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Statistics of multiple sign changes in a discrete non-Markovian sequence
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We study analytically the statistics of multiple sign changes in a discrete non-Markovian sequencec i5f i

1f i 21 ( i 51,2, . . . ,n) wheref i ’s are independent and identically distributed random variables each drawn
from a symmetric and continuous distributionr(f). We show that the probabilityPm(n) of m sign changes up
to n steps is universal, i.e., independent of the distributionr(f). The mean and variance of the number of sign

changes are computed exactly for alln.0. We show that the generating functionP̃(p,n)5(m50
` Pm(n)pm

;exp@2ud(p)n# for large n where the ‘‘discrete’’ partial survival exponentud(p) is given by a nontrivial
formula, ud(p)5 ln@sin21(A12p2)/A12p2# for 0<p<1. We also show that in the natural scaling limitm
→`, n→` but keepingx5m/n fixed, Pm(n);exp@2nF(x)# where the large deviation functionF(x) is
computed. The implications of these results for Ising spin glasses are discussed.
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The probabilityP0(T) that a stochastic processc(T) does
not cross zero up to timeT is a quantity of long-standing
interest to both physicists and mathematicians@1,2# and has
resurfaced recently with the new name ‘‘persistence’’ in
context of nonequilibrium systems@3#. A lot of recent efforts
have been devoted to computingP0(T) for stationary Gauss
ian processes. Such a Gaussian stationary process~GSP! is
completely specified by its two-point correlation functio
C(T)5^c(0)c(T)&. For a wide class of correlation func
tions, it is known thatP0(T);exp(2uT) for large T where
the persistence exponentu is usually nontrivial, depends o
the full functionC(T), and is calculable exactly only in ver
few cases@3#. A natural generalization ofP0(T) is Pm(T),
the probability ofm zero crossings up to timeT. The mean
and the variance of the number of zero crossings up to t
T of a GSP have been studied before@1#. For a smooth GSP
where C(T)512aT21 . . . for small T with a.0, the
mean is given by Rice’s formula@4#, ^m&/T5A2C9(0)/p
and the variance by a more complicated formula due to B
dat @5#. Recently it was shown@6# that for a smooth GSP th
generating functionP̃(p,T)5(m50

` Pm(T)pm;exp@2u(p)T#
for largeT where the ‘‘partial survival’’ exponentu(p) varies
smoothly fromu(0)5u to u(1)50 asp varies continuously
from 0 to 1. In Ref.@6#, the exponentu(p) was computed
exactly for the one-dimensional Ginzburg-Landau model
deterministic coarsening and also approximately within
independent interval approximation for other smooth p
cesses such as the diffusion equation. The only proces
which a closed-form expression ofu(p) exists, so far, is the
random acceleration problem@7,8# which corresponds
to a GSP @3# with correlator C(T)5@3 exp(2T/2)
2exp(23T/2)#/2. For this problem, the exponentu(p) for
0<p<1 is given by the formula, u(p)5 1

4 @1
26/p sin21(p/2)#.

In this Rapid Communication, we study the statistics
multiple crossings or sign changes in a discrete seque
c1 ,c2 , . . . ,cn as opposed to a continuous processc(T)
discussed in the previous paragraph. This study is motiva
by the recent works on the persistence of a discrete sequ
@9–11#. The principal motivation for studying the persisten
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of a discrete sequence is twofold. First, in various expe
ments and numerical simulations to measure the persist
P0(T) of a continuous stochastic processc(T), one usually
samples the continuous process only at discrete time po
separated by a fixed window sizeDT and checks whether th
process has retained the same sign at all these discrete t
Some information gets lost due to this discretization sin
the continuous processc(T) may have crossed and recross
zero in between two successive discrete points. Thus,
‘‘discrete-time’’ persistenceP0(n) @i.e., the probability that
the sequencec(0), c(DT), c(2DT), . . . , c(nDT5T)
have the same sign# is usually greater than the continuou
time persistenceP0(T). In Ref. @9#, it was shown that
P0(n);exp@2udn# where the exponentud depends continu-
ously on the window sizeDT. The second motivation for
studying the persistence of a sequence follows from the
servation@10# that many processes in nature such as wea
records are stationary under translations in time only by
integer multiple of a basic period~which can be chosen to b
unity without loss of generality!. It was shown in Ref.@10#
that for a wide class of such processes, the continuous
persistenceP0(T) is the same as the persistenceP0(n) of the
corresponding discrete sequence obtained from the mea
ment of the process only at integer times. A natural gener
zation of P0(n) is clearly Pm(n), the probability that there
arem sign changes along a sequence of sizen.

The exact calculation ofPm(n) for an arbitrary stationary
sequence seems difficult. It is therefore important to fi
exactly solvable cases. In this paper we present exact re
for Pm(n) for a specific sequence which was introduced
Ref. @10#,

c i5f i1f i 21 , i 51,2, . . . ,n ~1!

wheref i ’s are independent and identically distributed~i.i.d!
random variables, not necessarily Gaussian, each drawn
the same symmetric continuous distributionr(f). The vari-
ablesc i ’s have only nearest-neighbor correlations. The
quence in Eq.~1! is stationary but non-Markovian sincec i
depends not just only onc i 21 but on all the preceding mem
bers of the sequence@10#. This sequence
©2002 The American Physical Society04-1
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appears as a limiting case of the diffusion equation o
hierarchical lattice @10#. It also appears in the one
dimensional Ising spin-glass problem wherec i represents
the energy cost to flip thei th spin @12#. In Ref. @10#, the
persistenceP0(n) for this sequence was computed exac
for all n and remarkablyP0(n) was found to beuniversal,
i.e., independent of the distributionr(f). In particular, it
was thatP0(n);exp@2udn# for large n with ud5 ln@p/2#.
The persistenceP0(n) was shown to be identical to the av
erage fraction of metastable configurations~originally com-
puted in Ref. @12#! in the corresponding Ising spin-glas
chain @10#.

The purpose of this Rapid Communication is to show t
Pm(n) for any m>0 can also be calculated exactly for th
sequence in Eq.~1! and turns out to be universal. Let u
summarize our main results which are all independent of
distributionr(f):

~i! We show that the mean number of sign changes upn
steps~i.e., when the sequence size isn11) is given by the
exact formula,̂ m&5n/3 for all n.0.

~ii ! The variance is given by the formula,sn
25^m2&

2^m&25@16n131dn,1#/90 for all n.0.
~iii ! We show that analogus to its continuous count

part, the generating functionP̃(p,n)5(m50
n pmPm(n)

;exp@2ud(p)n# where the ‘‘discrete partial survival’’ expo
nentud(p) is given by the closed form expression

ud~p!5 lnF sin21~A12p2!

A12p2 G , 0<p<1. ~2!

This result can be analytically continued top>1.
~iv! We also show that in the limitm→`, n→` but

keepingx5m/n fixed, Pm(n);exp@2nF(x)# whereF(x) is
a universal large deviation function that we compute.

We start by definingPm,n
6 (f0) to be the joint probability

that the first member of the sequence in Eq.~1! 6c1.0 and
that the sequence undergoesm sign changes up ton steps,
given the value off0. It is then easy to see that they satis
the following recursion relations:

Pm,n11
1 ~f0!5E

2f0

`

df1r~f1!Fm,n
1 ~f1!,

Pm,n11
2 ~f0!5E

2`

2f0
df1r~f1!Fm,n

2 ~f1!, ~3!

where Fm,n
6 (f1)5Pm,n

6 (f1)1Pm21,n
7 (f1) and the initial

conditions are Pm,0
6 (f0)50 for m.0, P0,0

1 (f0)
5*2f0

` r(f1)df1, and P0,0
2 (f0)512P0,0

1 (f0). The gener-

ating functionsP̃n
6(p,f0)5(0

`Pm,n
6 (f0)pm then satisfy the

recursion relations
03510
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P̃n11
1 ~p,f0!5E

2f0

`

df1r~f1!F̃n
1~p,f1!,

P̃n11
2 ~p,f0!5E

2`

2f0
df1r~f1!F̃n

2~p,f1!, ~4!

where F̃n
6(p,f1)5 P̃n

6(p,f1)1pP̃n
7(p,f1) with the initial

conditions, P̃0
1(p,f0)5*0

`r(f1)df1 and P̃0
2(p,f0)51

2 P̃0
1(p,f0). Further simplification can be made by diffe

enting Eq.~4! with respect tof0 followed by a change of
variablef0→u5*0

f0r(f)df and then using the symmetr

r(f)5r(2f). Writing P̃n
6(p,f0)5 p̃n

6(u) ~suppressing the
p dependence for convenience! we find two coupled nonloca
recursion relations

dp̃n11
6 ~u!

du
56@ p̃n

6~2u!1pp̃n
7~2u!#, ~5!

with the initial conditionsp̃0
6(u)51/26u and the boundary

conditionsp̃6(71/2)50. Note that the explicit dependenc
on the distributionr(f) disappears in Eq.~5!. As a result, all
further quantities computed from these recursion relati
will be independent ofr(f) provided r(f) is symmetric
and continuous.

In principle, one can solve the recursion relations in E
~4! by the generating function method. However to calcul
the mean and the variance of zero crossings, it is simple
directly analyze Eq.~5!. Let En

6(f0)5(m50
` mPm,n

6 (f0) be
the expected number of sign changes up ton steps with the
first memberc1 positive ~or negative! and givenf0. Let us
write En

6(f0)5en
6(u) after making the change of variabl

f0→u. The average number of crossings is then giv
by ^m&5*2`

` @En
1(f0)1En

2(f0)#r(f0)df05*21/2
1/2 @en

1(u)
1en

2(u)#du. Differentiating Eqs.~5! once with respect top
and puttingp51, we get

den11
6

du
56@en

1~2u!1en
2~2u!#1u6

1

2
, ~6!

with the initial conditionse0
6(u)50 and the boundary con

ditions en
6(71/2)50. These recursion relations can b

solved exactly and one getsen11
6 5(1/26u)(n24)/12

6u3/31u2/26u/211/6. Hence, en(u)5en
1(u)1en

2(u)
5u21n/321/12. This then gives the exact result^m&
5*21/2

1/2 en(u)du5n/3 for all n>0, independent ofr(f).
The variancesn

25^m2&2^m&2 can be computed in a
similar way by differentiating Eq.~5! twice with respect top,
putting p51, and solving the resulting recursion relation
The functions Gn

6(f0)5(m50
` m(m21)Pm,n

6 (f0)5gn
6(u)

satisfy the following inhomogeneous recursion relations
n.0:

dgn11
6

du
56@gn

1~2u!1gn
2~2u!#62en

7~2u!, ~7!
4-2
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with the initial conditionsg0
6(u)5g1

6(u)50 and boundary
conditionsgn

6(71/2)50. Using the known values ofen
6(u)

one can again solve Eq.~7! explicitly. This finally
gives ^m(m21)&5*21/2

1/2 @gn
1(u)1gn

2(u)#du5(10n2214n
13)/90 for all n>2. Using ^m&5n/3, one getssn

25@16n
131dn,1#/90 for all n.0, again independent ofr(f).

We now turn to the calculation of the partial survival e
ponent. We expect that for largen, p̃n

6(u)'l2nf 6(u) where
l5exp@ud(p)#. Substituting this asymptotic form in Eq.~5!
we get the nonlocal eigenvalue equation

d f6~u!

du
56l@ f 1~2u!1 f 2~2u!#, ~8!

subject to the two boundary conditions,f 1(21/2)50 and
f 2(1/2)50. Diagonalizing Eq.~8! and solving the resulting
nonlocal equations we get the most general solutions of
~8!,

f 6~u!5A6 cos~mu!1B6sin~mu!, ~9!

wherem5lA12p2 and the four constantsA6 andB6 can
be written in terms of only two unknown constantsa andb
via the relations,A15ap, A25bA12p22a, B15bp, and
B25aA12p22b. The solution in Eq.~9! must satisfy the
two boundary conditionsf 6(71/2)50 which give two ho-
mogeneous linear equations for the unknown constantsa and
b. Eliminating a and b from these two equations one ge
m5sin21@A12p2# and hencel5sin21@A12p2#/A12p2.
Using the relationud(p)5 lnl, we obtain the result in Eq
~2!, once again independent ofr(f). Note that forp50,
ud(p) reduces to the usual discrete persistence exponenud
5 ln(p/2).

The expression forud(p) in Eq. ~2! is valid in the range
0<p<1. However, in principle, one can define the gener
ing function P̃(p,n)5(m50

` Pm(n)pn even for p.1. Then

for p.1 one expectsP̃(p,n) to diverge asn→` indicating
ud(p) becomes negative forp.1. Indeed one can easily ge
the result forp.1 by analytically continuing the expressio
in Eq. ~2! to the rangep>1 and this gives

ud~p!5 lnF ln~p1Ap221!

Ap221
G . ~10!

Thus ud(p) tends to 2` rather slowly as ud(p)
; ln@ln(2p)/p# asp→`.

We next analyze the distributionPm(n) in an interesting
scaling limit. Since the average number of crossings sc
linearly with the sizen as^m&5n/3, a natural scaling limit is
when m→`, n→` but keeping the ratiox5m/n fixed. In
this limit, we show thatPm(n);exp@2nF(x)# whereF(x)
is a large deviation function which is universal, i.e., indepe
dent of the distributionr(f). Large deviation functions as
sociated with different physical observables have appea
before in the context of various nonequilibrium systems@13#.
For example, the large deviation probabilities associated w
the occupation time in discrete renewal type processes h
03510
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been computed recently@14#. The present model provides a
example where there is a large deviation function associa
with the number of zero crossings that can be compu
explicitly. Indeed, substituting the ansatzPm(n)
;exp@2nF(x)# in the generating function one getsP̃(p,n)
;(m50

` Pm(n)pm;*0
`dx exp@2n$F(x)2x log p%#. In the

large n limit the integral can be evaluated by the steep
descent method and one getsP̃(p,n);exp@2nG(p)# where
G(p)5minx$F(x)2x log p%. On the other hand, by defini
tion, P̃(p,n);exp@2ud(p)n# for largen. This establishes the
relation, minx$F(x)2x log p%5ud(p). Thus ud(p) is just the
Legendre transform ofF(x). Inverting this Legendre trans
form we get

F~x!5maxp@x log p1ud~p!#, ~11!

where ud(p) is given exactly by Eqs.~2! and ~10! in the
rangep>0. Note that determiningF(x) from Eq. ~11! re-
quires a knowledge ofud(p) not just in the range 0<p<1
but also forp>1. Thus we will need both the formulas i
Eqs.~2! and ~10!.

We have obtainedF(x) from Eq.~11! using mathematica
and is displayed in Fig. 1 Since the number of crossingsm
<n, the allowed range ofx is 0<x<1. One can analytically
determine the behavior ofF(x) in the three limitsx→0, x
→1 andx→1/3. First consider the limitx→0. This corre-
sponds top→0 limit of ud(p). Expanding Eq.~2! for small
p, we getud(p)' ln(p/22p). Substituting this in Eq.~11!
and maximizing with respect top gives F(x)' ln(p/2)
1x log(x) as x→0. Next consider the opposite limit whe
x→1. This limit correspond toud(p) in the limit p→`.
Hence, we need to now use the analytically continued
mula in Eq. ~10!. Expanding Eq.~10! for large p, we get
ud(p)' ln@ln(2p)/p# to leading order. Substituting thi
asymptotic form in Eq.~11! and maximizing with respect to

FIG. 1. The large deviation functionF(x) plotted againstx. The
solid line represents the function obtained using Mathematica.
dotted line represents the analytical asymptotic formF(x)5
2 ln(12x)211(12x)ln 2 in the limit x→1. The functionF(x)
→ ln(p/2)50.451 583 . . . asx→0.
4-3
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p we getF(x)'2 ln(12x)211(12x)ln 2 asx→1. In Fig.
1, this asymptotic form is shown by the dotted line to whi
F(x) approaches rather quickly asx→1.

The most interesting limit, however, is whenx→1/3, i.e.
m→^m&. This limit in x corresponds top→1 limit of ud(p).
It is easy to see that both the limitsp→12 andp→11 yield
the same result. Let us consider the case whenp512e
where e→0. Expanding Eq.~2! in powers of e, we get
ud(p)'e/317e2/901O(e3). Substituting this in Eq.~11!
and maximizing with respect top512e, we get asx→1/3,

F~x!'
45

16S x2
1

3D 2

. ~12!

This limiting form can also be derived independently from
central limit theorem. To see this we write the number
sign changesm as the sum m5( i 51

n wi with wi51
2u(c ic i 11) andu(x) is the Heaviside step function. Thu
m2^m&5( i 51

n (wi2^wi&). Clearly in the limitm→^m&, the
variables (wi2^wi&) become only weakly correlated. The
in the limit whenn is much larger than the correlation leng
between these variables one expects the central limit theo
to hold predicting a Gaussian distribution form, Pm(n)
;exp@2(m2^m&)2/2sn

2#. Using the already derived resul
^m&5n/3 and sn

2'8n/45 for large n, we find Pm(n)
;exp@245n(x21/3)2/16# thus yielding the sameF(x) as in
Eq. ~12!. Thus this limit provides an indipendent check
our results for the mean and the variance. The three limi
behaviors ofF(x) are summmarized as follows:

F~x!'H ln~p/2!1x logx, x→0,

45

16S x2
1

3D 2

, x→1/3,

2 ln~12x!211~12x!ln 2, x→1.

~13!
u

e
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We conclude with a discussion of the implications of o
results for an Ising spin-glass chain described by the Ham
tonian, H52(Ji ,i 11sisi 11 with si561 and the bonds
Ji ,i 11’s are i.i.d random variables each drawn from the sa
symmetric and continuous distribution. A spin will be calle
metastable if the cost of energy to flip it under zer
temperature Glauber dynamics is positive, i.e.,DEi

52si@Ji 21,isi 211Ji ,i 11si 11#.0. A given spin configuration
~with fixed J’s! consists of alternate domains of metasta
and nonmetastable spins. A natural question is what is
average~over disorder! probability P(m,n) that there arem
such domains in a chain of lengthn. Defining the variables
f i52Ji ,i 11sisi 11 which are also i.i.d. variables, we see th
the energy costsDEi5f i1f i 21 form exactly the sequenc
studied in this Rapid Communication. The average dom
number probabilityP(m,n) is then identical to the probabil
ity of having 2m sign changes in the sequence$DEi% up ton
steps, i.e.,P2m(n) that has been computed exactly in th
paper. Clearly form50, P(0,n)5P0(n) is just the fraction
of fully metastable configurations~out of the 2n configura-
tions! at zero temperature and is the same as the persist
of the sequence$DEi% @10#. Note that one can easily gene
alize this question of the domain number probability
higher dimensions as well. The study of the statistics of
domains of metsatable spins in higher-dimensional s
glasses may provide interesting insights into the nature of
low-temperature phase.

A natural extension of the present work would be to co
pute the statistics of crossings of a sequence with lar
memory,c i5( j 50

k f i 2 j wherek>1 andf j ’s are i.i.d ran-
dom variables. Exact computation of the persistence as
as the large deviation function associated with multip
crossings fork.1 remains a challenging open problem.
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drèche and J.M. Luck, J. Stat. Phys.104, 489 ~2001!.
4-4


