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Abstract

An intriguing connection between extreme value statistics and traveling fronts has been found
recently in a number of diverse problems. In this short review we outline a few such problems
and consider their various applications.
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1. Introduction

Independence of random events is the most desirable property in probability the-
ory and statistical physics. If we have a collection of independent random variables
X1; : : : ; XN with 9nite variance, then the distribution of the sum

∑
Xj=

√
N is Gaussian

in the thermodynamic limit N → ∞. Similarly under broad circumstances, the asymp-
totic distribution of the extreme values, e.g., Xmin =min(X1; : : : ; XN ), belongs to one of
just three possible families [1–3].
However, independence is the exception rather than the rule—random variables are

often highly correlated. Little is known on extreme value statistics of correlated random
variables yet a vast number of problems can be recast into such scheme. The celebrated
example is the traveling salesman problem, that is to 9nd the shortest closed tour
visiting every ‘city’ once. There are (N − 1)!=2 possible tours and the lengths of
the tours are obviously correlated. This and a few other combinatorial optimization
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problems were recently analyzed by using techniques originally developed to study
spin glasses [4]. A nice general review of the recent progress in that direction is given
by Martin et al. [5]; 1 for an outstanding progress in one speci9c problem, the matching
problem, see [6].
In a series of recent publications [7–12] we have shown that there is an intriguing

connection between the statistics of extreme values arising in various contexts and
traveling fronts. More precisely, the cumulative distributions of extreme variables were
shown to admit a traveling front solution. Such a connection was also noted in the
context of a particle moving in a random potential [13]. The goal of this short review
is to convince the readers that the techniques of traveling fronts is a powerful tool
to tackle the extreme value statistics of correlated random variables. By casting the
problem in the traveling front framework, one easily determines two leading terms in
the asymptotic expansion of the average value of the extreme variable. Furthermore,
the variance of the extreme variable is nothing but the width of the traveling wave
front and therefore it is usually :nite. These results are very natural in the traveling
wave framework yet very diJcult to guess and derive using other methods.
Traveling front solutions have been found in numerous problems for a recent re-

view, see Ref. [14]. To keep the discussion short, we consider the most well-known
example—the one-dimensional Kolmogorov, Petrovsky, Piskunov (KPP) equation [15],
also known as the Fisher equation [16]. This is a nonlinear partial diLerential equation

@�
@t

=
@2�
@x2

+ �− �2 ; (1)

where �(x; t) represents, for example, the density of a population at a point x at time
t. Clearly this equation has two 9xed points or stationary solutions: (i) �(x) = 1 for
all x and (ii) �(x) = 0 for all x. A simple linear stability analysis shows that the
solution (i) is stable while the solution (ii) is unstable. Therefore, if one starts with a
suJciently sharp initial condition, say �(x; t =0)= 1 for x¡ 0 and �(x; t =0)= 0 for
x¿ 0 it is easy to see (for example by numerical simulation) that as time proceeds,
the front separating the stable solution �=1 and the unstable solution �=0 advances
in the forward direction with a unique velocity vf . Besides, the front retains its shape
in the sense that the width of the front remains 9nite even at large times. The front
velocity vf is determined by analyzing the tail region x→∞. In this region, � is small
and one can ignore the nonlinear term �2 in Eq. (1). The resulting linear equation
allows a spectrum of decaying solutions �(x; t) ˙ e−
[x−v(
)t] provided v(
) satis9es
the dispersion relation

v(
) = 
+
1


: (2)

Thus, a whole family of solutions parametrized by 
 is in principle allowed. However,
the front actually advances with a unique velocity vf . Thus, there must be a selection
principle to choose the right velocity from the whole spectrum v(
). Note that the
dispersion spectrum (2) has a unique minimum at 
 = 
∗ = 1, where v(
∗) = 2. It

1 This issue also contains several other interesting reviews, e.g., Martens [5] discusses a physicist’s
approach to number partitioning.
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was shown [15,17] that for suJciently steep initial conditions, the extremum of the
dispersion curve is selected by the front, i.e., vf = v(
∗) = 2. Note that while the
spectrum is determined solely by the linearized equation, for a given initial condition
the nonlinear term plays a crucial role in selecting the 9nal velocity from the full
spectrum allowed by the linear equation. Subsequently, it was shown [17–19] that
the front position xf (t), apart from the leading v(
∗)t term, has a slow logarithmic
correction

xf (t) = v(
∗)t − 3
2
∗

ln t + · · · : (3)

Although this velocity selection principle was originally proved only for the KPP equa-
tion, this strategy of selecting the extremum of the dispersion spectrum of the linearized
equation was subsequently shown to apply to various traveling front solutions provided
certain conditions are satis9ed [14]. We will show how this selection principle can be
successfully used to derive exact asymptotic results for the statistics of extreme vari-
ables in a number of problems. In all the problems discussed below, we will 9nd a
traveling front solution of the same generic form (with a leading ‘linear’ term fol-
lowed by a subleading ‘logarithmic’ correction) as in Eq. (3). While the velocity dis-
persion spectrum v(
) will be widely diLerent from problem to problem, the principle
of selecting the extremum of the spectrum, namely v(
∗), will still be valid. Finally,
while 
∗ and v(
∗) are thus nonuniversal, the prefactor 3

2 in the logarithmic correction
term turns out to be universal and is just the 9rst excited state energy of a quantum
harmonic oscillator [19,7,12]. For a short derivation of this correction term, see e.g.
Appendix A of Ref. [12].

2. Directed polymer on a Cayley tree

As a 9rst example, consider the problem of directed polymer on a Cayley tree studied
by Derrida and Spohn [20] and recently resurfaced in a number of apparently unrelated
problems [13,21–23]. The primary emphasis of this work was on the spin glass like
transition occurring at :nite temperature and on ;uctuation properties. In contrast, we
consider exactly zero temperature and focus on the basic macroscopic quantity, namely
the ground state energy [8,10].
We consider a tree rooted at O (see Fig. 1) where a random energy � is associated

with every bond of the tree. The variables �’s are independent and each drawn from
the same distribution �(�). A directed polymer of size n goes down from the root O
to any of the 2n nodes at the level n. There are N =2n possible paths for the polymer
of size n and the energy of any of these paths is

Epath =
∑
i∈ path

�i : (4)

The set of N = 2n variables E1; E2; : : : ; EN are clearly correlated in a hierarchical (i.e.,
ultrametric) way and the two-point correlation between the energies of any two paths
is proportional to the number of bonds they share. The ground state energy Emin(n) =
min[E1; E2; : : : ; E2n ] is then a random variable and we are interested in its statistics.
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Fig. 1. The directed polymer on a Cayley tree. The �’s denote the bond energies.

The suitable quantity that has the traveling front solution is the cumulative distribu-
tion Pn(x) = Prob[Emin¿ x]. It satis9es [8] a nonlinear recursion relation,

Pn+1(x) =
[ ∫

d��(�)Pn(x − �)
]2

(5)

and the initial condition P0(x) = �(−x), where �(x) is the Heaviside step function.
The front velocity can be determined by following the ‘linearizing’ strategy outlined
above for the KPP equation. Unlike the KPP equation, however, we now need to
linearize recursion equation (5) in the ‘backward’ tail region x → −∞ [8]. By inserting
1− Pn(x)˙ e
[x−v(
)n] into Eq. (5), one 9nds [8] a dispersion spectrum

v(
) =−1


ln
[
2
∫

d��(�)e−
�
]
: (6)

For generic distributions �(�), this spectrum has a unique maximum at 
= 
∗ and by
the general velocity selection principle the maximum velocity v(
∗) will be selected
by the front. We now illustrate it for two distributions.
(i) The bimodal distribution, �(�) = p�(� − 1) + (1 − p)�(�), where 06p6 1. In

this case one can also think of the energy of a bond as a ‘length’ variable and a
bond is present with probability p and absent with probability (1− p). By analyzing
Eqs. (5) and (6) it was found [8] that the polymer undergoes a ‘depinning’ transition
at the critical value pc = 1

2 . For p¿
1
2 , the ground state energy is ‘extensive’ and

increases linearly with n. On the other hand, for p¡ 1
2 the polymer is ‘localized’ and

the ground state energy remains 9nite even in the n → ∞ limit. More precisely, the
average ground state energy 〈Emin(n)〉=

∫∞
0 Pn(x) dx has the asymptotic behaviors [8]

〈Emin(n)〉 �



vmin(p)n; p¿ 1

2 ;

(ln 2)−1 ln ln n; p= 1
2 ;

9nite; p¡ 1
2 ;

(7)
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where vmin(p) = v(
∗) with v(
∗) being the maximum of the dispersion spectrum in
Eq. (6). Taking into account the correction term as in the KPP equation, we found
that for p¿ 1

2 , the average ground state energy is given by [8]

〈Emin(n)〉 � vmin(p)n+
3
2
∗

ln n+ · · · : (8)

In a similar way, one can compute the average maximum energy. 〈Emax(n)〉 � vmax(p) n.
Interestingly, the velocities satisfy a duality relation vmin(p) + vmax(1− p) = 1.
(ii) For the unbounded one-sided distribution �(�) = e−��(�), dispersion spectrum

(6) becomes

v(
) =−1


ln
[

2

+ 1

]
: (9)

The average ground state energy is given by Eq. (8) with 
∗=3:31107 : : : ; and v(
∗)=
0:23196 : : : :
We have also studied the asymptotic behaviors of the full distribution of the ground

state energy for various �(�) and found [10] that the hierarchical correlations between
the random variables [E1; E2; : : : ; E2n ] violate the well-known Gumbel-type behaviors [3]
exhibited by the distribution of the extreme of a set of independent random variables.

3. Random binary search tree

We now outline an application of the traveling front techniques to the analysis of
search algorithms in computer science [12]. A computer is constantly fed with enormous
amount of data. It is therefore essential to organize or sort the data in an eJcient way,
so that the computer spends the minimum time to search for a data if required later.
There are various ‘sorting’ and ‘search’ algorithms devised for this purpose [24]. One
particular algorithm that has been widely studied by computer scientists is the random
binary search tree (RBST) algorithm [25]. To understand this algorithm, consider a
simple example. Suppose the incoming data string consists of the 12 months of the
year appearing in the following random order: July, September, December, May, April,
February, January, October, November, March, June and August. The RBST algorithm
stores this data on a binary tree in the following way. A chronological order (January,
February, etc.) is 9rst chosen. Now the 9rst element of the input string (July) is put
at the root of a tree (see Fig. 2). The next element of the string is September. One
compares with the root element (July) and sees that September is bigger than July (in
chronological order). So one assigns September to a daughter node of the root in the
right branch. On the other hand, if the new element were less than the root, it would
have gone to the daughter node of the left branch. Then the next element is December.
We compare at the root (July) and decide that it has to go to the right, then we
compare with the existing right daughter node (September) and decide that December
has to go to the node which is the right daughter of September. The process continues
till all the elements are assigned their nodes on the tree. For the particular data string
in the above example, we get the unique tree shown in Fig. 2. If the incoming data
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Fig. 2. The binary search tree corresponding to the data string in the order: July, September, May, April,
February, January, October, November, March, June, and August. The tree has size N = 12 and height
HN = 5.

(consisting of N elements) is completely random, then all N ! possible binary trees
have equal probability to occur and are called random binary search trees.
A quantity that is widely used to measure the eJciency of such an algorithm is the

maximum search time required to 9nd an element. This is the worst case scenario. The
maximum search time is quanti9ed by the height HN of a tree, i.e., the distance from
the node to the farthest element on the tree. In the example of Fig. 2, HN = 5. Thus,
determining the statistics of HN is an extreme value problem. Apart from a slight
modi9cation, this problem can be mapped [12] onto the directed polymer problem
described in the previous example. In the modi9ed problem, the bond energies are not
completely uncorrelated as in the usual polymer problem, but are correlated in a special
way: the energies of two bonds emanating from the same parent (see Fig. 1) satisfy
the constraint, e−� + e−�

′
= 1 and this constraint holds at every level of the tree. For

example, in Fig. 1, we also have e−�1 + e−�2 = 1, e−�
′
1 + e−�

′
2 = 1, etc. The statistics

of the height variable HN in RBST problem was shown to be identical to the ground
state energy Emin(n) of this modi9ed polymer problem with the identi9cation N = 2n.
The traveling front analysis then gives the average height [12]

〈HN 〉 � �0 lnN + �1 ln lnN : (10)

Here �0 = 1=v(
∗) and �1 = −3=2
∗v(
∗) where 
∗ = 3:31107 : : : ; is the maximum of
the dispersion curve (9) with v(
∗)=0:23196 : : : : The traveling front retains its shape
asymptotically, i.e., its width remains 9nite. This shows that the variance of the height
HN remains 9nite even in the large N limit. While some of these results mentioned
here were also derived by the computer scientists using rigorous mathematical bounds



S.N. Majumdar, P.L. Krapivsky / Physica A 318 (2003) 161–170 167

[26–28], the existence of a traveling front was not realized before. Besides, the trav-
eling front techniques allow us to derive more detailed results such as the asymptotic
behaviors of the full probability distribution of HN (not just its moments) and also
obtain completely new results for trees generated with arbitrary distributions, not nec-
essarily uniform [12]. The statistics of other observables such as the ‘balanced’ height
of a tree (which corresponds to the maximum energy in the modi9ed directed polymer
problem) has also been derived exactly using the traveling front techniques [12].

4. Aggregation dynamics of growing random trees

In the RBST example discussed above, the trees have 9xed size N . Alternately one
can consider random trees generated dynamically via an aggregation mechanism where
the size of the trees grows inde9nitely with time t. Apart from the computer science
problems discussed above, such growing trees also arise in physical situations such as
collision processes in gases [29] where the largest Lyapunov exponent is related to the
maximum height problem.
We studied a simple tree generation model [11], where initially we have an in9nite

number of trivial (single-leaf) trees. Then, two trees are picked at random and attached
to a common root. This merging process is repeated inde9nitely (to simplify formulas
the rate is set equal to 2). Let c(t) be the number density of trees at time t. Initially,
c(0)=1, and then it evolves according to dc=dt=−c2 whose solution is c(t)=(1+t)−1.
Hence the average number of leaves per tree 〈N 〉 grows linearly with time, 〈N 〉=c−1=
1 + t. We are interested in the minimal and maximal heights of such a growing tree.
Rather than considering the two extremal height distributions separately, we studied
a more general model that interpolates between the two cases. In this model, each
tree carries an extremal height k. The result of a merger between trees with extremal
heights k1 and k2 is a new tree with extremal height k given by

k =

{
min(k1; k2) + 1 with prob: p ;

max(k1; k2) + 1 with prob: 1− p :
(11)

Here, p is a mixing parameter whose limits p = 1 and 0 correspond to the minimal
and the maximal heights problems, respectively.
The number density of trees with extremal height k, ck(t), evolves according to the

master equation

dck
dt

= c2k−1 − 2cck + 2pck−1

∞∑
j=k

cj + 2(1− p)ck−1

k−2∑
j=0

cj : (12)

Introducing the cumulative fractions Ak = c−1 ∑∞
j=k cj and a new time variable T =∫ t

0 d� c(�) = ln(1 + t), we recast Eqs. (12) into
dAk
dT

=−Ak + 2(1− p)Ak−1 + (2p− 1)A2
k−1 ; (13)

which should be solved subject to the step function initial conditions, Ak(0) = 1 for
k6 0 and Ak(0) = 0 otherwise.
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In the long time limit, Ak(T ) approaches a traveling wave form, Ak(T ) → f(k−vT ).
The velocity v can be determined [11] as in the above problems. Knowing this velocity
one can compute the expected extremal tree height from the relation, 〈k〉=c−1 ∑

k kck .
Let us note one interesting fact. For p=0 (the maximal height case), we can express
〈k〉 as a function of 〈N 〉 (after eliminating t using 〈N 〉=1+ t) for large 〈N 〉 and 9nd

〈k〉= �0 ln〈N 〉+ �1 ln ln〈N 〉 ; (14)

where �0 and �1 identical to those in Eq. (10) for the 9xed N trees. This shows that the
dynamically growing trees have the same asymptotic properties as those of the 9xed
size trees for large trees if one replaces N in Eq. (10) by 〈N 〉. This dynamic approach
is thus similar to the grand canonical approach in statistical mechanics with the time t
playing the role of the chemical potential that can be chosen to 9x the average size.

5. The dynamics of e!ciency in a simple model

We now move from trees to economy and consider a model that mimics the dynamics
of eJciencies of competing agents [9]. We represent the eJciency of each agent by
a single nonnegative number. The eJciency of every agent can, independent of other
agents, increase or decrease stochastically by a certain amount which we set equal to
unity. In addition, the agents interact with each other which is the fundamental driving
mechanism for economy. We assume that the interaction equates the eJciencies of
underachievers to the eJciencies of better performing agents and set the rate of this
process equal to one; we denote the rates of the increase and decrease of the eJciency
by p and q, respectively.
Let hi(t) is the eJciency of the agent i at time t and P(h; t) is the fraction of agents

with eJciency h at time t. The evolution equation for P(h; t) is obtained by counting
all possible gain and loss terms. For h¿ 1, this equation reads [9]

dP(h; t)
dt

=−P(h; t)
∞∑

h′=h+1

P(h′; t)− (p+ q)P(h; t) + qP(h+ 1; t)

+pP(h− 1; t) + P(h; t)
h−1∑
h′=0

P(h′; t) : (15)

The cumulative distribution F(h; t) =
∑

h′¿h P(h
′; t) satis9es

dF(h; t)
dt

=−F2(h; t) + (1− p− q)F(h; t) + qF(h+ 1; t) + pF(h− 1; t) :

(16)

The function F(h; t) approaches a traveling wave form, F(h; t)=f(h−vt). The velocity
can be determined [9] by repeating the steps detailed in the previous examples. The
analysis is more cumbersome due to appearance of the critical line pc(q) in the (p; q)
plane,

pc(q) =

{
1 + q− 2

√
q for q¿ 1 ;

0 for q6 1
(17)
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separating diLerent behaviors. For p¿pc(q), the system is in the developing phase
with the average eJciency 〈h〉 increasing according to

〈h〉= vmint − 3
2
∗

ln t + O(1) : (18)

Here again 
∗ is the decay rate, f(x)˙ e−

∗x as x → ∞. For p6pc(q) with q¿ 1,

the system is localized and 〈h〉 approaches a time-independent constant in the long
time limit. For p=0 and q¡ 1, the system is in the developing phase for unbounded
initial eJciency distributions, with the growth rate dependent on initial conditions. For
economically relevant compact initial conditions, the regime p= 0 and q¡ 1 belongs
to the stagnant phase.
To summarize, we have exempli9ed that the asymptotic statistics of extreme val-

ues can often be analytically determined using the powerful traveling front techniques.
There might be a deeper hidden connection between the extreme value statistics and
traveling fronts, and establishing such a connection is a challenging task. Finally,
we mention that the recently computed [30] correction to the celebrated Bekenstein–
Hawking (BH) formula for the black hole entropy SBH = AH=4l2Pl (here AH is the
classical horizon area and lPl is the Planck length) is logarithmic. Speci9cally, for the
four-dimensional non-rotating black hole, the entropy expansion [30]

S = SBH − 3
2
ln SBH + · · · ; (19)

strikingly resembles the time dependence of the front position, Eq. (3). The logarithmic
correction term also appears for other black holes [31]. It is therefore tempting to
speculate a traveling front structure in the black hole entropy. This speculation gets
further strengthened by the fact that the BH entropy is the ‘maximal’ entropy that a
black hole can have [30]. In other words this may be considered as an extreme value
problem. The veri9cation of the existence, if any, of a traveling front structure in the
black hole problem remains an outstanding open problem.
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