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Dynamics of efficiency: A simple model
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We propose a simple model that describes the dynamics of efficiencies of competing agents. Agents com-
municate leading to increase of efficiencies of underachievers, and an efficiency of each agent can increase or
decrease irrespectively of other agents. When the rate of deleterious changes exceeds a certain threshold, the
system falls into a stagnant phase. In the opposite situation, the average efficiency improves with asymptoti-
cally constant rate and the efficiency distribution has a finite width. The leading algebraic corrections to the
asymptotic growth rate are also computed.
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Nonequilibrium statistical mechanics applies to dive
fields from biology to finance, social and cognitive scienc
@1–5#. Indeed, the framework of nonequilibrium statistic
mechanics is ideally suited for describing systems compo
of many units that interact according to simple rules a
exhibit a complex large-scale behavior. Thus, the import
task is to construct simple stochastic models incorpora
basic characteristics of the dynamics of systems under st
which can then be analyzed by employing existing tools
nonequilibrium statistical mechanics. The hope is that th
models can reproduce essential features of the original
tems and enhance understanding of the dynamics of t
systems.

In this Rapid Communication, we introduce a mod
where competing units interact with each other. Despite
simplicity, the model exhibits rich phenomenology, inclu
ing a nonequilibrium depinning phase transition. In additio
the model is analytically tractable by using the techniqu
developed in the context of front propagation problems@7,8#.
The model can be considered as a polynuclear growth m
with desorption where the degrees of freedom are the hei
of a growing interface, a language more familiar to the s
tistical physics community@6#. However, the rules of the
model are also suited to an economic situation where
degrees of freedom are the efficiencies of competing age
Throughout the rest of the paper, we shall use the langu
of efficiency, though we stress that the focus or the res
need not be limited only to the economic situation.

Our model mimics the dynamics of efficiencies of com
peting agents which could be airlines, travel agencies, in
ance companies, etc. In today’s competing global econo
the performance of a company is continuously judged in
market and the index of performance depends on how
cient the company is. Rather than trying to incorporate
details of performances of competing agents, we choos
model that accounts for the dynamics of efficiency in t
simplest form. We represent the efficiency of each agent b
single nonnegative number. The efficiency of every ag
can, independent of other agents, increase or decrease
chastically by a certain amount which we set equal to un
In addition, the agents interact with each other which is
1063-651X/2001/63~4!/045101~4!/$20.00 63 0451
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fundamental driving mechanism for economy. We assu
that the interaction equates the efficiencies of underachie
to the efficiencies of better performing agents.

The efficiency model formalizing the above features
defined as follows. Lethi(t) be the efficiency of agenti at
time t. Efficiencieshi ’s are non-negative integer numbe
which evolve stochastically. Specifically, in an infinitesim
time intervalDt, everyhi(t) can change as follows:

~i! hi(t)→max@hi(t),hj (t)# with probability Dt, where
the agentj is chosen randomly. This move is due to the fa
that each agent tries to equal its efficiency to that of a be
performing agent in order to stay competitive.

~ii ! hi(t)→hi(t)11 with probability pDt. This incorpo-
rates the fact that each agent can increase its efficiency,
due to innovations, irrespective of other agents.

~iii ! hi(t)→hi(t)21 with probabilityqu„hi(t)…Dt, where
u(x) is the Heaviside step function. This corresponds to
fact that each agent can lose its efficiency due to unfores
problems such as labor strikes. Note, however, that si
hi(t)>0, this move can occur only whenhi(t)>1.

~iv! With probability 12@11p1qu„hi(t)…#Dt, the effi-
ciencyhi(t) remains unchanged.

The model exhibits rich behavior, including a delocaliz
tion phase transition as the parametersp and q are varied.
Above a critical line,p.pc(q), the average efficiency in
creases linearly with time; forp<pc(q), the system is stag
nant, i.e., the efficiency distribution becomes stationary
the large time limit. This delocalization~or depinning! phase
transition is dynamical in nature and is different from t
depinning transitions found in equilibrium systems wi
quenched disorder. Similar delocalization transitions have
cently been found in a variety of nonequilibrium process
@9–13#.

Let P(h,t) denote the fraction of agents with efficiencyh
at time t. One can easily write the evolution equation f
P(h,t) by counting all possible gain and loss terms. F
h>1, this equation reads
©2001 The American Physical Society01-1
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dP~h,t !

dt
52P~h,t ! (

h85h11

`

P~h8,t !2~p1q!P~h,t !

1qP~h11,t !1pP~h21,t !

1P~h,t ! (
h850

h21

P~h8,t !. ~1!

In writing Eq. ~1!, we have taken into account that when t
total number of agents diverges the joint probability dis
bution P(h,h8,t) of two agents having efficienciesh andh8
factorizes, P(h,h8,t)5P(h,t)P(h8,t), and the mean-field
theory becomes exact.

It proves convenient to consider the cumulative distrib
tion, F(h,t)5(h8>hP(h8,t). From Eq.~1!, we immediately
derive the evolution equation forF(h,t),

dF~h,t !

dt
52F2~h,t !1~12p2q!F~h,t !1qF~h11,t !

1pF~h21,t !. ~2!

Note that this equation is valid for allh>1, and by the
probability sum rule we haveF(0,t)51 for arbitraryt. Also,
F(h,t)→0 ash→` for all t.

Equation ~2! is a nonlinear difference-differential equa
tion and is, in general, hard to solve exactly. Fortunate
many asymptotic properties can be derived analytically w
out solving Eq.~2!. First we note thatF(h,t) approaches a
traveling wave form as it follows, e.g., from direct numeric
integration of Eq.~2!. Thus, we seek a solution of the form
F(h,t)5 f (h2vt). By inserting it into Eq.~2! we find that
f (x) satisfies

2v
d f~x!

dx
52 f 2~x!1~12p2q! f ~x!1q f~x11!

1p f~x21!, ~3!

which should be solved subject to the boundary conditi
f (2`)51 and f (`)50. To determinev, we linearize Eq.
~3! in the tail region,x→`. The resulting linear equation
admits an exponential solution,f (x);exp(2lx). By insert-
ing this asymptotics into the linearized version of Eq.~3! we
find that the growth ratev(l) is related to the decay expo
nentl via

v~l!5
12p2q1qe2l1pel

l
. ~4!

Thus, we have a family of eigenvalues parametrized byl.
According to a general selection principle that applies t
wide class of nonlinear equations@7,8#, only one specific rate
out of this family of possiblev ’s is selected. Usually, the
minimum rate is selected. For sufficiently steep initial co
ditions, the minimum rate is universal, while extended init
conditions might affect the magnitude of theadmissible
minimum rate.

The functionv(l) in Eq. ~4! has a unique minimum a
l5l* given by the solution ofdv/dl50, or
04510
-

-

,
-

l

s

a

-
l

12p2q1qe2l* 1pel* 5l* @2qe2l* 1pel* #. ~5!

The corresponding minimum ratevmin(p,q)[v(l* ) is
given by Eq.~4!, or vmin52qe2l* 1pel* as it follows from
Eq. ~5!. An analysis of Eqs.~4! and ~5! shows that there
exists a critical linepc(q) in the (p,q) plane,

pc~q!5H 11q22Aq for q>1

0 for q<1,
~6!

such thatv(l).0 for all l>0 as long asp.pc(q). For a
fixed q, as p→pc(q) from above, vmin→0 and for
0,p,pc(q), the curvev(l) crosses zero atl5l1 and l
5l2 with l2.l1. Whenl1,l,l2 , v(l) becomes nega
tive. This tells us that there might be no traveling wave s
lution for 0,p,pc(q), and we anticipate that the efficienc
distribution should become stationary. Note that forq,1,
pc(q)50 and this regime does not occur.

With the above picture in mind, we now discuss the s
lection principle more carefully. Consider an exponentia
decaying initial condition,F(h,0);e2ah with a.0. When
p.pc(q), the rate is positive for alll.0 andv(l) has a
unique minimum atl5l* . Applying the selection principle
we find that for sufficiently steep initial conditions,a.l* ,
the selected growth rate isvmin5v(l* ). Consider now suf-
ficiently extended initial conditions,a,l* . In this case,
f (x) must decay at most ase2ax and therefore the growth
rate is selected amongv(l), Eq. ~4!, with l<a. The selec-
tion principle now implies that the selected rate isv5v(a).

When p<pc(q), we must separately consider two case
q.1 andq<1. Forq.1, v(l) as given by Eq.~4! becomes
negative in the regionl1,l,l2. We find that for alla
,l1, the system still admits a traveling wave solution a
the selected rate isv5v(a). However, fora.l1, the sys-
tem no longer admits a traveling wave solution. Instead,
distribution F(h,t) reaches a stationary limitP`(h) as t
→`. By putting the time derivative equal to zero on th
left-hand side of Eq.~2!, we find that the stationary effi
ciency distribution decays exponentially,F`(h);e2mh, with

m~p,q!5 lnF211p1q1A~12p2q!224pq

2p G . ~7!

Note thatm(p,q) is real below the critical line, i.e., when
q.1 andp<pc(q). Interestingly,m(p,q) remains finite on
the critical linep5pc(q). From Eqs.~7! and~6! we find the
critical decay rate forq.1:

mc~q![m@pc~q!,q#52 ln@12q21/2#. ~8!

For q<1, pc(q)50. When p→0, we havevmin→0 and
l* →`. The divergence of the decay exponentl* indicates
that whenp50 andq,1, the system still admits a travelin
wave solution and the selected rate isv5v(a) if we start
with an exponentially decaying initial condition
F(h,0);e2ah. Of course, for compact initial conditions@i.e.,
whenF(h,0)50 for sufficiently largeh], the efficiency dis-
1-2
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tribution becomes stationary in the long time limit. We ha
verified all the above assertions via direct numerical integ
tion of Eq. ~2!.

Although one cannot provideexplicit expressions for the
growth rate in the developing phase, near the critical l
pc(q) the growth rate considerably simplifies. First we no
that on general scaling grounds one would guess that ab
the critical line, the growth ratevmin(p,q) should be a func-
tion of p2pc with critical behavior

vmin;~p2pc!
b. ~9!

The actual behavior is found by a straightforward analysis
Eqs.~4! and ~5! to yield

vmin→5
p2pc~q!

~Aq21!mc~q!
for q.1

4
Ap

ln~1/p!
for q51

12q

ln~1/p!
for 0<q,1,

~10!

wheremc(q) is given by Eq.~7!. Equation~10! implies that
the mobility exponentb in the scaling relation~9! is equal to
1, 1/2, and 0 forq.1, q51, andq,1, respectively. In the
last situation (q,1 and p→0), the growth rate still ap-
proaches to zero but it occurs in an extremely slow inve
logarithmic fashion.

The relaxation of the growth ratev(t) towards its
asymptotic valuevmin exhibits an interesting algebraic be
havior. Specifically, the leading correction is proportional
t21, the next is of ordert23/2, etc. Similart21 correction was
first derived by Bramson in the context of a reactio
diffusion equation@8#, and was subsequently rederived a
generalized by van Saarloos@14# and Brunet and Derrida
@15#. The next correction was recently derived by Ubert a
van Saarloos@16#. In contrast to Refs.@8,14–16#, we con-
sider the difference-differential equation. Fortunately,
techniques@8,14–16# still apply @13,17#. Following, for in-
stance, an approach of Ref.@16#, one finds

v~ t !5vmin2
3

2l*
t211At23/21O~ t22!, ~11!

with A53p1/2$2(qe2l* 1pel* )%21/2(l* )22. The explicitly
displayed terms areuniversal; they do not depend on initia
condition as long as it is steep enough~i.e., it falls off faster
than e2l* x). The following terms in Eq.~11! starting from
the O(t22) correction are nonuniversal. Thus, not only a
sufficiently steep initial profile relaxes to a unique profi
the approach to that profile occurs along a~asymptotically!
unique trajectory. Note also that the very slowt21 relaxation
of the growth rate leads to a logarithmic correction to t
average efficiency,

^h&5vmint2
3

2l*
ln t1O~1!. ~12!
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Thus, for p.pc(q), the system is in the developin
phase, with ^h& increasing according to Eq.~12!. For
p<pc(q) with q.1, the system is localized and̂h& ap-
proaches a time-independent constant in the long time lim
For p50 andq,1, the system is in the developing phase f
unbounded initial efficiency distributions, with the grow
rate dependent on initial conditions. For economically r
evant compact initial conditions, the regimep50 andq,1
belongs to the stagnant phase.

The mean-field version of the efficiency model is natu
in the interconnected modern economy. In a situation w
limited communication, however, the efficiency model in
low-dimensional space rather than in the fully connec
graph might be more appropriate. In this case, agents
placed on a finite-dimensional lattice. The microscopic d
namical steps~i!–~iv! remain the same except that in mov
~i!, the agentj is chosen to be one of the nearest neighbors
i. Unlike the mean-field theory, the correlations betweenhi ’s
at different sites remain nonzero in finite dimensions even
the thermodynamic limit. We have studied this model n
merically in one dimension. The results are shown for latt
size L51000 ~we verified that for such large systems, th
finite size effect is insignificant!. Once again, there is a de
localization transition in the (p,q) plane across a critica
line, as shown in Fig. 1. The efficiency distributionP(h,t) at
different times in both phases is presented in Fig. 2.

We now stress important differences between mean-fi
and finite-dimensional situations. In the former case the
ture of the two phases depends on the steepness paramea,
while in one dimension the nature of the final state is ind
pendent ofa. For example, in the developing phase the s
tem always has a traveling wave solution with a rate t
depends onp and q but does not depend ona. We have
tested this fact numerically for several values ofa. This
result is rather counterintuitive, as it suggests that corre

FIG. 1. Thick line represents the critical locus,pc(q)511q
22Aq, for the mean-field theory. The1 ’s indicate numerically
obtained critical points in one dimension. For sharply decaying
tial conditions, the system is developing whenp.pc(q) and stag-
nant whenp<pc(q).
1-3
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tions seem to restore universality that mean-field the
lacks. Another important distinction is a very different b
havior of the width of the efficiency distribution in the de
veloping phase. Indeed, in mean field the width is const
while in one dimension it increases with time~see Fig. 2!.
Moreover, the width increases as a power law,w
5A^h2&2^h&2;tb for large t, with b'0.31 in (111) di-
mensions.

FIG. 2. DistributionP(h,t) at timest5200, 600, and 1000 in
the moving phase forp53, q54. The inset shows the distributio
at the same times in the localized phase forp51, q54. For
q54, the critical point ispc(q)'1.7.
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In (d11) dimensions, one can interpret the efficien
hi(t) as the height of a surface growing on ad-dimensional
substrate. In this language, our efficiency model represen
continuous time polynuclear growth~PNG! model with de-
sorption. The continuous PNG model without desorption h
been studied within mean-field theory@18# and was found to
be always in the moving phase as expected. From the gen
analogy to PNG models, we expect that the moving phas
the efficiency model corresponds to a growing interface
longing to the Kardar-Parisi-Zhang~KPZ! universality class
@6#. The numerically obtained width exponentb'0.31 in
(111) dimensions is consistent with the KPZ predictio
b51/3. It would be interesting to determine the universal
class of the delocalization transition. Phase transitions in s
eral PNG models in (111) dimensions belong to the di
rected percolation~DP! universality class~see, e.g., Ref.
@19#!. Other similar growth models exhibit phase transitio
that do not belong to the DP universality class@9,11#. It
remains an open question whether the phase transition in
efficiency model in (111) dimensions belong to the DP
universality class.

In summary, we have investigated a simple model of
dynamics of efficiencies of competing agents. The mo
takes into account stochastic increase and decrease o
efficiency of every agent, independent of other agents,
interaction between the agents which equates the efficien
of underachievers to that of better performing agents.
have shown that the model displays a depinning transi
from a stagnant to a growing phase.

One of us~P.L.K.! acknowledges support from the NSF
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