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We study analytically the statistics of multiple sign changes in a discrete non-Markovian segyenge
+d¢i_1 (i=1,2,...n) whereg;’s are independent and identically distributed random variables each drawn
from a symmetric and continuous distributip(i¢) . We show that the probabiliti?,,(n) of msign changes up
to n steps is universal, i.e., independent of the distributib#). The mean and variance of the number of sign
changes are computed exactly for alt-0. We show that the generating functiﬁip,n)zE;:OPm(n)pm
~exfd —64(p)n] for large n where the “discrete” partial survival exponer(p) is given by a nontrivial
formula, 64(p)=In[sin"{(y1—p?)/1—p?] for 0<p=1. We also show that in the natural scaling limit
—ow, n—oo but keepingx=m/n fixed, P,(n)~exgd —nd(x)] where the large deviation functio®(x) is
computed. The implications of these results for Ising spin glasses are discussed.
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The probabilityPy(T) that a stochastic proceggT) does of a discrete sequence is twofold. First, in various experi-
not cross zero up to tim@& is a quantity of long-standing ments and numerical simulations to measure the persistence
interest to both physicists and mathematicifh&] and has Po(T) of a continuous stochastic proceg€T), one usually
resurfaced recently with the new name “persistence” in thesamples the continuous process only at discrete time points
context of nonequilibrium systeni8]. A lot of recent efforts ~ Separated by a fixed window si2el’ and checks whether the
have been devoted to computiRg(T) for stationary Gauss- Process has retained the same sign at all these discrete times.
ian processes. Such a Gaussian stationary prdGSB is Some ir_lformation gets lost due to this discretization since
completely specified by its two-point correlation function the continuous procegg(T) may have crossed and recrossed
C(T)=(%(0)y(T)). For a wide class of correlation func- zero in between two successive discrete points. Thus, the

; P - “discrete-time” persistenceéPy(n) [i.e., the probability that
tions, it is known thatPy(T) ~exp(—4T) for large T where 0 ’

the persistence exponeétis usually nontrivial, depends on thves?r?euzr;ﬁne/ej(gi)dhsl//(ézii| w(rzeAa:[re)r’ than tﬁ(ené;armous
the full functionC(T), and is calculable exactly only in very y 9

o . time persistencePy(T). In Ref. [9], it was shown that
few caseqd3]. A natural generalization oPy(T) is P, (T), . - ..
the probability ofm zero crossings up to tim& The mean Po(n) ~exf— 6] where the exponerty depends continu

. . ._ously on the window sizAT. The second motivation for
and the variance of the number of zero crossings up to time

T of a GSP have been studied beftg. For a smooth GSP studying the pﬁrsistence of a sequence follows rf]rom the zb'
where C(T)=1-aT+ ... for small T with a>0, the servation[10] t at many processes in nature such as weather
N o, —— records are stationary under translations in time only by an
mean 1S given by Rice’s formuIEa]', (m)/T=y—C"(0)/m integer multiple of a basic peria@vhich can be chosen to be
and the varlance_by a more complicated formula due to Benfmity without loss of generality It was shown in Ref[10]
dat[5] Recentlyllt was show[®] that for a smooth GSP the that for a wide class of such processes, the continuous time
generating functioP(p,T) == _oPn(T)p"~exd—P)T]  persistenc®,(T) is the same as the persisteriggn) of the
for largeT where the “partial survival” exponen(p) varies  corresponding discrete sequence obtained from the measure-
smoothly fromé#(0)= 6 to #(1)=0 asp varies continuously ment of the process only at integer times. A natural generali-
from O to 1. In Ref[6], the exponen®(p) was computed  zation of Py(n) is clearly P,,(n), the probability that there
exactly for the one-dimensional Ginzburg-Landau model ofgre m sign changes along a sequence of size
deterministic Coarsening and also approximately within the The exact calculation d?m(n) for an arbitrary stationary
independent interval approximation for other smooth prosequence seems difficult. It is therefore important to find
cesses such as the diffusion equation. The only process fekactly solvable cases. In this paper we present exact results

which a closed-form expression 6{p) exists, so far, is the for P_(n) for a specific sequence which was introduced in
random acceleration probleni7,8] which corresponds Ref.[10],

to a GSP [3] with correlator C(T)=[3 exp(-T/2)

—exp(—=3T/2)]/2. For this problem, the expone#d{p) for pi=di+di_q, i=12,...n (on)
O=p<1 is given by the formula, 6(p)=3[1
—6/7 sin Y(p/2)]. where ¢;’s are independent and identically distribut@dd)

In this Rapid Communication, we study the statistics ofrandom variables, not necessarily Gaussian, each drawn from
multiple crossings or sign changes in a discrete sequendbe same symmetric continuous distributiefy). The vari-
¥1,¥o, ..., @s opposed to a continuous processT) ables¢;'s have only nearest-neighbor correlations. The se-
discussed in the previous paragraph. This study is motivatequence in Eq(1) is stationary but non-Markovian sincg
by the recent works on the persistence of a discrete sequendepends not just only o#; _, but on all the preceding mem-
[9—-11]. The principal motivation for studying the persistencebers of the sequendé0]. This sequence
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appears as a limiting case of the diffusion equation on a -

hierarchical lattice [10]. It also appears in the one- P:+1(P,¢>o):j
dimensional Ising spin-glass problem whefe represents -
the energy cost to flip théth spin[12]. In Ref. [10], the

persistencePy(n) for this sequence was computed exactly P..(p.¢ ):f
for all n and remarkablyP,(n) was found to bauniversal T

i.e., independent of the distributiop(¢). In particular, it

was thatF’o(n)~exp[—0dn] for large n VYIth t?d=|n[7T/2]. Whereﬁﬁ(p,¢1)=ﬁﬁ(p,¢1)+pﬁlsrf(p,cﬁl) with the initial
The persistenc®,(n) was shown to be identical to the av- dit B _ q d P- 1
erage fraction of metastable configuratiqosiginally com- conditions, Po (P, ¢0)=fop(d1)d¢s and Po(p, o)

puted in Ref.[12]) in the corresponding Ising spin-glass — Po (P, o). Further simplification can be made by differ-

chain[10]. enting Eq.(4) with respect tog, followed by a change of
The purpose of this Rapid Communication is to show thawariable ¢o—>U=fg°p(¢)d¢ and then using the symmetry

Pn(n) for anym=0 can also be calculated exactly for the p($)=p(— ¢). Writing ﬁﬁ(p,d)o):‘bﬁ(u) (suppressing the

sequence in Eq(l) and turns out to be universal. Let us , gependence for convenienage find two coupled nonlocal
summarize our main results which are all independent of thesc\,rsion relations

distribution p(¢):
(i) We show that the mean number of sign changes opto

©

d¢1p(¢1)E:(p,¢1),
®0

b0 -
do1p(d)F (P, 1), (4)

— oo

. mber of sign ¢ Praw .
steps(i.e., when the sequence sizenis-1) is given by the n+ —+[p(—w+pp; (—u)], (5)
exact formula{m)=n/3 for all n>0. du
(i) The variance is given by the formular?=(m?)
—(m)?=[16n+3+ 8, 1]/90 for alln>0. with the initial conditionsp, (u) = 1/2+u and the boundary

(iii) We show that analogus to its continuous counter-conditionsp™(+ 1/2)=0. Note that the explicit dependence
part, the generating functionP(p,n)=3"_;p™P(n) on the distributiorp(¢) disappears in E(5). As a result, all
~exy] — 64(p)n] where the “discrete partial survival” expo- further quantities computed from these recursion relations

and continuous.

In principle, one can solve the recursion relations in Eq.

sin( \/F) (4) by the generating function method. However to calculate
f4(p)=In P O<p<1. (2) the mean and the variance of zero crossings, it is simpler to
V1-p? ' directly analyze Eq(5). Let E; (o) = =pm_oMPi (o) be

the expected number of sign changes um &teps with the
first membery, positive (or negativé and giveng,. Let us
This result can be analytically continued pe=1. write E; (o) =€, (u) after making the change of variable
(iv) We also show that in the limim—o, n—w but ¢o—u. The average number of crossings is then given
keepingx=m/n fixed, P,,(n) ~exgd —n®(x)] whered(x) is by (m)=["_[E, (bo)+E, (¢o)1p(po)ddo= Y4, Ler (u)
a universal large deviation function that we compute. +e, (u)]du. Differentiating Eqs(5) once with respect tp
We start by definingD,fm(d)o) to be the joint probability and puttingp=1, we get
that the first member of the sequence in Bg.= ¢,>0 and
that the sequence undergamssign changes up ta steps, S . - 1
given the value ofp,. It is then easy to see that they satisfy au - *lep(-u)Fe (—u)l+uxs, (6)
the following recursion relations:

with the initial conditionse, (u)=0 and the boundary con-
o ditions e, (*1/2)=0. These recursion relations can be
do1p(h1)F o n(d1), solved exactly and one gets,,=(1/2+u)(n—4)/12
do +u¥3+u?2+u/2+1/6. Hence, e,(u)=e, (u)+e, (u)
=u?+n/3—1/12. This then gives the exact resuiin)
4 =f1,’i,2en(u)du=n/3 for all n=0, independent op(¢).
p;]‘nﬂ(d,o)zj dep1p(B1)F ma( 1), 3) The varianceo?=(m?)—(m)? can be computed in a
— similar way by differentiating Eq(5) twice with respect t,
putting p=1, and solving the resulting recursion relations.
. . B The functions G, (¢o) = =m_om(M—1)Pp (o) =gy (U)
where Fp, (1) =Prn(b1) +Pr_14(#1) and the initial  satisfy the following inhomogeneous recursion relations for
conditions are Pp o(¢o)=0 for m>0, Pgy(ée) n>0:
=ff¢0p(¢1)d¢1, and Pq o(¢o) =1— Pg,o(‘lso)- The gener-

ating functionsP,, (p, ¢o) = =g Pmn($o)p™ then satisfy the dgnyy
recursion relations du

P+ 1($0) = f

=gy (—w+g, (—wl=x2e (—u), (7

035104-2



RAPID COMMUNICATIONS

STATISTICS OF MULTIPLE SIGN CHANGES INA . .. PHYSICAL REVIEW B5 035104R)

with the initial conditionsgy (u)=g; (u)=0 and boundary 15 - ' - '
conditionsg,, (+1/2)=0. Using the known values &, (u)
one can again solve Eq(7) explicitly. This finally
gives (m(m—1))= [, Jgy (u)+g, (u)]du=(10n>~14n
+3)/90 for alln=2. Using(m)=n/3, one getsr2=[16n
+ 3+ 6,,11/90 for alln>0, again independent gf( ¢). r
We now turn to the calculation of the partial survival ex-
ponent. We expect that for largeP,, (u)~\~"f*(u) where
A =exf 64(p)]. Substituting this asymptotic form in E¢5)
we get the nonlocal eigenvalue equation

®(x)

df*(u)
du

=+ \[fT(—u)+f (—u)], 8

subject to the two boundary conditions! (—1/2)=0 and 0 . - .
f~(1/2)=0. Diagonalizing Eq(8) and solving the resulting 0 0.2 0.4 0.6 0.8 1
nonlocal equations we get the most general solutions of Eq. X

8),

FIG. 1. The large deviation functiob(x) plotted againsk. The
solid line represents the function obtained using Mathematica. The
dotted line represents the analytical asymptotic fodnx)=

4 L —In(1—x)—1+(1—x)In 2 in the limit x—1. The function®(x
where =\ 1—p? and the four constantd™ andB™ can —»In((w/2))=0.4(51 5;  asx—0. - ()

be written in terms of only two unknown constargnd b

via the relationsA™ =ap, A" =by1—p“—a, B"=bp,and  peen computed recentf{t4]. The present model provides an

B =a\J1— pz—b_ The solution in Eq(9) must satisfy the example where there is a large deviation function associated
two boundary condition$~(+1/2)=0 which give two ho-  with the number of zero crossings that can be computed
rbnogleneous linear %qgj?tions Lor the unknown constaatsl  explicitly. Indeed, substituting the ansatzP(n)

. Eliminating a an rom these two equations one gets ~exd—nd(x)] in the generating function one ge{p,n)
p=sin 1[\/l—p_z] and hence\=sin 1_[\/1—p2]/\/1—_ p2. ~3%_ Pu(n)p™~ JZdxexfd —n{d(x)—xlogpl]. In the
Using the relationdq(p) =InA, we obtain the result in EQ. |arge n'limit the integral can be evaluated by the steepest

(2), once again independent pf¢). Note that forp=0, ~
: : descent method and one g&ép,n)~exd —nG(p)] where
o;dl(np()qﬁr;)duces to the usual discrete persistence expofient G(p) = ming®(x)—xlogp}. On the other hand, by defini-
The expression foBy(p) in Eq. (2) is valid in the range 10N, P(p,n)~exd —64(p)n] for largen. This establishes the
0<p=<1. However, in principle, one can define the generat'elation, min{d(x)—xlog p}=6y(p). Thus 64(p) is just the
ing function P(p,n) =" Pn(n)p" even forp>1. Then Legendre transform oP(x). Inverting this Legendre trans-
H m= .

f*(u)=A" cog uu)+B=sin(uu), (9)

~ ! o form we get
for p>1 one expect®(p,n) to diverge an— oo indicating
04(p) becomes negative fg>1. Indeed one can easily get ®(x)=max[xlogp+ O4(p)], (11
the result forp>1 by analytically continuing the expression o )
in Eq. (2) to the rangep=1 and this gives where 04(p) is given exactly by Egs(2) and (10) in the
rangep=0. Note that determining(x) from Eg. (11) re-
In(p+ /pz_ 1) quires a knowledge of4(p) not just in the range €p=<1
0q(p)=In| ——|. (10) but also forp=1. Thus we will need both the formulas in
Vp?—-1 Egs.(2) and(10).

We have obtaine@®(x) from Eg.(11) using mathematica
Thus 64(p) tends to —< rather slowly as 64(p) and is displayed in Fig. 1 Since the number of crossimgs
~In[In(2p)/p] asp—ce. =n, the allowed range of is O<x=<1. One can analytically
We next analyze the distributio®,(n) in an interesting determine the behavior ab(x) in the three limitsx—0, X
scaling limit. Since the average number of crossings scale-1 andx— 1/3. First consider the limik—0. This corre-
linearly with the sizen as(m)=n/3, a natural scaling limitis sponds tgp— 0 limit of 64(p). Expanding Eq(2) for small
whenm—o, n—o but keeping the ratix=m/n fixed. In  p, we getdy(p)~In(w/2—p). Substituting this in Eq(11)
this limit, we show thatP,(n) ~exd —n®(x)] where ®(x) and maximizing with respect t@ gives ®(x)~In(n/2)
is a large deviation function which is universal, i.e., indepen-+xlog(X) as x—0. Next consider the opposite limit when
dent of the distributiorp(¢). Large deviation functions as- x—1. This limit correspond tod4(p) in the limit p—oe.
sociated with different physical observables have appearedence, we need to now use the analytically continued for-
before in the context of various nonequilibrium systdi. mula in Eqg.(10). Expanding Eq.10) for large p, we get
For example, the large deviation probabilities associated withd4(p)~In[In(2p)/p] to leading order. Substituting this
the occupation time in discrete renewal type processes hawsymptotic form in Eq(11) and maximizing with respect to
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p we get®(x)=~—In(1—x)—1+(1—x)In2 asx—1. In Fig. We conclude with a discussion of the implications of our
1, this asymptotic form is shown by the dotted line to whichresults for an Ising spin-glass chain described by the Hamil-
®(x) approaches rather quickly as-1. tonian, H=—2xJ; ;,1S;Sj+; with s;=*1 and the bonds

The most interesting limit, however, is wher-1/3, i.e.  J;;, s are i.i.d random variables each drawn from the same
m—(m). This limit in x corresponds tp— 1 limit of 64(p). ~ symmetric and continuous distribution. A spin will be called
Itis easy to see that both the limigs~1~ andp—1" yield  metastable if the cost of energy to flip it under zero-
the same result. Let us consider the case whenl—e  temperature Glauber dynamics is positive, i.6\E;
where e—0. Expanding Eq.(2) in powers _of_e, we get  —2g[J,_,;s_1+Ji41S+1]>0. Agiven spin configuration
0u(p)~ €/3+7€/90+ O(e%). Substituting this in Eq(11)  (with fixed J's) consists of alternate domains of metastable
and maximizing with respect tp=1—¢, we get ax—1/3,  and nonmetastable spins. A natural question is what is the

45 1\2 average(ovc_ar d!sorde)r p_robability P(m,n) _that there aren
d(x)~ —(x— _) (120  such domains in a chain of length Defining the variables
16 3 ¢i=2J; i +1SiSi+1 Which are also i.i.d. variables, we see that

the energy costAE;= ¢;+ ¢; _, form exactly the sequence
studied in this Rapid Communication. The average domain
number probability?(m,n) is then identical to the probabil-

ity of having 2m sign changes in the sequer{ceE;} up ton

' steps, i.e.,P,n(n) that has been computed exactly in this
paper. Clearly fom=0, P(0,n)=Pgy(n) is just the fraction

of fully metastable configuration@ut of the 2' configura-
tions) at zero temperature and is the same as the persistence
Bt the sequenc@AE;} [10]. Note that one can easily gener-

This limiting form can also be derived independently from a
central limit theorem. To see this we write the number of
sign changesm as the summ=3"_,w; with w;=1
—0(y;¢; 1) and 0(x) is the Heaviside step function. Thus
m—(m)=={,(w;—(w;)). Clearly in the limitm— (m), the
variables (v;—(w;)) become only weakly correlated. Then
in the limit whenn is much larger than the correlation length
between these variables one expects the central limit theore

to hold pred|ct|r219 a Gaussian distribution fon, Pw(n)  gjize this question of the domain number probability to
~exp —(m—(m)) ézan]- Using the already derived results pigher dimensions as well. The study of the statistics of the
(m=n/3 and o;~8n/45 for large n, we find Py(n)  domains of metsatable spins in higher-dimensional spin
~exg —45n(x—1/3)%/16] thus yielding the samé(x) asin  glasses may provide interesting insights into the nature of the
Eq. (12). Thus this limit provides an indipendent check of jow-temperature phase.

our results for the mean and the variance. The three IImItIng A natural extension of the present work would be to com-
behaviors of(x) are summmarized as follows: pute the statistics of crossings of a sequence with larger
memory, wi=2}‘=o¢i,j wherek=1 and ¢;’s are i.i.d ran-

In(/2) +xlogx, x=0, dom variables. Exact computation of the persistence as well
B(x) 450 1 2 s 1/3 as the large deviation function associated with multiple
()~ 16 X 3/ (13 crossings folk>1 remains a challenging open problem.
—In(1-x)—1+(1-x)In2, x—1. | thank D. Dhar and A. J. Bray for useful discussions.
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