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Persistence in a stationary time series
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We study the persistence in a class of continuous stochastic processes that are stationary only under integer
shifts of time. We show that under certain conditions, the persistence of such a continuous process reduces to
the persistence of a corresponding discrete sequence obtained from the measurement of the process only at
integer times. We then construct a specific sequence for which the persistence can be computed even though
the sequence is non-Markovian. We show that this may be considered as a limiting case of persistence in the
diffusion process on a hierarchical lattice.
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I. INTRODUCTION

In recent years, there has been a lot of interest in the s
of persistence of fluctuations in different physical syste
@1,2#. PersistenceP(t) is simply the probability that the de
viation of the value of a fluctuating field from its mean val
does not change sign up to timet. Persistence has been stu
ied in many nonequilibrium systems@1# and also in diverse
fields ranging from ecology@3# to seismology@4#. Theoreti-
cal studies include various models of phase ordering kine
@5#, diffusion equation@6,7#, reaction diffusion systems in
pure @8# as well as disordered environments@9#, fluctuating
interfaces@10#, and various theoretical models@11#. Persis-
tence or first passage properties find simple application
various chemical@12#, biological @13#, and granular system
@14#. In laboratory experiments, persistence has been m
sured in various experimental systems including breath
ures@15#, liquid crystals@16#, soap bubbles@17#, and laser-
polarized Xe gas using NMR techniques@18#.

In many of the nonequilibrium systems discussed abo
the underlying stochastic processc(t) is nonstationary. For
example, the two time correlation functionC(t1 ,t2)
5^c(t1)c(t2)& for the diffusion equation depends on th
ratio of the two timest1 and t2, and not on their difference
@6#. Persistence in such systems typically decays as a po
law P(t);t2u at late timest. The exponentu, called the
persistence exponent, is believed to be a new exponent a
apparently unrelated to the usual dynamical exponents
characterize the decay ofn-point correlation functions with
finite n. Persistence has also been studied for stationary
cesses@19,20# such as a stationary Gaussian process cha
terized by its two time correlationC(t1 ,t2) which is invari-
ant underarbitrary time translation, i.e.,C(t11t0 ,t21t0)
5C(t1 ,t2) for all t0. In the stationary case, persistence b
tween times t1 and t2 typically decays exponentially
P(t1 ,t2);exp@2usut22t1u# for a large time difference@20#.
For some processes such as the diffusion equation the
stationary problem can be mapped onto a corresponding
tionary one@6# and the exponentu of the nonstationary pro
cess becomes identical to the inverse decay rateus of the
corresponding stationary process@1#. Despite many theoret
ical studies of eitheru or us , exact results are known only i
relatively few cases@21#. The basic difficulty in computing
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either of them can be traced back to the fact that the un
lying stochastic processes in both cases are usually n
Markovian @1#.

In this paper we study the persistence in stochastic p
cesses that are stationary under translations in time only
an integer multiple of a basic period~without loss of gener-
ality, this period may be chosen to be 1!. Throughout this
paper we will refer to such processes as SIS~stationary under
integer shifts!. For example, a Gaussian stochastic proc
will have the SIS property if its two-time correlation functio
C(t1 ,t2) satisfiesC(t11n,t21n)5C(t1 ,t2) for all integer
n. Such processes appear in many physical situations.
example, in weather records, there is an underlying non
dom periodic forcing~the motion of the Earth a round th
Sun!, which makes the stochastic process not truly station
in time. In nonlinear systems, even if one can filter out t
periodic component, the properties of the filtered signal~say
variance! would still be expected to show a periodic vari
tion with time. It seems worthwhile to study in more deta
persistence in such SIS processes.

When one wants to study the persistence of SIS proces
the following question arises naturally: Is the probabil
P(t) that the process remains positive over the interval@0,t#
the same as the probabilityPn that the process is positiv
only at all then intermediate integer times between 0 andt?
In other words, is the persistence of a ‘‘continuous’’ S
process the same as the persistence of the correspon
‘‘discrete’’ sequence obtained by measuring the process o
at integer times?

The question regarding the difference betwe
‘‘continuous-time’’ and ‘‘discrete-time’’ persistence wa
raised in Ref.@22# for strictly stationary Gaussian processe
motivated from the observation that in experiment@18# as
well as numerical simulation@23# of persistence in the diffu-
sion equation, the measurements~whether the process i
positive! are done only at discrete points~separated by a
fixed time window of sizeD) even though the actual proces
is continuous. In Ref.@22# it was shown that for genera
stationary Gaussian processes, the continuous persistenc
cays asP(t);exp@2uct# for large t, where as the corre
sponding discrete-time persistence~obtained from measuring
the data only at the intermediate time points separated b
fixed D) decays asPn;exp@2udn#, where t5nD. In gen-
©2001 The American Physical Society23-1
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SATYA N. MAJUMDAR AND DEEPAK DHAR PHYSICAL REVIEW E 64 046123
eral, one would expect that the exponentuc is strictly greater
thanud for such a process since the process can change
between two successive integer points. The exponentud was
computed analytically in Ref.@22# for a Gaussian stationar
Markov process and was shown to depend continuously
the window sizeD.

In this paper we study the continuous-time vers
discrete-time persistence for SIS processes. We restrict
selves to the study of discrete-time persistence only when
measurement points in time are integers. This is a nat
choice since the process is stationary only under inte
shifts in time. We show that unlike strictly stationary pr
cesses, in this case, the two exponentsuc andud can be equal
under certain conditions. This discrete-time persistencePn of
a sequence is also rather interesting from a purely m
ematical point of view, especially when the underlying pr
cessc(t) is Gaussian. In that case, calculatingPn becomes
the problem of calculating the probability that a set ofn
Gaussian random variables with a specified joint probab
distribution are all positive. This ‘‘one-sided barrier’’ prob
lem has remained popular in the applied mathematics lit
ture for many decades@19,20,24#. But the number of case
where this probability can be explicitly calculated for largen
remains rather small@24#.

In this paper we study a specially simple case of
continuous-time stochastic processc(t) which is obtained as
a local smearing of a sequence of independent identic
distributed random variables via a smearing functionf (t).
This process becomes, by construction, a stochastic pro
whose probability distribution is invariant under time tran
lations by integers, i.e., a SIS process. We construct
amples whereud,uc , and also construct a family of smea
ing functionsf (t) for which ud5uc . We provide a physica
example, namely the diffusion equation on a hierarchical
tice where the diffusion field is a Gaussian stochastic proc
with the SIS property and we compute the correspond
smearing function exactly. We then determine exactly
exponentud for a specific case when the correlations in t
discrete sequence are nonzero only for consecutive va
We find that in this case, the exponentud depends continu-
ously on the value of the correlation.

The paper is organized as follows. In Sec. II we gi
some examples of continuous SIS processes whereuc is
strictly greater thanud , and we also construct a class
processes for whichuc5ud . In Sec. III we provide a physi-
cal example, namely the diffusion equation on a hierarch
lattice where the diffusion process shows logarithm
periodic oscillations. After rescaling, and a change of va
ables from timet to log(t), we get a stochastic process th
has the SIS property. In Sec. III we introduce a special
quence for which the persistence exponentud can be com-
puted exactly. Section IV contains a summary of our resu

II. CONTINUOUS-TIME VERSUS DISCRETE-TIME
PERSISTENCE

In this section we discuss the conditions under which
continuous-time persistence of a SIS process is the sam
the discrete-time persistence of a corresponding sequ
04612
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obtained by measuring the process only at the integer po
As noted earlier, in general, we expect thatuc.ud . Consider
a stochastic processc(t), which is known to be positive a
the integer pointst51,2, . . . ,N. Now consider the condi-
tional distribution ofc(t1) at some noninteger pointt1 lying
within the interval@1,N#. This conditional distribution is a
Gaussian whose width is independent of the values ofc(t) at
the known integer points. If this variance is finite, even in t
limit when N is large, clearly, there will be finite probability
of c(t1) becoming negative. Thus one would expect to g
uc5ud only if the conditional variance ofc(t1) tends to zero
for largeN. In such a process, one should be able to de
mine c(t) for all real t, if one knows its value at all intege
points.

This suggests the following construction ofc(t) : we con-
sider a sequence of independent random variables$f(n)%
having zero mean, wherenP$2`,1`%, and we define a
stochastic processc(t) by the convolution

c~ t !5 (
n52`

1`

f ~ t2n!f~n!. ~1!

Knowing c(t) at all integer points, one can expect to dete
mine uniquely the constants$f(n)% by solving coupled lin-
ear equations, which then determinesc(t) for all real values
of t.

The behavior of this process depends only on the sm
ing function f (t). In the following, we shall assume thatf (t)
has some good properties, i.e., is a non-negative unim
function of t, which decreases sufficiently fast for largeutu.
By a shift of the origin of timet, and rescalingc(t), we can
assume that the maximum off (t) occurs att50 and f (0)
51.

What is the class of functionsf (t) such thatuc equalsud?
This class is not easy to characterize directly. A simple
ample illustrates this point clearly. Consider the simple c
of triangular function

f ~ t !512utu/a for utu,a ~2!

50 otherwise. ~3!

In this case,c(t) is a piecewise linear function oft. If a
,1/2, we have intervals in whichc(t) is identically zero. If,
however, we define persistence probability as the probab
that the function does notchange signup to timet, it is clear
that for all a,1, we haveuc5ud5 log 2.

We now show thatucÞud if a.1. For this purpose, it is
sufficient to show that there are sequences$fn% such that the
correspondingc process is positive at all integer points, b
takes negative value for nonintegert. As such events would
occur with nonzero probability along the sequence,uc
.ud .

Let n be the integer just belowa. We consider a periodic
sequence offn with
3-2
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PERSISTENCE IN A STATIONARY TIME SERIES PHYSICAL REVIEW E64 046123
f i51 if i 50 mod~2n11!

52c if i 5n or n11 mod~2n11!

50 otherwise. ~4!

Then it is easy to see that if we choosec such that (a2n)
.(2a21)c.(a2n21/2), thenc(t5 i ) is positive for all
integersi, but c(t5n11/2) is negative. Clearly, these sign
are not changed if allf ’s deviate from these values by
sufficiently small amount. Then such sequences~of finite
length! will occur with nonzero frequency, and hence for a
a.1, uc is strictly greater thanud .

However, there are functionsf (t) for which uc5ud . The
simplest example of this class isf (t)5exp(2utu/a). In this
case, it is easy to see from Eq.~1! thatc(t) at any noninteger
point t can be expressed as a positive linear combination
its value at the two nearest integer points, so that for at
5n1dt with 0<dt<1 we have

c~n1dt !5Fsinh
dt

a
c~n11! ~5!

1sinh
~12dt !

a
c~n!G Y @sinh~1/a!#.

~6!

Thus, if c(n) andc(n11) are positive, Eq.~5! implies that
c(t) is positive for all n<t<n11. Hence one getsuc
5ud .

The example above can be generalized. For example,
can introduce a two parameter family of functions,f (t)
5exp(k1t) for t,0, and f (t)5exp(2k2t) for t.0 with k1
.0 andk2.0 and are not equal in general. In fact, one c
even introduce two arbitrary periodic functionsg1(t) and
g2(t) ~with period 1), and take

f ~ t !5exp@k1t2g1~ t !# for t,0 ~7!

5exp@2k2t2g2~ t !# for t.0 ~8!

without destroying the equality ofuc andud . One only has
to impose some conditions ong1(t) andg2(t) to ensure that
f (t) is unimodal. Effectively, we can take any unimod
function f (t) defined in the interval21<t<1, and extend it
to all real t using the conditionsf (t21)5e2k1f (t) for t
,0, and f (t11)5e2k2f (t) for t.0 to get a functionf (t)
for which ud anduc are equal.

III. PERSISTENCE IN DIFFUSION EQUATION ON A
HIERARCHICAL LATTICE

A simple example of a physics problem where functio
of the type given by Eq.~1! show up is the persistence of
diffusion field on a hierarchical lattice. The lattice may
thought of as a line havingN52n sites labeled by ann-bit
binary integeri ,0< i<N21 @25,26#. We define the ultra-
metric distance between two sitesi and j asd, if the binary
integers denotingi and j differ at then2d11 bit counting
from the left. Thus we haved51 between sites 2 and 3, bu
04612
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d54 between sites 7 and 8. At each sitei, we have a real
variablec( i ). At time t50, the fields at different sites ar
assumed to be independent identically distributed~i.i.d! ran-
dom variables~say Gaussians of mean zero, and variance!.
The fieldsc( i ) are assumed to evolve in time by the dete
ministic equation

d

dt
c~ i !5 (

j 50

N21

Ki , j@c~ j !2c~ i !#. ~9!

Here the spring constantsKi , j are assumed to be function
of the distancedi , j between the two points. In the following
we shall assume thatKi , j5a2di , j , where a is a constant
greater than 1.

The integration of the equations of evolution is made p
ticularly simple by the hierarchical nature of the spring co
plings. It is easily verified that we have 2n2r independent
eigenmodes of relaxation rate (a21)21a2r 11 (r
51,2, . . .N21), satisfying

d

dt
Sj

(r )5~a21!21a2r 11Sj
(r ) , ~10!

where

Sj
(r )5 (

k50

2r 2121

f~ j 2r22r 212k!2f~ j 2r2k!, ~11!

where j 51 to 2n2r .
Expanding any particularc( i ), say for i 51, in terms of

these eigenvectors, and we get

c1~ t !5 (
r 51

n21

22r /2 exp@2~a21!21a2r 11t#f~r !, ~12!

wheref(r )’s are i.i.d. Gaussian variables of zero mean a
unit variance that characterize the initial condition. This fo
mula for the hierarchical model may be compared with
corresponding formula one writes in the Euclidean spaced
dimensions

c~rW50!5E
0

`

dk exp~2k2t !h~k!, ~13!

whereh(k) are the white-noise process with variance

^h~k!h~k8!&5dk,k8k
d21. ~14!

We eliminate the time variablet in terms a logarithmic time
variablet using the identificationat5t, and we changec(t)
by a change of scale,c(t)5@at/2#c@ t5(a21)at#. Then we
have

c~t!5(
r 50

`

j~r !exp@2at2r #a(t2r )/2. ~15!

For large t, the summation overr can be extended from
2` to 1`, and the processc(t) then becomes a Gaussia
3-3
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SATYA N. MAJUMDAR AND DEEPAK DHAR PHYSICAL REVIEW E 64 046123
process with the SIS property, i.e., is stationary only un
integer shifts in time and is obtained by local smearing of
discrete white noisesf(r )’s,

c~t!5 (
r 52`

1`

f ~t2r !f~r !, ~16!

where the convolution functionf (r ) clearly goes to zero
when r tends to6`. Thus, the problem of calculating th
persistence exponent reduces that of calculating the e
nentsuc andud for a process defined by given convolutio
function f (t)5exp(2at)at/2. The origin of the SIS property
here comes from the discrete scale invariance of the orig
model, which gives rise to logarithmic-periodic oscillatio
in the relaxation processes@27#.

We have not been able to determine whether for this fu
tion f (t), the exponentsuc , andud coincide, or are different
However, in a simple Monte Carlo realization of a sequen
of 105 Gaussian variables$f i% ’s of zero mean and unit vari
ance, we did not find any instance where the functionc(t)
changed sign twice between two consecutive integers. T
indicates that these exponents, if not equal, are likely to
quite close to each other.

IV. EXACT RESULTS FOR A SPECIAL CASE

For a smearing functionf (t) for which uc5ud , the com-
putation of the persistence exponent simplifies considera
and reduces to its determination for a discrete seque
rather than a continuous process. But even then, the expo
ud is quite nontrivial for an arbitrary smearing functionf (t).
For calculatingud , only the values off (t) at integer points
are relevant. In the following, we shall consider in detail t
calculation ofud when only f (0) and f (21) are nonzero.
This can be thought of a crude approximation to the sme
ing function f (t)5exp(2at)at/2, as in the diffusion equation
on a hierarchical lattice, which decreases superexponent
for t.0 and only exponentially fort,0 for a.1. We will
show below that the exact computation ofud is nontrivial
even for this toy smearing function since the resulting
quence is non-Markovian.

In this special case, Eq.~16! becomes

c i5f i1e f i 11 , i 51,2, . . . ,n, ~17!

where we shall assume that$f i% are independent identicall
distributed random variables, not necessarily Gaussian,
drawn from the same distributionr(f). Heree is a mixing
parameter. For convenience, we relabel thef ’s without any
loss of generality to consider the following sequence:

c i5f i1e f i 21 , i 51,2, . . . ,n. ~18!

For simplicity, we will assume thatr(f) is symmetric about
the origin. The mean value off is then zero. We now ask
what is the probabilityPn(e) that c1 ,c2 , . . . ,cn are all
positive for a givene?

We note that the variablesc i ’s are now correlated. The
two point correlation function,Ci , j5^c ic j& can be easily
computed from Eq.~18!,
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Ci , j5s2@~11e2!d i , j1e~d i 21,j1d i , j 21!#, ~19!

where d i , j is the Kronecker delta function ands2

5*2`
` f2r(f)df. Thus the parametere serves as a measur

of the correlation and it is this correlation that makes t
calculation ofPn(e) nontrivial for nonzeroe.

The sequence$cn% defined by Eq.~18! is non-Markovian
in the sense that if only$cn% are observed, and not thefn’s,
cn depends not just on the previous member of the seque
cn21, but rather on the whole history of the sequence. F
example, from Eq.~18! one can expresscn as

cn5 (
k50

n21

~21!k21ekcn2k1fn2enf0, ~20!

which demonstrates explicitly the history dependence of
sequence. For non-Markovian sequences, it is generally
to compute the persistence exponent. Fortunately prog
can be made for this special sequence even though it is
Markovian.

In order to calculatePn(e), it is first useful to define the
following probabilities:

Q1~x!5E
x

`

df0r~f0!,

Qn~x!5E
x

`

df0r~f0!E
2ef0

`

df1r~f1!

3E
2ef1

`

df2r~f2!¯

3E
2efn22

`

dfn21r~fn21!, n>2. ~21!

Using the definitions in Eq.~18!, it is then easy to see tha
the persistencePn(e)5Qn11(2`). This is due to the fact
that for all thec i ’s in Eq. ~18! to be positive, whilef0 is free
to take any value,f1 must be bigger than2ef0 , f2 must
be bigger than2ef1, and so on. Differentiating Eq.~21!
with respect tox, we get the recursion relation

dQn~x!

dx
52r~x!Qn21~2ex!, n>1, ~22!

with Q0(x)51 and the boundary condition,Qn(`)50 for
all n>1. Let us define the generating function

F~x,z!5 (
n51

`

Qn~x!zn. ~23!

From Eq. ~22! it follows that F(x,z) satisfies a first order
nonlocaldifferential equation:

]F~x,z!

]x
52r~x!z@11F~2ex,z!#, ~24!
3-4
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with the boundary conditionF(`,z)50 for anyz. Once we
know the functionF(x,z), Pn(e) can be obtained by evalu
ating the Cauchy integral,

Pn~e!5Qn11~2`!5
1

2p i EC0

F~2`,z!

zn12 dz, ~25!

over a contourC0 encircling the origin in the complexz
plane.

Before proceeding to solve Eq.~24!, we make the simple
observation that

Pn~e!5PnS 1

e D , ~26!

true for anye. To see this, we first rescale thec i variables,
c i85c i /e. Clearly the persistence ofc i8’s is the same as
that of thec i ’s. Dividing Eq. ~18! by e, we see that in orde
for thec i8’s to be positive, we need to satisfy the condition
f0.2f1 /e, f1.2f2 /e, . . . , fn21.2fn /e where fn
can be arbitrary. Equation~26! then follows once we relabe
f i→fn2 i for all 0< i<n. Thus it is sufficient to compute
Pn(e) for e only in the range21<e<1. Once we know
this, Pn(e) for ueu.1 can be obtained from Eq.~26!.

Let us summarize our main results. We show that f
21,e<1, Pn(e);exp@2u(e)n# for largen, whereu(e) de-
pends continuously one and also depends on the distributio
r(f). In contrast, ate51, the exponentu(1)5 log(p/2) is
independent of the distributionr(f). The exponentu(e)
diverges ase→21, indicating a faster than exponential d
cay of Pn for large n. We show thatPn(21)51/(n11)!
exactly for all n>1, again independent of the distributio
r(f).

A. The case wheneÄÀ1

Let us first consider the casee521. In this case, Eq.~24!
becomes local and can be easily solved by integration.
symmetricr(f) with zero mean, the exact solution is give
by

F~x,z!5211expFzS 1

2
2E

0

x

r~x8!dx8D G , ~27!

which satisfies the boundary conditionF(`,z)50 for all z.
Expanding the exponential in Eq.~27! in powers ofz and

using the definition in Eq.~23!, we find Qn(x)5@ 1
2

2*0
xr(x8)dx8#n/n!. Using the relationPn5Qn11(2`) and

the normalization condition*2`
` r(x8)dx851, we get

Pn~21!5
1

~n11!!
~28!

for all n>1. RemarkablyPn(21) is independent of the dis
tribution r(f) for all n>0.
04612
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B. The case wheneÄ1

Next we consider the casee51. We first make a change
of variable, u(x)5*0

xr(f)df. Let F(x,z)5F̃(u,z). Since
r(f) is symmetric about zero,u(2x)52u(x) and hence
F(2x,z)5F̃(2u,z). Using this in Eq.~24! with e51, we
find

]F̃~u,z!

]u
52z@11F̃~2u,z!#, ~29!

whereu varies from21/2 to 1/2 and the boundary conditio
is F̃(1/2,z)50 for all z. Differentiating Eq.~29! with respect
to u we get a local second order differential equation

]2F̃~u,z!

]u2 52z2@11F̃~u,z!#, ~30!

whose general solution is given by

F̃~u,z!5211@a0~z!#@cos~zu!2sin~zu!#. ~31!

The boundary conditionF̃(1/2,z)50 determinesa0(z) and
we finally get

F~x,z!5211
cos@u~x!z#2sin@u~x!z#

cos~z/2!2sin~z/2!
. ~32!

Thus,F(2`,z)52/@cot(z/2)21#. This function has poles a
z5p/212mp, wherem is an integer. One can then easi
evaluate the contour integration in Eq.~25! and we get the
exact expression,

Pn~1!52(
2`

`
1

S p

2
12mp D n12 , ~33!

valid for anyn>0. For example, by summing the series
Eq. ~33! we find P0(1)51, P1(1)51/2, P2(1)51/3,
P3(1)55/24, etc. which can also be verified by performin
the direct integration in Eq.~21!. The remarkable fact is
Pn(1) is universal forall n>0 in the sense that it is inde
pendent of the distributionr(f), as in thee521 case.
Clearly the leading asymptotic behavior is governed by
m50 term in Eq.~33! and we getPn(1);exp@2u(1)n# for
large n, with u(1)5 log(p/2). Clearly the exponentu(1) is
also universal.

Interestingly, Pn(1) is related to the fraction of meta
stable states in an Ising spin glass on a one-dimensional~1D!
lattice of n sites at zero temperature@28#. Consider the spin
glass Hamiltonian on a chain,H52( iJi ,i 11sisi 11, where
si561 are Ising variables and the bondsJi ,i 11’s are inde-
pendent and identically distributed variables each dra
from the same symmetric distribution with zero mean. Out
the 2n number of total configurations, how many are me
stable with respect to single spin flip Glauber dynamics
zero temperature? A configuration is metastable at zero t
perature if the energy changeDEi52si@Ji 21,isi 21
1Ji ,i 11si 11#>0 due to the flip of every spinsi . Defining
3-5
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the new variablef i52Ji ,i 11sisi 11, we see that the variable
f i ’s are also independent and identically distributed and
probability that a configuration is metastable is precisely
probability that the variables,c i5f i1f i 21 are positive for
eachi. This is preciselyPn(1) as computed in the previou
paragraph. We note that the average number of metas
configurationŝ Ns& for the 1d spin glass was computed e
actly by Derrida and Gardner@29# by a different method and
they found^Ns&;(4/p)n for large n. Thus the fraction of
metastable configurations scales as^Ns&/2

n;(p/2)2n, in
agreement with our exact result forPn(1).

C. The caseÀ1ËeË1

We now turn to the range21,e,1. In this range we
were unable to calculatePn(e) exactly for arbitrary distribu-
tion r(f). However progress can be made for the unifo
distribution,

r~f!5
1

2
for 21<f<150 otherwise. ~34!

For this case, it follows from Eq.~24! that F(x,z) is inde-
pendent ofx for x,21 and hence,F(2`,z)5F(21,z).
Similarly, F(x,z)50 for all x>1. In the range,21<x<1,
we expandF(x,z)5(0

`bm(z)xm in a power series inx. Sub-
situting this series in Eq.~24!, we get the recursion relation
bm52bm21z(2e)m21/2m for all m>1. Thus the function
F(x,z) can be expressed completely in terms of onlyb0(z)
which is then determined from the boundary conditi
F(1,z)50. This determinesF(x,z) completely in the range
21<x<1 and we findF(x,z)5211 f (xz)/ f (z), where

f ~z!5 (
m50

`
~21!m(m11)/2

m! S z

2D m

em(m21)/2. ~35!

Using F(2`,z)5F(21,z), we finally get

F~2`,z!5211
f ~2z!

f ~z!
, ~36!

where f (z) is given by Eq.~35!. We note that the series i
Eq. ~35! and hence in Eq.~36! is convergent for allz as long
as21,e<1. In fact, fore51, it is easy to see that Eq.~36!
givesF(2`,z)52/@cot(z/2)21# as before.

Substituting Eq.~36! in the expression ofPn(e) in Eq.
~25!, we find that the leading asymptotic decay ofPn for
largen is governed by the pole ofF(2`,z) that is closest to
the origin. From Eq.~36!, the poles ofF(2`,z) in the z
plane are precisely the zeroes of the functionf (z) in Eq. ~35!
in thez plane. In particular,Pn(e);z1

2n for largen wherez1

is the zero off (z) in Eq. ~35! closest to the origin. The
persistence exponent is then simply,u5 log(z1). Let us first
consider a few special cases. Fore51, we find from Eq.
~35!, f (z)5cos(z/2)2sin(z/2), indicatingz15p/2, a result
we already obtained. Fore50, we find from Eq.~35!, f (z)
512z/2, indicatingz152, as expected for the persisten
04612
e
e

ble

of uncorrelated variables. Ase→211, the functionf (z) in
Eq. ~35! approachesf (z)→exp(2z), indicatingz1→`. In-
deed, by settinge5211d in Eq. ~35! it is easy to see tha
z1'A8/d asd→0. Thus the persistence exponent diverg
asu' log@A8/(11e)# ase→21.

For other values ofe in the range21,e,1, it is easy to
evaluatez1 to any arbitrary accuracy from Eq.~35! using
MATHEMATICA . The exponentu5 log(z1) for some represen
tative values ofe in the range21,e<1 are listed in Table
I. The exponentu(e) increases monotonically ase decreases
from 11 to 21, diverging ase→21. For ueu.1, the expo-
nent is determined from the relation,u(e)5u(1/e). Thus in
the whole range,2`,e,`, the exponentu(e) is a non-
monotonic function ofe. As e varies from2` to `, u(e)
increases monotonically in the range@2`,21#, then de-
creases monotonically in@21,1# followed by a further
monotonic increase in the range@1,̀ #. The slowest decay o
Pn occurs ate51, whereu(e) is minimum and given by the
universal value,u(1)5 log(p/2).

Except ate50, 1, and21, the exponentu(e) is nonuni-
versal in the sense that its value depends on the details o
distribution r(f). To see this explicitly, we now comput
u(e) perturbatively for smalle. We expand the right-hand
side of Eq.~24! up to ordere and then solve the resultin
local differential equation exactly to determineF(x,z) up to
O(e). Taking thex→2` limit in the expression ofF(x,z),
we find

F~2`,z!5
2z

@22z22cr~0!ez2#
, ~37!

wherec5*0
`fr(f)df. From Eq.~37! the pole closest to the

origin is given by

z152@124cr~0!e1O~e2!#. ~38!

From Eq.~25! it then follows thatPn(e);z1
2n for large n.

Henceu(e)5 log(z1)5log(2)24cr(0)e1O(e2) and is clearly
nonuniversal, as seen from the nonuniversality of theO(e)
term in the previous equation. For example, for the unifo
distribution in Eq.~34!, we getu(e)5 log(2)2e/21O(e2).

TABLE I. The exponentu(e) for some representative values o
e in the range,21,e<1 in the case of the uniform distribution in
Eq. ~34!.

e u

1.0 log(p/2)50.4515 . . .
3/4 0.4690 . . .
1/2 0.5155 . . .
1/4 0.5882 . . .
0 log(2)50.6931 . . .
21/4 0.8465 . . .
21/2 1.0906 . . .
23/4 1.5686 . . .
3-6
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On the other hand, for the Gaussian distribution,r(f)
5(2p)21/2exp(2f2/2), we getu(e)5 log(2)22e/p1O(e2).

V. CONCLUSION

In summary, we have discussed persistence in stoch
processes that are stationary only integer translations of t
Such a process can be explicitly constructed by smea
independent noises with a convolution functionf (t). A
physical example of such a process is provided by the di
sion field on a hierarchical lattice for which we have co
puted the smearing functionf (t) exactly. However, we could
not compute the persistence exponentsuc or ud in this case.
We showed that under certain conditions, the continuo
time persistence of such a process reduces to the persis
of a discrete sequence obtained by measuring the pro
only at integer times. We have constructed a specific n
Markovian sequence where the smearing function is nonz
only at two consecutive integer points leading to nonz
correlations only between consecutive values of the sequ
and computed the persistence exponentud exactly for this
u
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sequence. The exponentud depends continuously on th
strengthe of the correlation. Remarkably fore51 ande5
21, the persistence becomes universal. Fore51, we have
shown an interesting connection between the persistenc
this sequence to the average fraction of metastable states
one-dimensional spin glass.

The class of functionsf (t) for which we could show that
uc5ud is perhaps not the most general. A precise charac
ization of this class seems like an interesting problem. C
culation of the persistence for SIS processes, or sequen
with correlations extending beyond nearest neighbors ma
possible in some special cases, and would help unders
the general question about the dependence of the persis
exponent on the correlations in the sequence.
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