

d
nd-
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wheref( i )’s are independent and identically distributed ra
dom variables, each drawn from the same symmetric c
tinuous distributionr(f). Note that even thoughf( i )’s are
uncorrelated, the variablesc i ’s are correlated. The two poin
correlation function,Ci , j5^c ic j& can be easily compute
from Eq. ~4!,

Ci , j5s2@2d i , j1d i 21,j1d i , j 21#, ~5!

where d i , j is the Kronecker delta function ands2

5*2`
` f2r(f)df which we assume to be finite. Thus th

sequence$c i% has only nearest neighbor correlation. Al
note that for large sequence sizeN, the sequence isstation-
ary sinceCi , j depends only on the differenceu i 2 j u, and not
individually on i or j. The sequence$c i% is also non-
Markovian. To see this, one can try to express a spec
member of the sequence, sayc i , only in terms of other
members of the sequence@15#. This can be easily done usin
Eq. ~4! and one gets for anyi>2,

c i5 (
k51

i 21

~21!k21c i 2k1f i1~21! i 21f0 . ~6!

This relation clearly demonstrates the history dependenc
the sequence in the sense thatc i depends not just only on th
previous memberc i 21 ~as would have been in the Marko
case!, but on the whole history of the sequence preced
c i .

We now turn to the exact computation of the occupat
time distribution for the sequence in Eq.~4!. The occupation
time R in this case is simply the number ofc i ’s that are
positive out of the total numberN and is given by the dis-
crete counterpart of Eq.~1!,

R5(
i 51

N

u~c i !. ~7!

ClearlyR is a random variable over the range 0<R<N. Let
us denote its probability distribution byP(R,N) that is for-
mally given by

P~R,N!5E dFR2(
i 51

N

u~f i 211f i !G)
i

r~f i !df i .

~8!

Analogous to the asymptotic behavior in Eq.~3! for continu-
ous stationary processes, we will show that in the appropr
scaling limit R→`, N→` but keeping the ratior 5R/N
fixed, the distributionP(R,N) has the scaling behavior

P~R,N!;e2NF(R/N), ~9!

where the large deviation functionF(r ) can be computed
analytically. Note also that sincer(f) is symmetric around
the origin, the number of positive members of the seque
must have the same distribution as the number of nega
members, i.e.,P(R,N)5P(N2R,N). Consequently, we
04110
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must haveF(r )5F(12r ), i.e., the large deviation function
over the allowed range 0<r<1 must be symmetric aroun
r 51/2.

To compute the distributionP(R,N) we use a transfer
matrix method that has already been used successfull
calculate other quantities for this sequence such as the
sistence@15# and the distribution of the number of sig
changes@16#. To start with, we defineQR,N

6 (f0) denoting
respectively the joint probability that the first member of t
sequencec1 is positive~negative! and that the sequence o
sizeN has a totalR number of positive members, given th
value of f0. Let us also defineQR,N(f0)5QR,N

1 (f0)
1QR,N

2 (f0) that denotes the probability of havingR positive
members in a sequence of sizeN, given f0. The required
occupation time distribution is then given by,

P~R,N!5E
2`

`

QR,N~f0!r~f0!df0 . ~10!

The reason for this small detour is simply that one can w
quite easily a recursion relation for the joint probabiliti
QR,N

6 (f0). However it is not easy to write a recursion d
rectly for the distribution P(R,N). The probabilities
QR,N

6 (f0) satisfy the following recursion relations:

QR,N
1 ~f0!5E

2f0

`

df1r~f1!QR21,N21~f1!

QR,N
2 ~f0!5E

2`

2f0
df1r~f1!QR,N21~f1!. ~11!

The above recursion relations are valid for all 0<R<N and
N>1 with the initial conditionsQ0,0

1 (f0)51 andQ0,0
2 (f0)

50.
These recursion relations in Eq.~11! are easy to follow.

Consider first the relation forQR,N
1 (f0). In order for the first

memberc1 to be positive, it follows from the definition
c15f11f0, that f1.2f0 for a givenf0. This explains
the integration range on the right hand side of the first line
Eq. ~11!. Also once the first member is positive, in order
have a totalR positive members, we need to ensure that
rest of the chain of sizeN21 ~excluding the first member!
has exactlyR21 positive members. The probability of thi
latter event, for a givenf1, is simply QR,N(f1). This ex-
plains the integrand on the right hand side of Eq.~11!. The
second line of Eq.~11! can be understood following a simila
line of reasoning. Note that the recursion relations in Eq.~11!
also satisfy the one sided boundary conditions,QR,N

1 (2`)
50 andQR,N

2 (`)50. The first condition follows from the
fact that if f0→2`, then the first member of the sequen
c15f11f0 can be positive only with a vanishing probab
ity. On the other hand iff0→`, then c1 can be negative
only with probability zero thus giving rise to the secon
condition. Note however that the values at the other bou
aries, namely,QR,N

1 (`) andQR,N
2 (2`) are unspecified.

We define the generating functions as follows:
2-3
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Q̃N
6~f0 ,y!5 (

R50

`

QR,N
6 ~f0!yR, ~12!

with the understanding thatQR,N
6 (f0)50 for R.N sinceR

can take values only in the range 0<R<N. We also define
Q̃N(f0 ,y)5Q̃N

1(f0 ,y)1Q̃N
2(f0 ,y). Using Eq. ~11!, it is

easy to see that the generating functions satisfy the re
sions

Q̃N
1~f0 ,y!5yE

2f0

`

df1r~f1!Q̃N21~f1 ,y!

Q̃N
2~f0 ,y!5E

2`

2f0
df1r~f1!Q̃N21~f1 ,y!, ~13!

with the boundary conditionsQ̃N
1(2`,y)50 andQ̃N

2(`,y)
50 for all y>0. These generating functions also satisfy t
condition Q̃0(f0 ,y)51 for all y. The following step is to
differentiate the recursion relations in Eq.~13! with respect
to f0 which gives

]Q̃N
1~f0 ,y!

]f0
5yr~2f0!Q̃N21~2f0 ,y!

]Q̃N
2~f0 ,y!

]f0
52r~2f0!Q̃N21~2f0 ,y!. ~14!

Further simplifications can be made by using the symme
r(2f0)5r(f0) and by making a change of variable fro
f0 to u(f0)5*0

f0r(f)df. Note that sincer(f) is symmet-
ric around the origin,f0→2f0 corresponds tou→2u.
Thusu(f0) is a monotonic function off0. Note further that
asf0→6`, u→61/2, where we have again used the fa
thatr(f0) is symmetric around the origin. Let us also writ
Q̃N

6(f0 ,y)5SN
6(u,y) and Q̃N(f0 ,y)5SN(u,y), where

SN(u,y)5SN
1(u,y)1SN

2(u,y). Then the relations in Eq.~14!
simplify to

]SN
1~u,y!

]u
5ySN21~2u,y!

]SN
2~u,y!

]u
52SN21~2u,y!, ~15!

which are valid over21/2<u<1/2. In terms of the variable
u, the boundary conditionsQ̃N

1(2`,y)50 and Q̃N
2(`,y)

50 translate toSN
1(21/2,y)50 and SN

2(1/2,y)50 for all
y>0. Note also the interesting fact that the distributi
r(f) has completely disappeared in Eq.~15!. The conse-
quence of this, as we will see later, is that occupation ti
distribution P(R,N) is completely universal, i.e., indepen
dent of the distributionr(f) as long as it is symmetric an
continuous.

The recursion relations in Eq.~15!, though much simpli-
fied, are still nontrivial since they are nonlocal inu. We
employ the following technique of separation of variable
04110
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SN
6(u,y)5l2Nf 6(u), where we have suppressed they de-

pendence for convenience of notations. Substituting
form in Eq. ~15!, we get a nonlocal eigenvalue equation

d f1

du
5yl@ f 1~2u!1 f 2~2u!#

d f2

du
52l@ f 1~2u!1 f 2~2u!#, ~16!

where the eigenvaluel is yet to be determined. We also hav
the boundary conditions,f 1(21/2)50 andf 2(1/2)50. It is
easy to see from Eq.~16! that the sum, f (u)5 f 1(u)
1 f 2(u) satisfies the nonlocal first order equation,f 8(u)5
2v f (2u), where v5l(12y). Differentiating this equa-
tion once more, we get a local second order equat
f 9(u)52v2f (u) whose most general solution is given b
f (u)5A cos(vu)1Bsin(vu), whereA, B are arbitrary con-
stants. One further notices that this general solution will a
satisfy the first order non-local equationf 8(u)52v f (2u)
provided B52A. Thus we arrive at the solution,f (u)
5A@cos(vu)2sin(vu)#. Substituting this solution on the
right hand side of the first line in Eq.~16! and solving the
resulting equation using the boundary conditionf 1(21/2)
50, we get

f 1~u!5
Aly

v
@sin~vu!2cos~vu!1sin~v/2!1cos~v/2!#.

~17!

The other functionf 2(u) then follows from the relation,
f 2(u)5 f (u)2 f 1(u), where f (u)5A@cos(vu)2sin(vu)#
and f 1(u) is given by Eq.~17!. The functionf 2(u) still has
to satisfy the boundary conditionf 2(1/2)50. In fact, this
condition determines the eigenvaluel and we get tan(v/2)
5(12y)/(11y), wherev5l(12y). For largeN, only the
smallest eigenvaluel will dominate which is given by

l5
2

~12y!
tan21S 12y

11yD . ~18!

Using the exactl(y) from Eq. ~18!, we are now ready to
compute the largeN behavior of the occupation time distr
bution P(R,N). In Eq. ~10!, after making a change of vari
able f0→u, we find the generating function
(MP(R,N)yR5*21/2

1/2 SN(u,y)du. We substitute the largeN
behaviorSN(u,y)'l2Nf (u) and carry out the integration
using the exact expression off (u) to obtain the following
exact largeN result,

(
M50

`

P~R,N!yR'
2A

v
sin~v/2!@l~y!#2N, ~19!

wherel(y) is given by Eq.~18!. By inverting the generating
function and carrying out a standard steepest decent ana
for largeN, largeR but keeping the ratior 5R/N fixed, we
get the desired result,P(R,N);exp@2NF(R/N)#, where the
large deviation functionF(r ) is given by the exact formula
2-4
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F~r !5max
y

H lnF 2yr

~12y!
tan21S 12y

11yD G J . ~20!

We first note that the functionY(y,r )52yr tan21@(1
2y)/(11y)#/(12y) inside the ‘‘ln’’ in Eq. ~20! is invariant
under the transformationy→1/y and r→12r , i.e., Y(y,r )
5Y(1/y,12r ). This obviously indicates thatF(r )5F(1
2r ) as expected. DeterminingF(r ) in closed form seems
difficult, though it can be obtained quite trivially using Math
ematica, as displayed by the solid line in Fig. 1.

It is however easy and instructive to obtain analytical e
pressions ofF(r ) in the regimes nearr 50 and r 51/2. It
turns out that these limits correspond, respectively, toy→0
andy→1 in the functionY(y,r ). Keepingr fixed we expand
Y(y,r ) for smally and neary→1 in a Taylor series and the
take the logarithm and maximize to obtain the following lim
iting behaviors:

F~r !5 lnS p

2 D1r lnS rp

~42p!eD1•••r→0

5
6

5 S r 2
1

2D 2

1•••,r→1/2. ~21!

These limiting forms have interesting physical implication
Consider the limitr→0 or equivalentlyR→0. Note that
P(0,N)5P(N,N);exp@2F(0)N# is just the probability that
all the members are either negative or positive up to lengtN
which is precisely the persistence of the sequence. The
sistence for this sequence was earlier computed in Ref.@15#
and it was found to decay for largeN as exp@2uN# with the
persistence exponentu5 ln(p/2). Thus the limiting form of
F(r ) as r→0 in Eq. ~21! is consistent with the persistenc
exponent,u5F(0)5 ln(p/2).

FIG. 1. The large deviation functionF(r ) plotted againstr. The
solid line corresponds to the large deviation function for the 1d
sequence and is obtained from Eq.~20! using Mathematica. The
dotted line corresponds to that of the SK model obtained us
Mathematica in Eq.~35! after the shiftF(r )5Q(2r 21).
04110
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The other limitr→1/2 is also interesting and can be d
rived independently from a central limit theorem. To see t
we find from Eq.~7! that R2^R&5( i 51

N (xi2^xi&), where
^R&5N/2, xi5u(c i), and ^xi&51/2. In general the sum
mands (xi2^xi&) are of course highly correlated and on
cannot employ the central limit theorem to evaluate the su
However, one can do so in the limit whenM→^M & when
the variables (xi2^xi&) become only weakly correlated
Then the central limit theorem predicts a Gaussian distri
tion for the sum,P(R,N);exp@2(R2N/2)2/2sN

2 #, where
sN

2 5^(R2N/2)2& is the variance. One can calculate th
variance independently by computing the correlation fu
tions ^(xi21/2)(xj21/2)&, wherexi5u(c i). It is shown in
the Appendix that for largeN, sN

2 55N/12. Hence the centra
limit theorem predicts that in the limitR→1/2, P(R,N)
;exp@26N(r21/2)2/5# thus yielding exactly the same limit
ing form of F(r ) for r→1/2 as in Eq.~21!.

Thus the occupation time distributionP(R,N), though
Gaussian near the mean valueR5N/2, becomes non-
Gaussian asr 5R/N deviates away from its mean and a
proaches the tailsr→0 or r→1. This crossover from Gauss
ian behavior nearr 51/2 to non-Gaussian behavior nearr
→0,1 is characterized by the large deviation functionF(r )
changing from a quadratic function nearr 51/2 to nonqua-
dratic behavior nearr→0,1 as given by Eq.~21!. We con-
clude this section by noting the important fact that the la
deviation functionF(r ) in Eq. ~20! and in fact the full oc-
cupation time distributionP(R,N) is completely universal,
i.e., independent of the distributionr(f) @as long asr(f) is
symmetric and continuous#. Moreover, this universality
holds for any arbitraryN and not just asymptotically for large
N.

III. RELATION TO SPIN GLASS MODELS

We start this section by raising a physical question fo
general spin glass model defined on a finite lattice ofN sites:
What is the distribution~over disorder! of the thermally av-
eraged number of spins that are aligned to their local fiel
This distribution depends on the temperature and on the
tem sizeN. It turns out that the distribution remains non
trivial even in the infinite temperature limit. In fact, for
nearest neighbor Ising spin glass chain, we show that
infinite temperature limiting distribution is precisely that
the occupation time distribution of the toy sequence co
puted in the previous section. The infinite temperature lim
though nontrivial, is tractable in few other cases such as
SK model of Ising spin glass, which will be discussed
detail in the following section.

Consider a spin glass model on a lattice ofN sites defined
by the Hamiltonian,

E52(
^ i , j &

Ji , jSiSj , ~22!

whereSi ’s are the spin variables~not necessarily Ising! and
Ji , j denotes the coupling between sitei and site j. In the
nearest neighbor model, the sum in Eq.~22! runs over near-
est neighbor pairs. On the other hand, for long range m

g

2-5
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field models such as the SK model, the sum runs over
pairs of sites. The variablesJi , j ’s are independent and each
drawn from the identical distributionr(J), which we assume
to be symmetric and continuous. Henceforth we will use
short hand notationJW andSW to denote, respectively, the set
couplings and the set of spins. Thus theJ’s have the joint
distributionQ@JW #dJW5) i , jr(Ji , j )dJi , j . The local field that a
spin at sitei sees is simplyhi5( j Ji , jSj . If the spin gets
aligned to its local field, we must havehiSi.0. Hence the
total number of spinsNa@JW ,SW # in a given configuration tha
are aligned to their local fields can be formally written as

Na@JW ,SW #5(
i

u@hiSi #5(
i

uFSi(
j

Ji , jSj G . ~23!

Evidently Na is a random variable that depends on the c
plings JW , as well as the spinsSW . Let us first compute the
thermal average ofNa over the spin configurations for
fixed quenched disorderJW ,

N̄a~JW !5
1

Z (
SW

Na@JW ,SW #e2bE(SW ), ~24!

whereZ5(SWe
2bE(SW ) is the partition function andb is the

inverse temperature. This thermal averageN̄a(JW ) is a random
variable that varies from one realization of disorder to a
other. We then ask: what is the probability distribution of th
random variable~over disorder! at a given inverse tempera
ture b? This probability distribution Prob(N̄a5R)
5Pb(R,N) can be formally represented as

Pb~R,N!5E d@R2N̄a~JW !#Q@JW #dJW . ~25!

The analytical calculation ofPb(R,N) at arbitrary b
seems difficult. Let us, therefore, consider a simpler lim
namely, the limit of infinite temperature or equivalentlyb
→0. In this limit, the thermal average in Eq.~24! becomes
simple,N̄a(JW )5(SWNa@JW ,SW #/NC , whereNC is the total num-
ber of spin configurations. Thus all spin configurations
equally likely. However, the distributionP0(R,N) as in Eq.
~25!, even in this infinite temperature limit, is still nontrivia

Let us now focus on Ising spins, whereSi
561. Here NC52N, where N is total number
of lattice sites. The Eq.~25!, using Eq. ~23!, then
becomes simpler for the Ising case,P0(R,N)
5*d@R2(1/2N)(SW ( i 51

N u(( j Ji , jSiSj )#Q@JW #dJW . The next
step is to make a gauge transformation,f i , j5Ji , jSiSj . Since
the spins are Ising, i.e.,Si561, f i , j ’s have the same distri
bution as theJi , j ’s. The advantage of this gauge transform
tion is that one can then do away with the configuration s
over the spins and we simply get

P0~R,N!5E dFR2(
i 51

N

uS (
j Þ i

f i , j D GQ@fW #dfW . ~26!

Now consider the special case of a nearest neighbor I
spin glass chain of sizeN, whereE52( iJi ,i 11SiSi 11 with
04110
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e
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free boundary conditions. Various properties of this sp
glass chain such as the statistics of the number of metas
states have been studied analytically by Li@18# and by Der-
rida and Gardner@19#. Recently it was also shown that th
persistence in the toy sequence studied in this paper is
same as the average fraction of metastable spins in the I
chain @15#. In the present context, we find the distributio
P0(R,N) in Eq. ~26! reduces to

P0~R,N!5E dFR2(
i 51

N

u~f i 211f i !GQ@fW #dfW . ~27!

Comparing Eqs. ~27! and ~8! one immediately finds
P0(R,N)5P(R,N), whereP(R,N) is precisely the occupa
tion time distribution that was computed in Sec. II. This th
establishes the promised link between the spin glass prob
discussed in this section and the non-Markovian toy
quence discussed in Sec. II. The infinite temperature dis
bution ~over disorder! of the thermally averaged number o
locally aligned spins is identical to that of the occupati
time distribution of the toy sequence discussed in Sec.
From the exact results ofP(R,N) derived in Sec. II, one
therefore knows the distributionP0(R,N) exactly as well.

A question naturally arises: Are there other solvable ca
for P0(R,N) apart from the 1-d chain? In the following sec-
tion we show that indeed the infinite range SK model is o
such case where the distributionP0(R,N) can be computed
analytically.

IV. THE SK MODEL

In this section we calculate the infinite temperature dis
butionP0(R,N) of the thermally averaged number of local
aligned spins in the infinite range SK model defined by
Hamiltonian in Eq.~22!, where^ i , j & runs over all pairs of
the total number ofN sites. The couplingsJi , j ’s are indepen-
dent of each other and we assume that each is drawn fro
Gaussian distribution,r(J)5AN/2pe2NJ2/2. The choiceJ
;N21/2 is necessary to ensure that the free energy is ex
sive in the largeN limit. It is clear from Eq.~26! that if we
definec i5( j Þ if i , j , where each of thef i , j ’s are indepen-
dent Gaussian variables with the distributionr(f)
5AN/2pe2Nf2/2, thenR5( i 51

N u(c i). It turns out that for
technical reasons it is easier to consider the variableM
5( i 51

N sgn(c i), where sgn(x)52u(x)21. HenceM52R
2N. In what follows we will compute the distribution
P0(M ,N) and derive the corresponding distribution ofR us-
ing the simple shiftM52R2N.

Since we are eventually interested in the limitN→`,
M→` but keeping the ratiom5M /N fixed, we setM
5mN and write

P0~m,N!5K dS (
i 51

N

sgn~c i !2mND L
c

5E
2`

` dm

2p
e2 immNK eim(

i 51

N

sgn(c i )L c , ~28!
2-6
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where we have used the representation of the delta func
d(x)5*2`

` eimxdm/2p and ^&c denotes the expectation ove
the distributions ofc i ’s. Using the identity,^eim sgn(y)&y
5(s521,1e

ims^u(ys)&y , one can rewrite Eq.~28! as

P0~m,N!5E
2`

` dm

2p
e2 immN (

$s i521,1%
K)

i
eims iu~c is i !L

c

.

~29!

We use the representation,u(x)5*0
`dl*2`

` (dl/2p)eil(x2 l )

in Eq. ~29!, make the transformationl is i→l i and m→
2m and then sum over thes i variables to obtain

P0~m,N!5E
2`

` dm

2p
eimmN)

i
K F E

0

`

dli2 cos~m1l i l i !

3E
2`

` dl i

2p
eil ic iG L

c

. ~30!

The following step is to evaluate the expectation va
^) ie

il ic i&c . Using c i5( j Þ if i , j , we note that ) ie
il ic i

5) i , je
i (l i1l j )f i , j . Using the Gaussian distributionr(f i , j ),

one can easily evaluate the expectation value to finally
tain, ^) ie

il ic i&c5exp@2(i,j(li1lj)
2/4N#. We expand the

sum ( i j (l i1l j )
252N( il i

212(( il i)
2 and use a Hubbard

Stratonovich transformation exp@2((ili)
2/2N#

5A(N/2p)*2`
` dzeiz( il i2Nz2/2 to finally write the expected

value of the product as

K)
i

eil ic iL
c

5A N

2pE2`

`

dze2Nz2/21 iz(
i

l i2(
i

l i
2/2.

~31!

We then substitute Eq.~31! in Eq. ~30! and carry out the
Gaussian integrations over the variablesl i ’s andl i ’s to get

P0~m,N!5A N

2pE2`

` dm

2p
eimmNE

2`

`

dze2Nz2/2@A~z,m!#N,

~32!

where the functionA(z,m) is given by

A~z,m!5
1

2 FeimerfcS z

A2D 1e2 imerfcS 2
z

A2
D G , ~33!

with erfc(x)5(2/Ap)*x
`e2u2

du being the complementar
error function.

We expand the right hand side of Eq.~33! in a binomial
series, substitute the resulting series in Eq.~32! and carry out
the integration with respect tom to obtain

P0~m,N!5
1

2NA N

2pE2`

`

dze2Nz2/2S N
~12m!N

2
D

3@erfc~z/A2!# (12m)N/2@erfc~2z/A2!# (11m)N/2.

~34!
04110
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e
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Keepingm fixed we then use the Stirling’s formula to ap
proximate the combinatorial factor in Eq.~34! for large N
and then use the steepest descent method to evaluat
integral in Eq.~34! for large N. This gives, ignoring pre-
exponential factors, a similar asymptotic behavior as in
1-d case, P0(m,N);e2NQ(m), where the large deviation
function Q(m) in this case is given by

Q~m!5
1

2
min

z
Fz21 (

s521,1
~12ms!lnS ~12ms!

2erfc~zs/A2!
D G .
~35!

In terms of the original variabler 5(11m)/2, the distri-
bution is then given by P0(r ,N)5P0(m52r 21,N)/2
;exp@2NF(r)# with F(r )5Q(2r 21), where Q(x) is
given exactly by Eq.~35!. The functionF(r ) is symmetric
aroundr 51/2 sinceQ(m) in Eq. ~35! is symmetric around
m50. As in the 1-d case, it seems difficult to obtain a close
form expression ofF(r ). However, it can be easily evalu
ated from Eq.~35! using Mathematica as displayed by th
dotted line in Fig. 1. Moreover, similar to the 1-d case, one
can evaluateF(r ) analytically nearr 51/2, as well as near
the tail regionsr→0,1. Omitting the details of algebra, w
find

F~r !5a1r lnS br

e D1•••r→0

5
2p

p12 S r 2
1

2D 2

1•••r→1/2, ~36!

where a5 ln(2)1z0
2/22 ln@erfc(z0 /A2)#, b5erfc(z0 /A2)/

erfc(2z0 /A2), andz0 is the root of the equation

z01A2

p

e2z0
2/2

erfc~z0 /A2!
50. ~37!

Solving Eq. ~37! numerically yields z0520.506 054 . . .
which givesa50.493 919 . . . andb52.263 61 . . . .

Thus the limiting behaviors ofF(r ) near r 51/2 andr
→0,1 in the SK model in Eq.~36! are qualitatively similar to
those in the 1-d case in Eq.~21!. Using similar arguments a
in Sec. I, one can understand the behavior nearr 51/2 as a
consequence of a central limit theorem that predicts a Ga
ian behavior forP0(R,N);exp@2(R2N/2)2/2sN

2 #, where
sN

2 5^(R2N/2)2& is the variance. Comparing with Eq.~36!
we find that the variance for largeN is given exactly by,
sN

2 5(p12)N/4p. This result for the variance can also b
derived by a direct method as shown in the Appendix, th
providing an additional consistency check. The results
the statistics ofR in the 1-d case and in the SK model can b
jointly summarized as: The mean is always given by,^R&
5N/2 and the variance for largeN is given by

sN
2 5

5

12
N, 1-d

5
p12

4p
N, SK. ~38!
2-7
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The behavior in the tail region nearr→0 ~or equivalently
nearr→1) is also interesting. Let us, for simplicity, consid
the r→1 limit whereR5N. It is clear from the expression
of P0(N,N) in Eq. ~26! that the delta function will contribute
only when each of theu function inside the sum are satisfie
i.e., if ) iu(( j Þ if i , j )51. Thus evidently P0(N,N)
5^) iu(( j Þ if i , j )&f . But this quantity is just the averag
number ofmetastableconfigurations in the spin glass. To se
this clearly, consider again the spin glass Hamiltonian in
~22!. A spin configuration is called metastable if the ener
required to flip any of theN spins is strictly positive. In othe
words, all the spins must be aligned to their local fields in
metastable configuration. Hence, for a fixed disorder,
fraction of metastable configurations~out of the total number
of 2N spin configurations! is given by, f (JW )
522N(SW) iu(hisi) where hi ’s are the local fields. Finally
the average~over disorder! fraction of the metastable con
figurations is given by,̂ f (JW )&J5* f (JW )Q@JW #dJW . Using once
again the gauge transformation for Ising spins,f i , j
5Ji , jSiSj one can easily express this average fraction

^ f (JW )&J5^) iu(( j Þ if i , j )&f5P0(N,N). Our results on the
large deviation function nearr 50,1 in Eq.~36! indicates that
P0(N,N)5P0(0,N);e2aN for large N with a
50.493 919 . . . . On theother hand, the average number
metastable configurations in the SK model was compu
long ago by Tanaka and Edwards@20# and also by Bray and
Moore @21# and this average is known to increase expon
tially for largeN as;eaN, wherea50.1992@21#. Hence the
average fraction scales as;eaN/2N5e2cN with c5 ln 22a
50.4939@21#. Thus the constanta in Eq. ~36! is precisely the
same as the constantc and hence the limiting behavior of ou
large deviation function near the tailsr 50,1 is completely
consistent with the calculation of average number of me
stable states.

Let us conclude this section with the following comme
In the case of the 1-d toy sequence, we found in Sec. II th
the full occupation time distributionP(R,N) and conse-
quently the associated large deviation function is comple
independent of the distributionr(f). In the case of the SK
model, we have derived the large deviation function fo
specific form of the disorder distribution, namely the Gau
ian form. Naturally the question arises as to how universa
this large deviation function as one changes the disorder
tribution. Evidently for finiteN the results in the SK case
unlike the 1-d case, will depend on the details of the dist
bution r(J). However, due to the 1/AN scaling in the defi-
nition of the distribution of theJi , j , the largeN results in-
cluding the large deviation are universal~upto rescaling by a
constant factor!, provided the variance of theJi , j ’s is finite.
In the case of mean field spin glasses with power law
Lévy interactions@25#, the variance of theJi , j is no longer
finite and it would be interesting to study the occupation ti
distribution in this context.

V. SUMMARY AND CONCLUSION

The three main points of this paper are:~i! we have been
able to derive exact results for the occupation time distri
04110
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tion of a non-Markovian process. In our case, the stocha
process is not continuous in time, but rather a discrete
sequence. Nevertheless this toy sequence retains the
Markovian property, which makes the results nontrivial. B
sides the fact that exact results are always useful and ins
tive, this toy sequence also appears in various phys
contexts such as diffusion process and spin glasses, thu
tending the range of applications of our results.~ii ! We also
established an exact mapping of this sequence to an I
spin glass chain using a gauge transformation. The occu
tion time distribution in the sequence then translates, via
mapping, into the distribution of the thermally averag
number of spins that are aligned to their local fields in t
spin glass chain at infinite temperature when all spin c
figurations are equally likely. This observation raises an
teresting question for any generic finite sized spin gl
model: at a given temperature, what is the distribution of
thermally averaged number of locally aligned spins? Our
act results in one dimension show that this distribution
mains nontrivial even at infinite temperature.~iii ! We then
were able to compute analytically this infinite temperatu
distribution in the SK model of spin glasses with Gauss
disorder and argued that for very largeN, the associated large
deviation function is again universal, i.e., independent of
precise form of the disorder distribution.

We leave open the possibility of computing this distrib
tion at a finite temperature for any spin glass model. F
example, it would be interesting to know how this distrib
tion changes as one goes below the spin glass transition
perature.

The study of the number of metastable spins in vario
other spin glass models is an open question. We mentio
few cases, where exact results along these lines may be
sible as the average number of metastable states is c
lable: the SK model in the presence of external fields@22#,
p-spin spin glass models@23#, spin glasses on random graph
@24#, mean field spin glasses with Le´vy interactions@25#, the
Hopfield neural network model@26# and the Random Or-
thogonal Model@27#. The study of spin glass models o
random graphs of fixed connectivityc are of particular inter-
est as they interpolate between the one dimensional
model studied here, atc52, and the SK model in the limit
c→`.

APPENDIX: DIRECT CALCULATION OF THE
VARIANCE OF M

In this appendix we compute the variances of the occu
tion time both in the one dimensional toy sequence and in
SK model by a more direct method. These results are id
tical to those obtained from the limiting forms of the larg
deviation functions nearr 51/2.

We have in general,

sN
2 5K F(

i
S u~c i !2

1

2D 2G L
5

N

4
12(

i , j
S ^u~c i !u~c j !&2

1

4D
5

N

4
1

1

2 (
i , j

^sgn~c i !sgn~c j !, ~A1!
2-8
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where we have made use of the identities^u(c i)&51/2 for
all i and sgn(x)52u(x)21.

In the one dimensional model only neighboring sites
correlated and hence one has

sN
2 5

N

4
12(

i
S ^u~c i !u~c i 11!&2

1

4D
52

N

4
12N^u~c1!u~c2!&, ~A2!

where we have used the isotropy of the sites in the largN
limit. One now has that

^u~c1!u~c2!&5E df0df1df2r~f0!r~f1!r~f2!

3u~f01f1!u~f11f2!

5E
2`

`

df0r~f0!E
2f0

`

df1r~f1!

3E
2f1

`

df2r~f2!. ~A3!

We introduce the functionF(f)5*2f
` df8r(f8) and use

the relationsr(f)5r(2f) anddF/df5r(f) to carry out
the integration and thus obtain

^u~c1!u~c2!&5
1

3
~A4!

Putting this altogether gives the largeN asymptotic result
sN

2 55N/12. In fact using the generating function techniq
used in this paper, and hence taking into account the bou
re

tt.

v.

M

04110
e
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ary terms exactly, one can show thatsN
2 55N/1221/6 for

anyN. Note that this result, for arbitraryN, is independent of
the precise form of the distributionr(f).

We now turn to the SK model wherec i5( j Þ if i , j and the
random variablesf i , j ’s are independent and identically dis
tributed with the Gaussian distribution r(f)
5AN/2pe2Nf2/2. Clearly, one has^c i

2&5(121/N) and
^c ic j&51/N. We use the well known identity that holds on
for Gaussian random variables as follows:

^sgn~X!sgn~Y!&5
2

p
sin21S ^XY&

A^X2&^Y2&
D . ~A5!

Using this identity we get foriÞ j ,

^sgn~c i !sgn~c j !&5
2

p
sin21S 1

N21D . ~A6!

This yields

sN
2 5

N

4
1

1

2p
N~N21! sin21S 1

N21D ~A7!

which gives the resultsN
2 5N(p12)/4p in the limit of large

N. We note that the result in Eq.~A7! for finite N is valid
only when the distribution of thef i , j is Gaussian. The finite
N result for arbitrary distribution of thef i , j will depend in
general on the details of the distribution and hence, in c
trary to what happens in the one dimensional toy model, w
not be universal. However, as argued in Sec. IV, the largN
results including the result for the variance, i.e.,sN

2 5N(p
12)/4p is universal as long as the variance of thef i , j is
finite.
urr.
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