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We present the universal features of the hitting probability Q(x, L), the probability that a generic
stochastic process starting at x and evolving in a box [0, L] hits the upper boundary L before
hitting the lower boundary at 0. For a generic self-affine process (describing, for instance, the
polymer translocation through a nanopore) we show that Q(x, L) = Q(x/L) and the scaling function
Q(z) ∼ zφ as z → 0 with φ = θ/H where H and θ are respectively the Hurst exponent and the
persistence exponent of the process. This result is verified in several exact calculations including
when the process represents the position of a particle diffusing in a disordered potential. We also
provide numerical supports for our analytical results.

The transfer of DNA, RNA and proteins through cell
membranes is key to understanding several biological pro-
cesses [1]. The transport of polymer molecules across
nanopores is also relevant in many chemical and indus-
trial applications [2]. A fundamental question concerns
whether a polymer, once penetrated into the pore, will
eventually complete its transit. The answer is naturally
formulated in terms of the translocation coordinate X(t),
namely the length of the translocated portion of the poly-
mer at time t [3, 4, 5, 6]. In absence of driving forces,
the polymer dynamics is governed by thermal fluctua-
tions. In this case, the traslocation coordinate can be
expressed as a stochastic process X(t) that evolves in a
box of size L (L being the polymer length), starting from
some initial value X(0) = x, 0 < x < L, and terminated
upon touching either boundary for the first time (Fig. 1
left). It has been shown that excluded volume effects
hinder the polymer dynamics, so that the process X(t)
actually undergoes subdiffusion [5, 7]. We define the hit-
ting probability Q(x, L) as the probability of exiting the
domain through the boundary at L, which corresponds
to the polymer completing the translocation.

More generally, the hitting probability Q(x, L) of a
particle undergoing anomalous (i.e., non-Brownian) dif-
fusion is key to understanding a variety of phenomena,
such as the classical gambler’s ruin problem in finance
and risk management [8, 9], the transport of charge car-
riers in conductors with disordered impurities [10] and
the breakthrough of chemical species in heterogeneous
porous media for contaminated sites remediation [11],
only to name a few. For ordinary Brownian diffusion,
the hitting probability Q(x, L) = x/L is easy to com-
pute [8, 9]. The goal of this Letter is to study Q(x, L) for
generic self-affine stochastic processes, thus going beyond
the Brownian world.

Since the only length scale in the problem is L, evi-
dently Q(x, L) is a function of only the scaled variable
x/L:Q(x, L) = Q(x/L = z). For a Brownian motion,
Q(z) = z, a simple linear function. For a generic stochas-
tic process X(t), Q(z) is non trivial (see for example

FIG. 1: Left. The evolution of a stochastic process initiated
at X(0) = x and terminated upon exiting from the box of size
L. Right. The function Q(z) as given by Eq. (8) for different
values of the exponent φ.

Fig. 1 right). The central aim of this Letter is to de-
termine the universal features associated with Q(z) in
the two following cases: symmetric self-affine processes,
characterized by a power-law scaling X(t) ∼ tH , with
Hurst exponent H > 0; and a single particle diffusing in
a disordered potential V (X). The translocation process
belongs to the former, whereas transport in quenched
disorder to the latter.

It is useful to summarize our main results which are
threefold: i) For self-affine processes, we show that gener-
ically Q(z) ∼ zφ for small z, where φ = θ/H, and θ is
the so-called persistence exponent [12] of the same pro-
cess in a semi-infinite geometry. ii) For a particle diffus-
ing in a disordered potential V (X), we provide an exact
formula for Q(x, L) valid for arbitrary V (X) which in-
cidentally also allows us to compute the persistence ex-
ponent of a particle diffusing in a self-affine disordered
potential. iii) The function Q(z) is explicitly known for
some anomalous diffusion processes. Amazingly, we find
that these apparently different-looking formulae can be
cast in the same super-universal form, when expressed in
terms of the exponent φ. This naturally raises the ques-
tion: how generic is this super-universality? We provide
numerical evidences that indeed in some cases the super-
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FIG. 2: Left. A stochastic process starting at x leaves the
positive half axis for the first time at tf ; m denotes its max-
imum till tf . Right. A self-affine disordered potential with
maximum at xm: when L is large, the diffusing particle, start-
ing at 0 < x < L, exits the box through 0 for x < xm and
through L for x > xm.

universality is violated and we discuss its limit of validity.
Self-affine processes. To compute Q(x, L) in a box ge-

ometry, it is useful first to relate it to another quan-
tity associated with the same process X(t), but now in
a semi-infinite geometry [0,∞]. Consider a process X(t)
in [0,∞], starting at x and absorbed at the origin for
the first time at tf− the first-passage time. Let m de-
note the maximum of this process till tf (see Fig. 2 left).
Then, it is clear that 1 − Q(x, L), the probability that
the particle exits the box through the origin (and not
through L), is precisely equal to the probability that the
maximum m of the process in [0,∞] till tf stays below
L, i.e., the cumulative distribution of m, Prob[m ≤ L|x],
in the semi-infinite geometry. The distribution of m is,
in turn, related to the distribution of the first-passage
time tf . Let q(x, T ) = Prob[tf ≥ T |x] denote the cumu-
lative probability of tf , which is also the survival prob-
ability of the particle starting at x in the semi-infinite
geometry. One knows that for generic self-affine pro-
cesses q(x, T ) = q(x/TH). For large T , q(x, T ) ∼ T−θ,
where θ is the persistence exponent of the process [12].
This implies the scaling function q(y) ∼ yθ/H for small
y [7]. Noting that m ∼ tHf for self-affine processes, it fol-
lows that Q(x, L) = 1 − Prob[m ≤ L|x] = Prob[m ≥
L|x] ≈ Prob[tf ≥ L1/H |x] = q[x/L]. This demon-
strates the scaling behavior anticipated before, namely,
Q(x, L) = Q(x/L), where Q(z) = q(z). Moreover, since
q(y) ∼ yθ/H for small y, we get Q(z) ∼ zφ for small
z, with φ = θ/H. For example, for Brownian motion
H = 1/2 and θ = 1/2, hence φ = 1, in accordance with
the exact result Q(z) = z. For the subclass of self-affine
processes with stationary increments, the same exponent
φ happens to describe the vanishing of the probability
density close to an absorbing boundary [7].

Our general prediction Q(z) ∼ zφ for small z can
be verified explicitly for some self-affine processes where
Q(z) can be computed exactly, as discussed later. More-
over, we have numerically verified that this conjecture

FIG. 3: Behavior of Q(z) close to z = 0 for fBm processes.
For H = 2/3 (φ = 1/2) the size of the box is L = 50, 200;
for H = 3/4 (φ = 1/3) the size of the box is L = 100, 300.
The continuum limit is reached when L→∞. The expected
slopes are reported as solid lines. Data have been shifted to
make visualization easier.

holds also for the fractional Brownian motion (fBm), i.e.,
a self-affine Gaussian process defined by the following au-
tocorrelation function

〈X(t1)X(t2)〉 =
1
2
(
t2H1 + t2H2 − |t1 − t2|2H

)
, (1)

with 0 < H < 1 [13, 14]. In [7], we have proposed fBm
as a natural candidate for describing the time evolution
of the translocation coordinate. For this process, the
persistence exponent is known, θ = 1 − H [14], so that
φ = (1 −H)/H. An expedient algorithm for generating
fBm paths is provided in [15]. The probability Q(z) can
be numerically computed as follows. Given a realization
of the process starting from the origin, we record its
minimum and maximum values for increasing time; the
process is halted when Xmax −Xmin ≥ L. If the last up-
dated quantity is Xmin, the contribution to Q(x, L) is 0
for x ∈ (0, L−Xmax) and 1 for x ∈ (L−Xmax, L). In the
opposite case, the contribution is 0 for x ∈ (0,−Xmin)
and 1 othewise. All simulations are performed by
averaging over 106 samples. Fig. 3 shows the agreement
between numerical simulations and predicted scaling of
Q(z) for different values of the parameter H.

Disordered potential. We next consider the stochastic
motion of a single particle diffusing in a potential V (X),
starting at the initial position x. The dynamics is gov-
erned by the Langevin equation Ẋ(t) = f [X(t)] + η(t),
where X(0) = x and f(X) = −dV (X)/dX is the force
and η(t) is a Gaussian white noise with 〈η(t)〉 = 0 and
〈η(t)η(t′)〉 = δ(t− t′). To compute Q(x, L), the first step
is to write a differential equation satisfied byQ(x, L), tak-
ing the initial position x as a variable and keeping the box
size L fixed. Let us consider a small time interval [0,∆t]
at the beginning of the process. In this time interval, the
particle moves from its initial position x to a new position
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FIG. 4: The difference between Eq. (8) and simulated Q(z).
For fBm processes: H = 2/3 (φ = 1/2) with box size L = 200,
and H = 3/4 (φ = 1/3), with box size L = 300. For fBm
disordered potentials: HV = 2/3 (φ = 1/3), with box size
L = 104. For comparison, we display also the Sinai model
HV = 1/2 (φ = 1/2), with box size L = 104.

x + ∆x at time ∆t, where ∆x = f(x)∆t + η(0)∆t, η(0)
being the noise variable that kicks in at time 0. Since the
process is Markovian, the subsequent evolution does not
know about the interval [0,∆t], hence one gets

Q(x, L) = 〈Q(x+ f(x)∆t+ η(0)∆t, L)〉, (2)

where 〈〉 denotes the average over the initial noise η(0).
Expanding the rhs of Eq. (2) as a Taylor series in powers
of ∆t, using 〈η(0)〉 = 0 and 〈η2(0)〉 = 1/∆t (delta cor-
related noise), yields an ordinary differential equation,
1
2Q
′′(x) + f(x)Q′(x) = 0. Solving with boundary condi-

tions Q(0, L) = 0 and Q(L,L) = 1 gives the exact result

Q(x, L) =

∫ x
0
e2V (x′)dx′∫ L

0
e2V (x′)dx′

, (3)

valid for arbitrary potential V (X). Note that for a
potential-free particle, i.e., V (X) = 0 in Eq. (3), we re-
cover the Brownian result, Q(x, L) = x/L.

Taking derivative with respect to x gives

peq(x, L) =
∂

∂x
Q(x, L) =

e2V (x)∫ L
0
e2V (x′)dx′

, (4)

which can be interpreted as the equilibrium probability
density of the particle to be at x in presence of a poten-
tial −V (X). When V (X) is a realization of a disordered
potential, it is natural to introduce Q(x, L), the disorder-
averaged hitting probability. An example where we can
determine Q(x, L) explicitly is the classical Sinai model,
i.e., when the potential V (X) is a trajectory of a Brow-
nian motion in space, V (X) ∼ X1/2 [16]. For this model
the peq(x, L) can be computed exactly [17, 18]

peq(x, L) =
1
π

1√
x(L− x)

. (5)

Thus, Q(x, L) = Q(z = x/L) again satisfies the generic
scaling with a scaling function form with

Q(z) =
2
π

arcsin
(√
z
)
. (6)

Note that close to the origin Q(z) ∼ zφ with φ = 1/2. On
the other hand, it is well known that in the Sinai potential
the particle evolves very slowly with time, X ∼ ln2(t),
showing a self-affine scaling in the variable T = log t,
with H = 2. For this model, it is also known that the
survival probability decays as 1/ log t, i.e., T−θ, with θ =
1[19, 20]. Thus, θ/H = 1/2 = φ, in accordance with our
general scaling prediction.

We next consider a generic self-affine potential,
V (X) ∼ XHV (with V (0) = 0), the Sinai potential
being a special case with HV = 1/2. We show that
peq(x, L) for such a potential is related to the proba-
bility density of the location xm of the maximum of
the potential V (X) over X ∈ [0, L]. We rewrite Eq.
(4) as peq(x, L) = [

∫ L
0
e2(V (x′)−V (x))dx′]−1, rescale vari-

ables x′ → x′L and x → xL and use the self-affine
property V (xL) = LHV V (x) to obtain peq(x, L) =
[
∫ 1

0
e2L

HV (V (x′)−V (x))dx′]−1. For large L, using a steepest
decent method, we immediately see that, for each realiza-
tion of the disorder potential V (X), peq(x, L) ' δ(x−xm)
where xm denotes the position where V (X) is maxi-
mum. This observation has two immediate consequences:
(i) By integrating over x, we get, for each realization,
Q(x, L) ' θ(x − xm). This means that, for any given
realization, if the starting position x is to the left (right)
of the location xm of the maximum, Q(x, L) ' 0 (respec-
tively Q(x, L)→ 1) indicating that the particle exits the
box through 0 (through L) as depicted in Fig. 2(right).
(ii) By taking average over the disorder, we get

peq(x, L) ' pm(x, L) (7)

where pm(x, L) is the probability density that the max-
imum of the potential V (X) over [0, L] is located at x.
For example, for the Sinai case, one knows from Lévy’s
arcsine law [8] that pm(x, L) = 1/π

√
x(L− x). Thus,

in this case the relation (7) is verified by the exact re-
sult (5). However, the relation (7) is more general and
holds for arbitrary self-affine potential. We remark here
that physically the relation (7) reflects the fact that in
a self-affine potential −V (X) in which the particle is at
equilirium, the limit L → ∞ limit is equivalent to the
zero temperature T → 0 limit forcing the particle to the
minimuum of the potential −V (x) or equivalently to the
maximum xm of V (x).

A useful consequence of (7) is that it allows us to relate
the persistence or the survival probability of a particle
moving in a disordered self-affine potential to the sta-
tistical properties of the potential V (X) itself. The dis-
ordered potential V (X) ∼ XHV (we assume V (0) = 0)
can itself be regarded as a stochastic process with the
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space coordinate X playing the role of ‘time’. So, the
probability that V (X) stays below (or above) the level
X = 0 up to a distance L decays, for large L, as L−θV

where θV is the spatial persistence exponent [21] of V (X).
For example, for the Sinai potential (brownian motion in
space), θV = 1/2. The pair of exponents (HV , θV ) asso-
ciated with the potential can now be related to the corre-
sponding exponents associated with the temporal motion
of the particle in this potential. By Arrhenius’ law for
the activated dynamics, the time required for particle
diffusing in V (X) to overcome an energy barrier scales
as t ∼ eV (X). Using V (X) ∼ XHV , one deduces that
X ∼ T 1/HV where T = log(t). Thus the particle mo-
tion X(T ) ∼ TH is a self-affine process as a function of
T = log(t), with a Hurst exponent H = 1/HV . Next,
we note that pm(x, L), the probability that the maxi-
mum of V (X) occurs at x, coincides, when x → 0, with
the probability that V (X) stays below 0 up to a dis-
tance L, hence pm(x → 0, L) ∝ L−θV . On the other
hand, based on our general argument, we expect that
Q(x, L) ∼ (x/L)φ when x → 0, where φ = θ/H. this
means that peq(x, L) ∝ xφ−1/Lφ. Note that here θ is
the persistence exponent associated with the temporal
motion of the particle, i.e., the survival probability of
the particle up to time T = log(t) decays as ∼ T−θ.
Matching powers of L from both sides of (7) provides the
desired relation between temporal and spatial exponents
θ = θVH = θV /HV . For instance, in the Sinai model, us-
ing θV = 1/2, HV = 1/2 we get and θ = 1, in agreement
with the exact result [19, 20]. If one considers a potential
V ′′(X) = ξ(X) where ξ(X) is a white noise in space, it
is self-affine with HV = 3/2. The exponent θV = 1/4 is
known exactly [26]. Thus we predict that for this poen-
tial, the survival probabaility up to time t will decay as
∼ (log t)−θ with θ = 1/6.

Super-universality of Q(z). For some non-Brownian
stochastic self-affine processes, the full function Q(z) is
known. For instance, Lévy Flights are Markovian su-
perdiffusive processes whose increments obey a Lévy sta-
ble (symmetric) law of index 0 < µ ≤ 2. The Hurst
exponent is H = 1/µ. By virtue of the Sparre Andersen
theorem [22], the persistence exponent is θ = 1/2, inde-
pendent of µ. Hence, φ = θ/H = µ/2 (see also [23, 24]).
The full function Q(z) for Lévy Flights has been com-
puted [25] and can be recast in an elegant form

Q(z) = Iz(φ, φ) =
Γ(2φ)
Γ2(φ)

∫ z

0

[u(1− u)]φ−1
du, (8)

i.e., a regularized incomplete Beta function containing
a single parameter φ = µ/2. Clearly, Q(z) ∼ zφ as
z → 0 in agreement with our prediction. The formu-
lae for Brownian motion (with φ = 1) Q(z) = z and
for the Sinai model (φ = 1/2) in (6) can also be ex-
pressed as (8). Moreover, the distribution of the maxima
for a symmetric Lévy Flight process is given by (5), by
virtue of the Sparre Andersen theorem [22]. Hence, we

expect the hitting probability (8) to apply also to parti-
cles diffusing in a Lévy Flight disordered potential, with
φ = 1/2. Finally, Q(z) is known also for the Random
Acceleration model, a non-Markovian process that is de-
fined by d2X/dt2 = η(t), with η(t) as before. The motion
starts at X(0) = x, with initial velocity v(0) = 0, and
is superdiffusive, with X ∼ t3/2, i.e., H = 3/2. Its first-
passage properties have been widely studied [26]. The
persistence exponent is θ = 1/4, so that φ = θ/H = 1/6.
Bicout and Burkhardt [27] also computed the full exit
probability Q(x, L). One can again recast this formula
in the same super-universal form (8) with φ = 1/6.

Based on these special cases, it may be tempting
to conjecture that the full function Q(z) for arbitrary
anomalous doffusion processes has the super-universal
form (8), the only information about the process enters
this formula through a single exponent φ. However, this
turns out not to be the case, and we are able to show no-
table counterexamples. In Fig. 4, we compute the hitting
probability for fBm self-affine processes and for particles
diffusing in fBm disordered potentials, and display the
numerical difference with respect to formula (8), with
the appropriate exponent φ. We find that in neither case
Q(z) can be described by the super-universal form (8).
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