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We establish an equivalence between the undirected Abelian sandpile model and the q ~ 0 
limit of the q-state Potts model. The equivalence is valid for arbitrary finite graphs. 
Two-dimensional Abelian sandpile models, thus, correspond to a conformal field theory with 
central charge c = - 2 .  The equivalence also gives a Monte Carlo algorithm to generate 
random spanning trees. We study the growth process of the spread of fire under the burning 
algorithm in the background of a random recurrent configuration of the Abelian sandpile 
model. The average number of sites burnt upto time t varies at t ~. In two dimensions our 
numerically determined value of a agrees with the theoretical prediction a = 8/5. We relate 
this exponent to the conventional exponents characterizing the distributions of avalanche 
sizes. 

I. Introduction 

In recent years the concept of self-organized criticality (SOC) has attracted 
much attention [1-5]. It has been found useful in the description of such 
diverse systems as earthquakes [6-8], forest fires [4], relaxation phenomena in 
magnets [9, 10] and coagulation [11]. Bak et al. in their pioneer papers [1, 2] 
introduced the concept through the example of sandpiles, which have been 
extensively studied [12-16] as paradigms of self-organized critical systems. 
Sandpile-like lattice models have been used to describe fracture [17], neural 
networks [18] and hydrogen bonding in liquid water [19]. Of special interest 
are the so-called Abelian sandpile models [20] (ASMs) as they provide a 
nontrivial, analytically tractable example of SOC. In an earlier paper [20], we 
have shown that if the toppling condition at a lattice site depends only on the 
height of sandpile at that site and not on heights at other sites, operators 
corresponding to sandgrain addition at different sites commute. This Abelian 
property was used to analytically determine the steady state of the model, and 
also some response functions and the spectrum of relaxation times in the 
critical state. 

While there has been much interest in the study of ASMs [21-26], so far 
only some of the critical exponents of interest have been determined analytical- 
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ly. All the critical exponents in d-dimensions are known exactly only for ASMs 
with a preferred direction, which are in the same universality class as the voter 
model  [27]. For undirected ASMs, exponents characterizing the distribution of 
avalanche sizes have been determined analytically only for the Bethe lattice 
(d = ~) [28] and in the mean field theory [29-31]. It is known [20] that the two 
point correlation function measuring the expected number of topplings at a 
point at distance r from the point where sand is added varies as r 2 -d  for large r 
in d dimensions. Also, the correlation between heights of sandpile at two sites 
separated by r varies as r -2d  [32]. Only numerical estimates are available so far 
for the exponents characterizing the distribution of avalanches by their dura- 
tion, linear extent,  number  of topplings, etc. 

This paper is organized as follows. In section 2, we establish an equivalence 
between the steady state of the ASM defined on arbitrary graph G and the 
spanning trees problem on a related graph G', obtained by connecting one 
extra site to G. The number of stable configurations that occur with nonzero 
probability in the steady state of the ASM equals the number of spanning trees 
on G'. We establish a one to one correspondence between allowed configura- 
tions (those which occur with nonzero probability in the steady state) of ASM 
on G and the spanning trees on G'. This then gives us an unbiased algorithm to 
generate spanning trees. In section 3, using the known relation between 
spanning trees and the q-state Potts model,  we get an equivalence between the 
ASM and the q ~ 0 limit of the q-state Potts model. Our knowledge of critical 
exponents  of the latter in two dimensions from conformal field theory thus 
helps us determine exactly one more critical exponent  for the ASM in two 
dimensions. In section 4, we study numerically a growth model where the fire 
spreads under the burning algorithm in the background of a random recurrent 
configuration of ASM and in particular show that the dynamical exponent  z of 
the growth model is equal to the fractal dimension of the backbone of random 
spanning trees. In section 5, we establish some scaling relations between the 
different exponents of avalanche distributions of ASM and relate them to z. 

2. Equivalence of ASM to spanning trees problem 

We start by recalling the definition of the general ASM on a set of N sites 
labelled 1, 2 . . . .  , N. At each site i, the height of the sandpile is given by an 
integer z i. Addit ion of sand corresponds to increasing the height of the pile by 
unity at a site chosen at random. If the height at any site i exceeds a critical 
value Zic, that site topples and all the variables zj ( j  = 1 . . . . .  N) are updated 
according to the rule 
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z j - -~  z j  - Aij , for all j ,  

where A~j is an integer matrix satisfying 

A , > 0 ,  Aij~<0 and ~ A i ~ > 0 .  
J 

In this paper,  we restrict our attention to undirected graphs so that the matrix 
A is symmetric, 

Aij ---- Aj~, for all i and j .  

We can represent the toppling rules by a graph G'  containing N + 1 sites, 
labelled 0, 1, 2 . . . .  , N. The graph has multiple links allowed, and the number  
of links between sites i and j (i and j both nonzero) equal IAijl. For  all i ~ 0, we 
connect  site i to site 0 using (E~v=l Aij ) links. The site 0 represents the sink, so 
that on a single toppling at site i, the number  of sandgrains lost from the 

N Aij) equals the number  of sandgrains transferred from i system (which is E j=l 
to 0. 

We have earlier introduced a burning algorithm to distinguish between stable 
configurations of the sandpile that occur with nonzero probability in the steady 
state, and those that do not [20]. In this algorithm, it does not matter  in which 
order  the sites are burnt. It is, however,  useful to introduce the concept of time 
of burning. This is done quite simply as follows: At time t = 0, all sites of the 
graph G '  are unburnt,  except 0 which is burnt. At  any time, an unburnt  site i is 
called "burnable"  iff zi strictly exceeds the number  of edges connecting i to 
o ther  unburnt  sites. A burnable site at time t becomes burnt at time t -4- 1, and 
stays burnt at all subsequent times. 

We note that the growth of fire is deterministic for a given configuration of 
heights of the sandpile. The stochastic character comes from the randomness in 
this background configuration as in case of invasion percolation [33]. We have 
shown earlier that a configuration occurs with a nonzero probability in the 
steady state if and only if eventually all the sites of the graph get burnt under 
this algorithm. 

Take an arbitrary site i. Let  ~'i be the time step at which this is burnable. 
Then  we say that 7g -4- 1 is the burning time of the site i. Then from our burning 
rules it follows that site i must have at least one neighbour (site connected by 
an edge) whose burning time is ~-~. Let  r~ be the number of such neighbours. 
Let  us write 

J 
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where the pr imed summation is over  all unburnt  neighbours j of i at t ime ~'i. 
Then ,  since site i is burnable at t ime ~,  we have Zg >sci. Also, since the site 
was not burnable  at t ime ~ -  1, we must also have 

Zi ~ i " ~  K ,  

where K is the number  of distinct edges connecting i to its r i neighbours which 
were burnt  at t ime ~i- We say that fire reaches the site i by one of these K 
bonds.  If  K = 1, there is only one possibility and there is no problem. If  K > 1, 
we shall select the bond by which the fire reaches i depending on z/. For this 
purpose,  we order  all the edges incident on site i in some order of preference.  
This ordering is arbitrary,  and can be chosen independently for edges incident 
at each site i. Then,  if z i = ~i ~- S, we say that fire reach site i using the sth 
bond  f rom the ordered list of K bonds connecting site i to its neighbours burnt  
at ~'i. 

Clearly, this prescription gives a unique path to the fire reaching site i, given 
the configuration of heights of the sandpile. The set of all bonds along which 
fire propagates  connects 0 to the rest of the lattice. Each site i is thus connected 

to 0, and there are no loops. This set of edges thus forms a spanning tree on 
the graph G'.  F rom our previous discussion, it is clear that there is a one to one 
correspondence  between allowed configurations of height in the sandpile, and 
the spanning trees on G' .  

In fig. 1, we have illustrated the one to one correspondence between 
spanning trees and the allowed configurations of ASM. Fig. l a  shows an 
allowed height configuration for an ASM on a 4 x 4 square lattice. Fig. l b  
shows the corresponding spanning tree where the solid line denotes the 
boundary  t reated as a single site 0. At  each site (except 0) there are four bonds 
incident. Call them N, E,  S, W depending on the direction of incidence. Let  us 
choose the ordering (same at each site) N > E > S > W. Then for the site 
labelled A,  which burns at t = 1, we have CA = 2, K = 2. The fire could reach A 
f rom north or from west. We then must have 3 ~< z A ~< 4. Since the height is 
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Fig. 1. (a) A typical height configuration of the ASM on a 4 x 4 square lattice and (b) the 
corresponding spanning tree. The deep solid line outside the square denotes the single sink site 0. 
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second of these values, we choose the bond second in preference (west) to 
burn A. At  site B, the height variable is 3 and leads to choosing the south 
bond,  which has higher preference compared to the west bond. 

Now, determination of the number  of spanning trees on a graph is a 
well-known problem in graph theory,  and the number of trees T is given in 
terms of minors of the incidence matrix of the graph [34]. For the graph G', the 
incidence matrix is (N + 1) x (N + 1) matrix Z~ obtained by adding one row and 
column to the matrix A so that 

i j 
for i = 0  . . . . .  N ,  

and 

~ij = Ai] for i, j = 1 , . . .  , N .  

The determinant  o f / i  is zero by construction, and deleting the row and column 
corresponding to any site (say 0), we get a matrix (in this case A) whose 
determinant  equals T. We thus have 

T = det A.  

Since the spanning trees of G '  are in one to one correspondence with allowed 
configurations of the sandpile, we have still another way to derive the result 
that the number  of allowed configurations of the ASM is given by det d.  

We note that once an order  of preference is decided for the bonds incident at 
all sites, we can associate a unique spanning tree with each allowed configura- 
tion of the ASM. Adding a particle and relaxing to a stable configuration gives 
a new allowed ASM configuration and therefore a different spanning tree on 
G'. We can thus study a random sequence of configurations of the ASM on G, 
and use the equivalence to get an unbiased Monte Carlo algorithm to generate 

spanning trees on a graph G'. 

3. Equiva lence  to q = 0 Potts  mode l  

It is known [35] that the spanning tree problem corresponds to the q-state 
Potts model in the limit q---> 0. In our problem, assign a q-state Potts spin o- i to 
each site i of G',  and consider the Potts Hamiltonian 

H = ql /2K ~ Aq6(o-i, o'j). 
i) 
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Then in the limit q---~ 0, K fixed, the partition function of the Hamiltonian, 
apart  from the unimportant  overall normalization factor, tends to the limit 

Z P o t t  s ~-  q(N+z)/2KNT + terms higher order  in q .  

We thus have a rather unexpected equivalence between the nonequilibrium 
ASM and a model of equilibrium statistical mechanics. We note that the 
transition rates of the Markov process defined by ASM do not satisfy the 
detailed balance condition. In such cases, the effective Hamiltonian defined for 
each configuration by the logarithm of probability in the steady state usually 
contains long range interactions. While the enumeration of allowed configura- 
tions of ASM superficially looks like the calculation of the partition function of 
an ice-like model,  there is an important difference: in the ice model, the 
constraints are local, and in a single sequential scan of the configuration, one 
can decide if the configuration is allowed or not. This is not so for the ASM. 
Similarly for spanning trees, one cannot decide if a configuration of bonds on a 
graph form a spanning tree in one sequential scan of the configuration. 

In the q ~ 0 limit, the Potts model is also equivalent to the resistor network 
problem, and its two point correlation function satisfies a linear equation. It 
varies as r 2-d for large r in d dimensions for all temperatures.  Thus q = 0, K 
arbitrary is a line of critical points in the (q,  K) plane. That  the criticality of 
the model is insensitive to variations of K is a reflection of self-organized 
criticality in the model. Comparing with the known results of the ASM, we see 
that the Potts model two point correlation function corresponds to the ASM 
correlation function Gij measuring the expected number of topplings at site i 
due to addition of a particle at j. 

It would be interesting to identify Potts model clusters that would corre- 
spond to avalanche clusters in ASM. This seems difficult. The main problem is 
the absence of a natural preference order in the bijection between spanning 
trees and the allowed configurations of the ASM. Also the q---~0 limit is 
somewhat formal, and it is difficult to get an intuitive understanding of the 
behaviour  of spins in this limit. 

In the rest of this paper, we shall consider only the two-dimensional ASM on 
the square lattice unless otherwise stated. 

In the case of two dimensions, several results about the Potts model are 
known from Coulomb gas equivalence and conformal field theory. For exam- 
ple, we know that the q ~ 0 Potts model corresponds to the conformal field 
theory with central charge c = - 2 .  For the q-state Potts model, the energy-  
energy correlation function at the critical point varies as r -2xv for large 
separations r [35], where 
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X T ~ - -  

l + y  2 -I(xV  ) , y = -- cos 
2 - y  -rr 

For  q = 0, we get x x = 2. Since it is known that the height-height  correlation 
function of the ASM in d dimensions varies as r -2d for large r [32], we may 
conclude that the height opera tor  of  the ASM corresponds,  in the cont inuum 
limit, to the energy density opera tor  of  the 0-state Potts model.  

It  is possible to deduce that the central charge c = - 2  for ASM using only 
the fact that two-dimensional  ASM corresponds to a critical conformal field 
theory and finite size scaling. Let  us consider the ASM on a finite square lattice 
L x M. We assume periodic boundary  conditions in the y-direction, and open 
boundary  conditions in the x-direction. Then the allowed number  of configura- 
tions in the SOC state of this model is 

N = det A ,  

where  A is the Laplacian matrix given by 

A,.r, = 

4 if r = r ' ,  

- 1  if r and r '  are nearest  ne ighbours ,  

0 o therwise .  

Using the periodicity of A under  translations in the y-direction, it is easy to 
show that  

M-1 Am++l(2~rm/M)  _ A L + l ( 2 , r r m / M )  
det A = l-I 

m=o A + ( Z ~ m / m )  - h _ ( 2 ~ r m / M )  

where 

(3.1) 

A±(k) = 2 - cos k --- ~/(1 - cos k)(3 - cos k ) .  

If  the logarithms of eigenvalues of the corresponding transfer matrix are / z  
(a  = 1 , . . . ,  4M), f rom general theory,  the parti t ion function of a system of 
length L along the transfer direction is of the form 

Z L = ~ c~ e x p ( / z ~ L ) ,  (3.2) 
ot  

where c o 's  are some boundary  condition dependent  constants. Compar ing eq. 
(3.1) with (3.2),  we can write down 2 M eigenvalues of  the transfer matrix for 
the A S M  problem,  
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M - 1  

]'~ol = 2 E m l n [ A + ( 2 ~ m / M ) ] ,  
rn=o 

where ~,~ = - 1 .  Taking all ~m : 1 gives us the largest eigenvalue 

M - 1  

P'1 = ~ In{2 - cos (2xrm/M)  + ~/[1 - cos(2~rm/M)][3 - c o s ( 2 1 r m / M ) ] } .  
m = 0  

For  large M, this can be simplified to give 

2~r 

f dk /x 1 = M ~ ln[A+(k)] - 2"rr/6M + 6 ( 1 / M 2 ) .  

0 

Since from finite size scaling theory [36], the corrections to the bulk free energy 
should vary as ~rc/6M, we see that ASM corresponds to a conformal field 
theory with central charge 

c =  - 2 .  

4. Numerical study of the burning process 

We have studied the growth of fire in the burning algorithm in the two- 
dimensional ASM numerically. We considered a square lattice of size L x L 
with periodic boundary condition. Since for a critical steady state to exist, it 
should be possible for extra sand to leave the system, we puncture this torus by 
deleting one site (called the origin). Any sand grain falling at the origin is 
removed from the system. 

Sandgrains are added one by one randomly. After each grain is added, we 
check if the resulting configuration is stable. If at any site, height of the pile 
exceeds 4, four grains drop from that site, one on each of the four neighbours. 
We relax the sandpile to a stable configuration before adding another  
sandgrain. This generates a sequence of stable configurations {Ci} of the 
sandpile. For these configurations, we studied the growth of burnt cluster as a 
function of time. In practice, in order to generate a sequence of statistically 
uncorrelated stable configurations, we analysed only every rth configuration of 
the sequence {Ci} (in our case r - - X / L  or more).  Fig. 2 shows the growth of 
fire in two typical configurations. We note that the clusters are compact but 
quite irregular in shape. There  are very few holes, and these occur only near 
the surface. Deep inside the burnt cluster, there can be no holes, as each hole, 
once generated,  must shrink in size with time till it disappears. 



(a) 

(b) 
Fig. 2. Two configurations of the burnt duster  on a 121 x 121 lattice. The black dot, completely 
surrounded by deep blue region, denotes the hole at the center. The colour codes indicate the time 
of burning, starting with deep blue and followed by indigo, light blue, deep green, light green, 
yellow, orange and red. The colour changes every 4 time steps and the colour code starts repeating 
after red. Note the highly anisotropic growth of the duster in (b). 
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608 880 1800 

Fig. 3. The plot of It/N (upper curve) and 12/N (lower curve) against N, where I t and 12 are the 
moment of inertia of the cluster about the origin and the center of mass, respectively, and N is the 
number of sites in the cluster. The data is averaged over 300 configurations on a 121 × 121 lattice• 

For  a cluster containing N sites, we calculated the momen t  of inertia II(N ) 
about  the origin, and the momen t  of  inertia I2(N) about  the center of  mass of 
the cluster. In fig. 3, we have plotted the value of I I (N) /N  and I2(N) /N as a 
function of N, averaged over  300 distinct clusters. These graphs show a fairly 
clear linear dependence  of the radius of gyration on N. This is in agreement  
with our  theoretical  result that the fractal dimension of these clusters must be 
2, as the clusters cannot  have holes (except near  the surface). 

We note,  however ,  that f rom our data I 2 ( N ) / N  2 is approximately equal to 
0.245. This value is significantly larger than the value 1 /2 r r~0 .159 ,  which is 
the value of I 2 ( N ) / N  2 for a circular disc, indicating that the cluster shape is not 

near ly circular. In fact, the growth of clusters is highly irregular, and in many  
cases, the cluster grows for a long time in one region or quadrant ,  with no 
growth at other  parts of  the perimeter .  Note  that,  in the cluster shown in fig. 
2b, the distance of the origin f rom the cluster boundary is only 3 units, while 
the d iameter  of  the cluster is about  100 units. 

While the actual growth of the cluster is quite erratic, some features of the 
growth are fairly predictable,  and do not vary much from sample to sample. 
For  example ,  in fig. 4, we have plotted ( N  t) ,  the total number  of sites burnt  
upto  t ime t versus t, for different lattice sizes. N t is a monotonically increasing 
function of t ime t, which reaches the maximum value Nma x = L 2 - 1 at some 
sample  dependent  t ime t*. At  t ime t*, the fire consumes the last unburnt  site, 
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Fig. 4. The log-log plot of (N),,  the total number of sites burnt upto time t versus t for L = 129, 
257, 513 and 1025. The corresponding number of configurations over which N, was averaged were 
respectively 174 000, 29 750, 4975 and 70. 

a n d  for  all t />  t*, N, = L 2 _ 1. F o r  t much  less than  t*, N, inc reases  as a p o w e r  

o f  t. T h e  d a t a  shown in fig. 4 shows ave rage  va lue  of  N, for  la t t ice  sizes 

L = 129, 257, 513 and  1025. T h e  n u m b e r  of  conf igura t ions  used  for  ave rag ing  

we re  174000, 29750, 4975 and  70, respec t ive ly .  W e  see tha t  for  t ~  t*, we have  

( U ) t ~ t  a 

with  

a = 1.595 + 0.020 

In  fact ,  o u r  d a t a  is qu i te  cons i s t en t  wi th  the  scal ing fo rm 

( U ) ,  = L 2 f ( t / L  z) (4.1)  

wi th  

z = 1.254 - 0 . 016 .  

Th is  va lue  o f  e x p o n e n t  z ag rees  very  well  wi th  the  t heo re t i ca l  p r e d i c t i o n  

z = 5 /4 .  In  fig. 5 we  have  p l o t t e d  ( N ) , / L  2 as a func t ion  o f  t / L  z with z = 5 / 4  
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Fig.  5. The  p lo t  of  ( N ) , / L  2 versus  t /L  z for  z = 1.25 and  L = 129 ,257  and  513. D a t a  for d i f fe ren t  
L co l l apse  o n t o  a s ingle  curve.  

for L = 129, 257 and 513. The data for different L collapse nicely onto a single 
curve. In the spanning tree equivalence, t is just the distance along the tree 
(the so-called chemical distance) between the origin and the burning points on 
the boundary of the cluster. In the spanning tree problem, such a path may be 
called the backbone of the tree. But for spanning trees all the bonds in the 
backbone are red bonds, whose fractal dimension is known for the q-state 
Potts model for all q [37]. Specializing to the case q---~ 0, these results imply 
that 

t * ( L )  ~ L 5/4 . 

Using the scaling (4.1) we then get 

N t ~ t  8/5 . 

In fig. 6 we have plotted the average number  of perimeter sites of the cluster 
as a function of time t. We see that the average perimeter varies linearly with 
time, and so the fractal dimension of the perimeter of the cluster is the same as 
that of a typical burning path of the cluster from the origin to a point on the 
perimeter ,  and equals 5/4. 

The fact that the diameter  of a cluster grows slower than linearly with time, 
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Fig. 6. The average number of perimeter sites P(t) of a burning cluster at time t is plotted against 
t. The data is for a 121 × 121 lattice averaged over 100 configurations. 

implies that the asymptotic  velocity of the fire front tends to zero. This can be 
described quantitatively in terms of distribution of waiting times. We define the 
waiting t ime for burning of any site i to be t -  t ', where t is the time step at 
which site i is burnt ,  and t '  is the t ime step at which fire reached one of its 
neighbours  for the first time. We define F(r)  as the probabil i ty that a randomly 
picked site in the cluster has a waiting time ~>~-. In fig. 7, we plot numerically 
de te rmined  F(r )  versus r. We see that this probabil i ty distribution function 
decays as a power  law 

F(T) -- r - x ,  for 1 ,~ r ,~ L z , (4.2) 

with 

x ~ 0 . 5 ± 0 . 1 .  

It  is easy to understand the origin of  this power  law. Consider all the sites of 
the cluster reached upto t ime T. Then the sum of their waiting times so far 
equals ET__ ~ P( t )  where P( t )  is the per imeter  at t ime t. But P( t )  increases 
linearly with t (fig. 4), and so the sum of waiting times increases as T 2. By 
definition, each of the waiting times is less then or equal to T. If  we assume 
that  the distribution of waiting times of these sites is same form as eq. (4.2) 
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Fig. 7. The log-log plot of the cumulative waiting time distribution FO- ) versus ~-, averaged over 
100 configurations, for lattice size 121 x 121. 

except an upper  cutoff at ~-= T, we find that the mean waiting time must 

increase as T ~-x, for large T. This gives 

x = 2 / z - l = 3 / 5 ,  

which is consistent with our numerical data. 

5. Relationships between avalanche distribution exponents 

There  is a close connection between the avalanche clusters of the ASM and 
the growth clusters discussed in section 4. Given a recurrent configuration of 
the ASM in the one-hole geometry ,  suppose we "fill" the hole at 0, assign the 
height of  the sandpile at 0 to be 5 and thus initiate an avalanche at 0. Then the 
cluster of distinct sites toppled at least once upto time t, is identical to the 
growth cluster burnt  upto t for the same background configuration for all t ime 
t. The outward moving toppling front of the avalanche started at 0 proceeds 
exactly in the same way as that of the fire front in the corresponding growth 
process.  It is thus possible to relate the exponents  of the avalanche dis- 
tr ibutions to the dynamic exponent  z of the growth process. 

Let  ~ denote  the linear extent (diameter) of the avalanche cluster. We denote 
the duration of the avalanche by T. The number  of distinct sites where at least 
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one  toppl ing occurs  will be deno ted  by s d, and the total n u m b e r  of  topplings by 

s. In  one  avalanche  a part icular  site may  topple  several t imes, and so s />  s d. 
Le t  n¢ deno t e  the n u m b e r  of  topplings at the site where  the sandgrain  causing 

the avalanche  was added.  Then  ~, T, sd, s and n c are stochastic variables.  We 

in t roduce  the exponents  rr, r t, rd, rs by  the relat ions that  for  large x, 

P rob(  ~: i> x) -- x - ' + l  , (5.1) 

P r o b ( T  >I x) - x - ' + 1  , (5.2) 

Prob(s  d/> x) - x -'~+1 , (5.3) 

P rob ( s />  x) ~ x - ' +  1 . (5.4) 

The  exponen t s  zr, zt, %, r s can be related to each other ,  if we make  the simple 
scaling assumpt ion  that  s c, T,  s d and s scale as some  powers  of  each o ther ,  i.e. if 

we assume all avalanches  with a fixed value of  one  variable (say ~),  o ther  
var iables  T, sd, etc. have s t rongly peaked  condit ional  probabi l i ty  distributions. 

For  example ,  f rom the results o f  previous  section,  T varies as ~:z, where  
z = 5 /4 .  This implies that  

( ~ -  1) =4 (%-  1)/5. (5.5) 

Using  the fact that  avalanche clusters are compac t ,  we see that  s d ~ ~2, which 
gives 

(%-  1) = (r r -  1)/2. (5.6) 

The  calculat ion o f  r S requires  a m o r e  e labora te  argument .  Since s / s  d is the 
average  n u m b e r  o f  topplings at each toppled  site, we expect  that  

(5.7) 

scales as ~Y, where  y is some exponent .  Since s d varies as 

S ~ Sdn  c . 

Let  us assume that  n c 
{~2, this implies that  

S ~ ~ 2 + y  . (5.8) 

But  the exponen t  y can be de te rmined  in terms of  r~ again, using the result  [20] 
tha t  for  a finite lattice o f  size L ,  

( n c )  ~ l o g  L .  (5.9) 
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From eq. (5) 

Prob(n  c/> x) ~ P rob(~  >t x l / y )  ~ x (*r 1)/y , (5.10) 

Eq. (5.10) may be expected to hold for all x >> 1, and less than some upper  
cutoff  dependent  L. This will give rise to a logarithmic dependence of L in eq. 
(5.9) only if 

Prob(n  c/> x) - 1/x,  for large x .  

Compar ing  with eq. (5.10) we see that 

(5.11) 

y = r r -  1. (5.12) 

Now,  using Eq. (5.4) and (5.8) we get 

(5.13) (rs - 1) = ( r  r -  1)/(2 + y) = ( r r -  1)/(r~ + 1) .  

Thus all the exponents  can be expressed in terms of a single undetermined 
exponent ,  say r r. It would appear  plausible that the exponent  r r can also be 
related to some scaling exponent  of the q--> 0 limit of the Potts model.  In 
particular,  one knows that in this limit [35], the magnetic exponent  is given by 

/3=  1 / 6 .  

We note that existing estimates of critical exponents are roughly consistent with 
% ~ 7 / 6 ,  which gives z S = 8 / 7 ,  r t ~ 19/15. Only Manna [15] quotes a much 
larger est imate of r S -~ 1.2 and z t = 1.3. Pietronero et al. [25], using a Flory-like 
approximat ion,  also get z s = 8/7. Their  approximation,  however,  also gives 
% = 1 and z = 4/3 ,  which disagrees with the scaling relation (5.6). 

Theoret ical  determinat ion of z r remains an outstanding unsolved problem.  
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