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Abstract. We study the random acceleration model, which is perhaps one of

the simplest, yet nontrivial, non-Markov stochastic processes, and is key to many

applications. For this non-Markov process, we present exact analytical results for the

probability density p(tm|T ) of the time tm at which the process reaches its maximum,

within a fixed time interval [0, T ]. We study two different boundary conditions, which

correspond to the process representing respectively (i) the integral of a Brownian bridge

and (ii) the integral of a free Brownian motion. Our analytical results are also verified

by numerical simulations.
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Figure 1. A realization of a random acceleration process reaching its maximum xm

at tm.

1. Introduction

Consider a general stochastic process x(t), starting from x(0) = 0, over a fixed time

interval [0, T ]. Let tm denote the time at which the process achieves its maximum value

xm during the interval [0, T ] (see Fig. 1). Clearly, tm is a random variable that fluctuates

from one realization of the process to another. Our main goal is to investigate the

probability density function (pdf) p(tm|T ) of the stochastic times tm, given the interval

length T and the underlying stochastic process x(t).

This question naturally rises in a variety of fields. For instance, in the context of

the queueing theory, the stochastic process x(t) may represent the length of a queue

at time t, and one would like to know tm, i.e., the time at which the queue length is

maximum over a given time span. In the context of finance, x(t) may represent the

price of a stock, and a trader is evidently interested in tm, i.e., the time at which the

stock price is at its highest.

Perhaps, one of the simplest examples is provided by the underlying stochastic

process x(t) being an ordinary Brownian motion

dx

dt
= η(t), (1)

where η(t) is a Gaussian white noise with zero mean 〈η(t)〉 = 0, and a delta correlator

〈η(t)η(t′)〉 = 2Dδ(t− t′). In this case, the probabiliy density p(tm|T ) is independent of
D and is well known [1]

p(tm|T ) =
1

π
√

tm(T − tm)
; 0 ≤ tm ≤ T. (2)

This curve is symmetric around the mid-point tm = T/2, has a ‘U shape’ with minimum

at tm = T/2, and diverges at the two end points tm = 0 and tm = T . The cumulative

distribution Prob(tm ≤ x|T ) = 2
π
arcsin

[√

tm/T
]

is known as one of Levy’s celebrated

‘arcsine laws’ [1].

For a Brownian bridge, i.e., a Brownian motion constrained to return to 0 at T ,

i.e., x(T ) = 0, the corresponding pdf is known to be uniform: p(tm|T ) = 1/T for

0 ≤ tm ≤ T [2].
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Motivated principally by the applications in the queueing theory and finance, the

pdf p(tm|T ) has been computed explicitly for a variety of other ‘constrained’ Brownian

motions by using suitably adapted path integral methods. These examples include

Brownian excursion [3], Brownian meander [3], reflected Brownian bridge [3], Brownian

motion till its first-passage time [4], and Brownian motion with a drift [5]. Some of these

exact results were then reobtained via a functional renormalization group method [6].

In Ref. [6], the authors computed p(tm|T ) also for Bessel processes and for continuous-

time random walks. Curiously, the pdf p(tm|T ) also appeared recently as an important

input in the calculation of the area enclosed by the convex hull of a planar Brownian

motion of duration T [7, 8], which displays an interesting application in ecology. In

addition, we have recently shown that p(tm|T ) also appears in the computation of the

disorder-averaged equilibrium distribution of a particle moving in a random self-affine

potential [9].

The results for p(tm|T ) mentioned above have been obtained for Brownian motion

and its variants, which are all Markov processes. The purpose of this paper is to go

beyond Markov processes and present an exact result of p(tm|T ) for a non-Markov

process. The non-Markov process that we study here is the well-known random

acceleration process, which evolves via

ẍ(t) = η(t), (3)

η(t) being a Gaussian white noise with 〈η(t)〉 = 0, as before, and 〈η(t)η(t′)〉 = 2Dδ(t−t′).

For simplicity, we will choose D = 1 subsequently. The process starts at x(0) = 0 with

v(0) = ẋ(t) = 0, and evolves until the time T . We denote by xf = x(T ) and vf = v(T )

the final position and velocity of the process, respectively (see Fig. 1). The random

acceleration process in the single variable x(t) is non-Markovian, whereas the position-

velocity process {x, v} is Markovian and does not depend on the past history.

The random acceleration process, being among the simplest non-Markovian

processes, has been intensely studied both in Physics and Mathematics literature.

In Physics, for instance, it appears in the continuum description of the equilibrium

Boltzmann weight of a semiflexible polymer chain with non-zero bending energy [10].

It also describes the steady state profile of a (1+1)-dimensional Gaussian interface [11]

with dynamical exponent z = 4, the continuum version of the Golubovic-Bruinsma-

Das Sarma-Tamborenea model [12]. This process also appears in the description of

the statistical properties of the Burgers equation with Brownian initial velocity [13].

The first-passage and a variety of other related properties of the random acceleration

model are highly nontrivial and have been studied extensively over the last few

decades [14, 15, 16, 10, 17, 19, 11, 18, 20, 21].

Thus, in addition to being relevant in many applications, the random acceleration

model represents a simple, yet nontrivial, non-Markov process where one can try to

compute observables of physical interest. Recent studies have concerned the distribution

of extreme observables associated with this process, notably the global maximum xm

itself over the interval [0, T ] [10, 22, 23]. In this paper, we focus instead on the time tm
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Figure 2. A realization of a random acceleration process reaching its maximum xm

at tm. In this case, the maximum occurs at the end of the time interval [0, T ].

at which the global maximum xm occurs in [0, T ]. Actually, we show in this paper that

p(tm|T ) can be computed explicitly.

Let us first summarize our main results. Since the only time scale in the problem

is T , it is evident that p(tm|T ), normalized to unity over 0 ≤ tm ≤ T , has the scaling

form

p(tm|T ) =
1

T
p
(

tm
T

)

, (4)

where the scaling function p(z), defined over 0 ≤ z ≤ 1, satisfies the normalization

condition:
∫ 1
0 p(z)dz = 1. We will consider two different boundary conditions, detailed

below, for which we are able to compute p(z) explicitly.

1.1. Integral of a Brownian Bridge

When the final velocity vanishes, vf = 0, the process can be interpreted as the integral

of a Brownian Bridge. In this case, we will show that

p(z) =
Γ(1/2)

Γ2(1/4)

1

[z(1 − z)]3/4
, (5)

which is evidently symmetric around the mid-point z = 1/2 and diverges at the two end-

points as z−3/4 and (1− z)−3/4, respectively. It is also useful to consider the cumulative

distribution P (z) =
∫ z
0 p(z′) dz′, which reads

P (z) =
Γ(1/2)

Γ2(1/4)
Bz

(

1

4
,
1

4

)

. (6)

Here Bz(p, q) =
∫ z
0 xp−1 (1 − x)q−1 dx is the incomplete Beta function [24]. A plot of

P (z) is shown in Fig. 4, where it is also compared to direct numerical solutions, to an

excellent agreement.

1.2. Integral of a free Brownian Motion

When vf is arbitrary, the process can be interpreted as the integral of a free Brownian

motion. In this case, we obtain the following exact result for the normalized pdf

p(z) = C δ(z − 1) +
(1− C)

π
√
2

z−3/4 (1− z)−1/4, (7)
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where the constant C has the exact value

C = 1−
√

3

8
= 0.387628 . . . (8)

The density is thus asymmetric around the mid-point tm = T/2 (i.e., z = 1/2), and the

maximum may either occur at some time strictly shorter than T , namely tm < T (i.e.,

z < 1), or with a finite nonvanishing probability C = 0.387628.. at the end point of the

interval tm = T (or equivalently z = 1). The representative trajectories for these two

situations are shown respectively in Fig. 1 and Fig. 2. In other words, roughly 38.67%

of all trajectories, starting at x(0) = 0 and v(0) = 0, achieve their maximum only at the

end of the interval [0, T ]. The corresponding cumulative distribution P (z) =
∫ z
0 p(z′) dz′

is given by

P (z) = C θ(z − 1) +
(1− C)

π
√
2

Bz

(

1

4
,
3

4

)

, (9)

where θ(z − 1) is zero for z < 1 and is equal to 1 for z = 1, i.e, P (z) exhibits a

discontinuous jump at z = 1 from 1 − C =
√

3/8 = 0.612372 . . . to 1. A plot of P (z)

is provided in Fig. 5, where it is also compared to direct simulation results: we find an

excellent agreement between analytical and numerical results.

The paper is organized as follows. In Section 2, we outline the main ideas used

for the exact derivation of p(tm|T ) via path decomposition techniques. In Subsection

2.3, we also compare our analytical predictions with the results obtained via Monte

Carlo simulations. A concluding Section 3 presents a summary and raises some open

questions. The details of the calculations are left to four Appendices, as they involve

rather cumbersome multiple integrations of Airy functions.

2. Calculations

The basic ingredient in our computation is the propagator Z+(x1, v1; x0, v0, t), i.e., the

probability that the process x(t), starting at x0 > 0 with velocity v0, reaches the point x1

with velocity v1 at time t, without ever crossing the origin x = 0 during this time. The

Laplace transform of the propagator has been explicitly computed by Burkhardt and is

recalled in Appendix A. We show that the location of the maximum can be expressed

in terms of the propagator Z+. Then, we make use of the known results about Z+ in

Laplace space to derive a closed form expression for p(tm|T ).
The velocity v(t) of a random acceleration process is a Brownian motion, thus

v(t) is continuous everywhere, which implies that x(t) is continuous and differentiable

everywhere. An important consequence is that the global maximum xm can lie either

inside the interval (0, T ), with a velocity vm = 0 (Fig. 1), or at the boundary tm = T ,

with a velocity vm = vf > 0 (Fig. 2).

With reference to Fig. 1, the global maximum of the process starting at

{x0 = v0 = 0} and ending at {xf , vf} lies inside the interval (0, T ). It is useful to

decompose the total path in two portions: a first path from {x(0) = 0, v(0) = 0} to

{xm, vm = 0} in a time tm, and a second path from {xm, vm = 0} to {xf , vf} in a
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Figure 3. a) Left. Decomposition of a realization of the random acceleration process

into two paths, from 0 to tm (I) and from tm to T (II). b) Right. Illustration of the

change of variables x̃ = xm − x and t̃ = tm − t for (I) and x̃ = xm − x and t̃ = t− tm

for (II).

time T − tm (see Fig. 3a). Remark that xm represents the maximum of both paths.

Denote by P[xm, vm = 0; x(0) = v(0) = 0, tm] the probability of the first path and by

P[xf , vf ; xm, vm = 0, T − tm] the probability of the second path. With respect to the

variables {x, v}, the process is Markovian, and the probability of the entire path is given

by the product

P[xm, vm = 0; x(0) = v(0) = 0, tm]× P[xf , vf ; xm, vm = 0, T − tm]. (10)

We introduce the change of variables x̃ = xm − x, t̃ = tm − t (which implies ṽ = v)

for the first path (see Fig. 3b). Therefore, we can rewrite

P[xm, vm = 0; x(0) = v(0) = 0, tm] = Z+(xm, 0; 0, 0, tm). (11)

As for the second path, the change of variables x̃ = xm − x, t̃ = t − tm (see Fig.

3b) gives

P[xf , vf ; xm, vm = 0, T − tm] = Z+(x̃f = xm − xf ,−vf ; 0, 0, T − tm). (12)

When tm = T , as illustrated in Fig. 2, an analogous argument, with a change

of variables x̃ = xm − x and t̃ = T − t (which implies ṽ = v), allows rewriting the

probability of such a path as Z+(xm, 0; 0, vf , T ).

2.1. Integral of a Brownian Bridge

In this case, vf = 0, and the location of the maximum lies inside the interval, as in Fig.

1. It follows that p(tm|T ) can be obtained by integrating the two paths of Eq. (10) over

xm and x̃f , with vf = 0
∫

∞

0
dxm

∫ xm

−∞

dxfP[xm, 0; 0, 0, tm]P[xf , 0; xm, 0, T − tm] =
∫

∞

0
dxmZ+(xm, 0; 0, 0, tm)

∫

∞

0
dx̃fZ+(x̃f , 0; 0, 0, T − tm) =

I2(0, tm)I2(0, T − tm). (13)
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We define

I2(ǫ, t) =
∫

∞

0
dxZ+(x, 0; ǫ, 0, t), (14)

which denotes the probability that the process, starting at the initial position ǫ ≥ 0 at

t = 0, with initial velocity v0 = 0, remains positive up to time t, with a vanishing final

velocity (the final position being arbitrary).

The integral I2(ǫ, t) can be computed exactly and it turns out that, in the ǫ → 0

limit, this integral vanishes, as apparent from Eq. (C.11). This is not surprising: indeed,

if the particle starts at the origin with vanishing velocity, it can not survive up to a

finite time t, since it will cross the boundary almost immediately. This is due to the

continuous nature of the Brownian velocity. Therefore, if one puts ǫ = 0 straightaway,

the rhs of Eq. (13) vanishes. The reason for this is clear: the lhs of Eq. (13) represents

the probability that the maximum lies in [tm, tm + dtm], i.e., p(tm|t)dtm, and hence is

proportional to the small time increment dtm. Setting ǫ → 0 essentially implies dtm = 0,

which therefore gives 0 on the rhs. To extract the nonzero probability density p(tm|t),
one therefore needs to keep a finite ǫ (therefore a finite dtm) in I2(ǫ, t) on the rhs of

Eq. (13). Then, finally one uses the following limiting procedure that gives a finite

answer

p(tm|T ) = lim
ǫ→0

I2(ǫ, tm)I2(ǫ, T − tm)
∫ T
0 dtmI2(ǫ, tm)I2(ǫ, T − tm)

=
Γ(1/2)

Γ2(1/4)

√
T

[tm(T − tm)]
3/4

.(15)

We note that this type of regularization procedure has been adopted before in computing

the distribution of the area under a Brownian excursion [25] and, more recently, in the

context of computing p(tm|T ) for several constrained Brownian motions, including the

Brownian excursion [3].

2.2. Integral of a free Brownian Motion

When the final velocity vf of the particle is arbitrary, there is a finite probability that

the global maximum occurs at the end of the observation time window [0, T ]. This

means that the probability density p(tm|T ) includes a delta function Cδ(tm − T ) (with

a nonzero weight C ). This is in addition to a non-delta function part with a nonzero

support (and a total weight (1− C)) over the full interval tm ∈ [0, T ].

Let us first compute the delta-function component in p(tm|T ) at tm = T . This

contribution comes from paths that start at the origin with zero velocity and end up at

xm (with xm being the maximum) in a small time window tm ∈ [T − δ, T ], where δ → 0

and xm is free to take any positive value. Following the notations and the change of

variables discussed earlier, one can write the net probability of such paths as

lim
δ→0

∫ T

T−δ
p(tm|T ) dtm =

∫

∞

0

∫

∞

0
dxmdvfZ+(xm, 0; 0, vf , T ) = I1(T ). (16)

We compute this integral I1(T ) explicitly in Appendix B, and it turns out to be a

constant indepedent of T , I1(T ) = C = 1 −
√

3/8. Thus, it follows that the delta-

function component of the probability density is p(tm|T ) = Cδ(tm − T ).
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Figure 4. Simulation results for the cumulative distribution P (z) =
∫

z

0
p(z′) dz′

(circles) as compared to the analytical formula in Eq. (6) (solid line), for the integral

of a Brownian Bridge.

We next focus on the non-delta function part, where the maximum occurs at some

time tm well inside the interval [0, T ]. The calculation is performed along the lines of

the integral of a Brownian Bridge. The integral of the two paths of Eq. (10) now writes
∫

∞

0
dxmZ+(xm, 0; 0, 0, tm)

∫ +∞

−∞

dṽf

∫

∞

0
dx̃fZ+(x̃f ,−vf ; 0, 0, T − tm)

= I2(0, tm)I3(0, T − tm), (17)

where

I3(ǫ, t) =
∫ +∞

−∞

dv
∫

∞

0
dxZ+(x, v; ǫ, 0, t). (18)

The integral I3(ǫ, t) is computed in Eq. (D.7) and, for reasons explained already, it

vanishes as ǫ → 0. Using the regularization mentioned before with x0 = ǫ and taking

into account the full normalization,
∫ T
tm p(tm|T ) dtm = 1, we can then write

p(tm|T ) = Cδ(tm − T ) + (1− C) lim
ǫ→0

I2(ǫ, tm)I3(ǫ, T − tm)
∫ T
0 dtmI2(ǫ, tm)I3(ǫ, T − tm)

(19)

This thus gives the result of Eq. (7).

2.3. Numerical simulations

To verify our main theoretical predictions in the two cases, namely, (i) the integral of a

Brownian bridge in Eq. (6) and (ii) the integral of a free Brownian motion in Eq. (9),

we have also performed Monte Carlo simulations of the two processes. In both cases,

we simulated 104 realizations, with T = 1 and an integration step 10−5. In Fig. 4

and 5, for the two cases (i) and (ii) respectively, the theoretical and numerical results

are compared. The circles represent the simulation results and the solid lines represent

the analytical formulae, respectively in Eq. (6) (Fig. 4) and Eq. (9) (Fig. 5). The

agreement between simulations and analytical curves is excellent.
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Figure 5. Simulation results for the cumulative distribution P (z) (circles) as

compared to the analytical formula in Eq. (9) (solid line), for the integral of a free

Brownian motion.

3. Summary and conclusions

In this paper we have studied two non-Markov stochastic processes: (i) the integral of

a Brownian bridge up to time T and (ii) the integral of a Brownian motion up to T -

i.e., the so called random acceleration processes. For both processes, we have computed

exactly the probability density p(tm|T ) of the time tm at which the process achieves its

maximum when observed over a time window [0, T ]. In the former case, the density

p(tm|T ) is symmetric around the midpoint tm = T/2, with power law divergences

at the end points tm = 0 and tm = T . In contrast, in the latter case, p(tm|T ) is

asymmetric around the midpoint tm = T/2 and, in addition, has an unusual delta-

function contribution at the end point tm = T . The exact results are given respectively

in Eqs. (5) and (7). Our analytical findings are in excellent agreement with numerical

Monte Carlo simulations (see Figs. 4 and 5).

Note that, even though our final results look rather simple, their derivations,

starting from the basic propagator, are nontrivial and involve rather delicate

mathematical manipulations of multiple integrals, which we have tried to present

systematically in a stepwise fashion in the Appendices. Hopefully, some of these details

might be also useful in other problems involving the integrals of a Brownian motion.

The exact result for p(tm|T ) that we obtain in this paper is directly relevant

for a particle diffusing in a one dimensional random potential V (x). In a finite box

of size T , the particle finally thermalizes with an equilibrium Boltzmann density,

peq(x) = e−βV (x)/Z, where β is the inverse temperature and Z =
∫ T
0 e−βV (x) dx is the

partition function. In the low temperature limit, by taking the average over disorder,

one can show [9] that peq(x) is precisely equal to the probability density p(tm = x|T )
that the potential V (x), viewed as a stochastic process in space (where the space plays

the role of ‘time’), has its minimum (or equivalently its maximum [26]) at tm = x. For

example, for the well known Sinai model, where V (x) itself is a free Brownian trajectory,
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peq(x) = 1/[π
√

x(T − x)], the same as the arcsine law. Our finding for p(tm|T ) then

generalizes the result for peq(x) to the case where the potential V (x) represents the

trajectory of a random acceleration process.

Let us end with a curious observation. For the free Brownian motion, Levy’s

arcsine law appears in the distribution of two different observables: (a) in p(tm|T ),
i.e., the location of the maximum, and (b) in p(toccup|T ), where toccup =

∫ T
0 θ [x(τ)] dτ

represents the occupation time, i.e., the time the process spends on the positive half

axis within the interval [0, T ]. One may then ask if these two observables share the same

distribution also for the random acceleration process. While we are able to compute

p(tm|T ) explicitly in this case, the computation of p(toccup|T ) seems harder in the random

acceleration case. Our numerical evidence shows that, unlike in the Brownian case, the

two distributions are different in the random acceleration model. Therefore, computing

the occupation time distribution p(toccup|T ) for the random acceleration model remains

a challenging open problem.

Appendix A. Propagator with an absorbing boundary

In the absence of boundaries, the free propagator for the random acceleration process

reads [10]

Z0(x, v; x0, v0, t) =

√
3

2πt2
exp

{

− 3

t3

[

(x− x0 − vt) (x− x0 − v0t) +
t2

3
(v − v0)

2

]}

.(A.1)

In presence of the absorbing boundary at x = 0, the propagator reads [10]

Z+(x, v; x0, v0, t) = Z0(x, v; x0, v0, t) + Z1(x, v; x0, v0, t), (A.2)

where the Laplace transform of Z1(x, v; x0, v0, t), i.e.,

Z̃1(x, v; x0, v0, s) =
∫

dte−stZ1(x, v; x0, v0, t), (A.3)

has a rather complicated expression [10]

Z̃1(x, v; x0, v0, s) = − 1

2π

∫

∞

0

∫

∞

0
dGdFAi(s/G2/3 − vG1/3)

Ai(s/F 2/3 + v0F
1/3)

exp
{

−
[

Fx0 +Gx+ 2
3
s3/2 (F−1 +G−1)

]}

(FG)1/6(F +G)
, (A.4)

Ai(x) being the Airy function [27]. In subsequent calculations, we will also use the

following amazing identity [16, 10]

1

2π

∫

∞

0

dG

F +G
G−1/6 exp

[

−2

3

(

s3/2

F
+

s3/2

G

)]

Ai
(

s

G2/3

)

= F−1/6Ai
(

s

F 2/3

)

.(A.5)

Appendix B. The first integral

In this Appendix we compute the first integral

I1(T ) =
∫

∞

0

∫

∞

0
dv dx [Z0(x, 0; 0, v, T ) + Z1(x, 0; 0, v, T )] , (B.1)
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where the propagator Z0 is given in Eq. (A.1), and the Laplace transform of Z1 is given

in Eq. (A.4). We show below that I1(T ) is actually a constant, independent of T , and

is given by an amazingly simple expression

I1(T ) = C = 1−
√

3

8
. (B.2)

Performing these integrals in closed form requires the use of a number of identities from

Ref. [24]. However, to use the available identities, we need to first express the integral

in a suitable form. To summarize, the derivation is not straightforward and requires

quite a few mathematical manipulations and tricks. To make it easy, we lay out the

main steps used in this derivation.

Step 1: Upon substituting the exact Z0 from Eq. (A.1), the first integral in Eq. (B.1)

can be performed in a straightforward manner and gives
∫

∞

0

∫

∞

0
dv dxZ0(x, 0; 0, v, T ) =

5

12
. (B.3)

Step 2: To perform the second integral, we first take its Laplace transform with respect

to T , substitute the result from Eq. (A.4), and then easily perform the integration over

x. This yields

J(s) =
∫

∞

0

∫

∞

0

∫

∞

0
dv dx dT e−sTZ1(x, 0; 0, v, T ) = − 1

2π

∫

∞

0

∫

∞

0

∫

∞

0
dv dGdF

(FG)−1/6

G(F +G)
exp

[

−2

3

(

s3/2

F
+

s3/2

G

)]

Ai
(

s

G2/3

)

Ai
(

s

F 2/3
+ vF 1/3

)

. (B.4)

Step 3: Next, we split the term 1/{G(F +G)} in the integrand on the rhs of Eq. (B.4)

into two parts, namely,

1

G(F +G)
= − 1

F (F +G)
+

1

FG
, (B.5)

and thus split the integral J(s) into two parts, i.e., J(s) = J1(s) + J2(s). This allow

dealing each contribution separately, so that a number of identities can be used, as

explained below

Step 4: Let us first consider the first term,

J1(s) =
1

2π

∫

∞

0

∫

∞

0

∫

∞

0
dv dGdF

(FG)−1/6

F (F +G)
exp

[

−2

3

(

s3/2

F
+

s3/2

G

)]

Ai
(

s

G2/3

)

Ai
(

s

F 2/3
+ vF 1/3

)

. (B.6)

Now, the integral over G can be performed explicitly using the identity (A.5). Next, for

the integral over v, we make a change of variables: w = F 1/3v + sF−2/3. Substituting

back, we get

J1(s) =
∫

∞

0

dF

F 5/3
Ai
(

s

F 2/3

) ∫

∞

sF−2/3
Ai(w) dw. (B.7)



12

Then, making a further change of variables, sF−2/3 = z, yields a simpler expression

J1(s) =
3

2s

∫

∞

0
dzAi(z)

∫

∞

z
Ai(w)dw. (B.8)

The rhs can be computed using integration by parts, so to give

J1(s) =
3

4s

[∫

∞

0
Ai(w)dw

]2

. (B.9)

Using
∫

∞

0 Ai(w)dw = 1/3 [27], finally gives the rather simple exact expression

J1(s) =
1

12s
. (B.10)

Step 5: We now turn to the second contribution J2(s), which is given by

J2(s) = − 1

2π

∫

∞

0

∫

∞

0

∫

∞

0
dv dGdF

(FG)−7/6

G(F +G)
exp

[

−2

3

(

s3/2

F
+

s3/2

G

)]

Ai
(

s

G2/3

)

Ai
(

s

F 2/3
+ vF 1/3

)

. (B.11)

Now, the integral over G can be separated from the integrals over F and v, and we write

J2(s) = − 1

2π
J21(s) J22(s), (B.12)

where J21(s) involves only the integral over G

J21(s) =
∫

∞

0
dGG−7/6 exp

[

−2

3

(

s3/2

G

)]

Ai
(

s

G2/3

)

(B.13)

and J22(s) involves the integration over F and v

J22(s) =
∫

∞

0
dF F−7/6 exp

[

−2

3

(

s3/2

F

)]

∫

∞

0
Ai(F 1/3v+sF−2/3)dv.(B.14)

Step 6: We now perform the integral J21(s) in Eq. (B.13). We first make a change of

variables from G to y = 2s3/2/3G. Next, we use the identity [27]

Ai

(

(

3y

2

)2/3
)

=
1

π
√
3

(

3

2

)1/3

y1/3K1/3(y), (B.15)

where Kν(y) is the modified Bessel function of index ν [24]. Substituting back in

Eq. (B.13), we get

J21(s) =
1

s1/4
1

π
√
2

∫

∞

0
y−1/2 e−y K1/3(y) dy. (B.16)

The integral over y can be explicitly performed [24], and gives π
√
2π. Thus, we get a

very simple expression

J21(s) =

√
π

s1/4
. (B.17)

Step 7: Now we turn to the computation of J22(s) in Eq. (B.14). Making the change

of variables from v to w = F 1/3v + sF−2/3, we get

J22(s) =
∫

∞

0
dF F−3/2 exp

[

−2

3

(

s3/2

F

)]

∫

∞

sF−2/3
Ai(w)dw. (B.18)
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Next, we make a change of variables from F to y = 2s3/2/3F , so to rewrite the integral

as

J22(s) =
1

s3/4

√

3

2

∫

∞

0
dy y−1/2 e−y

∫

∞

(3y/2)2/3
Ai(w)dw. (B.19)

Substituting the expressions for J22(s) and J21(s) in Eq. (B.12) finally yields

J2(s) = −




√

3

8π
A0





1

s
(B.20)

where the constant A0 is given by the integral

A0 =
∫

∞

0
dy y−1/2 e−y

∫

∞

(3y/2)2/3
Ai(w)dw. (B.21)

Step 8: We have now to evaluate the constant A0 in Eq. (B.21). As a first step, let us

again use the identity in Eq. (B.15), so to express the inner integral in Eq. (B.21) as
∫

∞

(3y/2)2/3
Ai(w)dw =

1

π
√
3

∫

∞

y
K1/3(z)dz. (B.22)

This follows by making a change of variables w = (3z/2)2/3 on the lhs of Eq. (B.22) and

then using the identity in Eq. (B.15). Thus, we get

A0 =
1

π
√
3

∫

∞

0
dy y−1/2e−y

∫

∞

y
K1/3(z)dz. (B.23)

Next, we perform integration by parts and use the incomplete Gamma function defined

by Γ[α, y] =
∫

∞

y dx xα−1 e−x. This gives

A0 =
1

π
√
3

[√
π
∫

∞

0
K1/3(z)dz −

∫

∞

0
K1/3(y)Γ[1/2, y] dy

]

. (B.24)

Using the result [24]
∫

∞

0 K1/3(z)dz = π/
√
3, we get

A0 =

√
π

3
− 1

π
√
3

∫

∞

0
K1/3(y)Γ[1/2, y] dy =

√
π

3
− 1

π
√
3
A1 (B.25)

Step 9: Concerning finally the integral A1 in Eq. (B.25), namely,

A1 =
∫

∞

0
K1/3(y)Γ[1/2, y] dy, (B.26)

we first write

Γ[1/2, y] =
1√
y
e−y − 1

2
Γ[−1/2, y], (B.27)

which can be easily proved by integration by parts. Substituting this result in Eq. (B.26),

the first term can be easily computed, and givesπ
√
2π. We then get

A1 = π
√
2π − 1

2

∫

∞

0
K1/3(y)Γ[−1/2, y] dy. (B.28)

To perform the second integral, we first use the integral representation [24]

Γ[−1/2, y] =
2√
π
y−1/2 e−y

∫

∞

0

e−tt1/2

y + t
dt. (B.29)
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Substituting this result in Eq. (B.28) gives

A1 = π
√
2π − 1√

π

∫

∞

0
dt t1/2 e−t

∫

∞

0
dy y−1/2e−yK1/3(y)

y + t
. (B.30)

Next, we use the identity [24]
∫

∞

0
dy y−1/2 e−y K1/3(y)

y + t
= 2π

etK1/3(t)√
t

, (B.31)

so to perform the inner integral over y in Eq. (B.30). The integral over t then becomes

simple and using once again
∫

∞

0 K1/3(t)dt = π/
√
3 yields an exact expression for A1,

namely,

A1 =

(√
2− 2√

3

)

π3/2. (B.32)

Substituting this result in Eq. (B.25) gives the final expression for A0

A0 =



1−
√

2

3





√
π. (B.33)

Step 10: Using the expression for A0 in Eq. (B.20) we compute J2(s), which, combined

with the result for J1(s) in Eq. (B.10), allows evaluating J(s) = J1(s) + J2(s)

J(s) = J1(s) + J2(s) =





7

12
−
√

3

8





1

s
. (B.34)

This shows that the inverse Laplace transform of J(s) is just the constant prefactor of

1/s in Eq. (B.34). Combining this result with Eq. (B.3) finally yields our main result

I1(T ) = C = 1−
√

3

8
. (B.35)

Appendix C. The second integral

I2(ǫ, t) =
∫

∞

0
dx [Z0(x, 0; ǫ, 0, t) + Z1(x, 0; ǫ, 0, t)] . (C.1)

The first term can be easily integrated, and expanding in small ǫ yields
∫

∞

0
dxZ0(x, 0; ǫ, 0, t) =

1

4
√
πt

−
√
3

2πt2
ǫ+ . . . (C.2)

We next take the Laplace transform of the second term with respect to t:

Z̃1(x, 0; ǫ, 0, s) =
∫

∞

0 Z1(x, 0; ǫ, 0, t) e
−st dt and then integrate over x using the expression

in Eq. (A.4). To extract the leading ǫ dependence, it turns out to be useful to split

e−Fǫ = e−Fǫ − 1 + 1. This gives
∫

∞

0
dxZ̃1(x, 0; ǫ, 0, s) =

∫

∞

0
Φ(F, s)dF +

∫

∞

0
dF

(

e−Fǫ − 1
)

Φ(F, s), (C.3)
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where

Φ(F, s) = − 1

2πF 1/6

∫

∞

0

dG

G7/6(F +G)
×

exp

[

−2

3

(

s3/2

F
+

s3/2

G

)]

Ai
(

s

G2/3

)

Ai
(

s

F 2/3

)

. (C.4)

The integration over F in the first term of Eq. (C.3) can be carried out by resorting to

the identity (A.5), so to get
∫

∞

0
Φ(F, s)dF = −

∫

∞

0

dG

G4/3
Ai2

(

s

G2/3

)

= − 1

4
√
s
. (C.5)

This contribution, after performing the inverse Laplace transform, cancels the one

coming from Eq. (C.2) (at the leading order in the small ǫ expansion).

We address now the second term in Eq. (C.3) in the small ǫ expansion. By means

of the change of variables ǫF = z, the leading order of the second term reads
∫

∞

0
dF

(

e−Fǫ − 1
)

Φ(F, s) =
ǫ1/6Ai (0)

2π
B1B2(s), (C.6)

where

B1 =
∫

∞

0
dz

(1− e−z)

z7/6
= −Γ(−1/6) (C.7)

and

B2(s) =
∫

∞

0

dG

G7/6
exp

(

−2

3

s3/2

G

)

Ai
(

s

G2/3

)

. (C.8)

Setting y = s3/2/G, we get

B2(s) =
1

s1/4

∫

∞

0

dy

y5/6
exp

(

−2

3
y
)

Ai
(

y2/3
)

=

√
π

s1/4
. (C.9)

Using Ai (0) = 1/(32/3Γ(2/3)), we finally get
∫

∞

0
dF

(

e−Fǫ − 1
)

Φ(F, s) =
35/6Γ(2/3)

22/3π

ǫ1/6

s1/4
. (C.10)

Then, by inverting the Laplace transform, we obtain the leading order contribution

I2(ǫ, t) =
35/6Γ(2/3)

22/3πΓ(1/4)

ǫ1/6

t3/4
+O(ǫ1/3). (C.11)

Appendix D. The third integral

Remark that the integral

I3(ǫ, t) =
∫ +∞

−∞

dv
∫

∞

0
dx [Z0(x, v; ǫ, 0, t) + Z1(x, v; ǫ, 0, t)] (D.1)

represents the survival probability at time t of the process started at the origin with

vanishing velocity. The Laplace transform of this quantity, with respect to t, has been

computed in [10], and reads

Ĩ3(ǫ, s) =
1

s
−
∫

∞

0
dFΨ(F, s)−

∫

∞

0
dF (e−ǫF − 1)Ψ(F, s), (D.2)
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where

Ψ(F, s) =
Ai
(

s/F 2/3
)

F 5/3



1 +
Γ(−1

2
, 2
3
s3/2

F
)

4
√
π



 . (D.3)

For the second term, we can set s/F 2/3 = y, so to make the dependence on s explicit,

and get after some algebra
∫

∞

0
dFΨ(F, s) =

3

2s

∫

∞

0
dyAi (y)

[

1 +
Γ(−1

2
, 2
3
y3/2)

4
√
π

]

=
1

s
. (D.4)

This contribution cancels the 1
s
of the first term. The third term can be computed by

resorting to the substitution z = ǫF , namely

∫

∞

0
dF (e−ǫF−1)Ψ(F, s) = ǫ2/3Ai(0)

∫

∞

0

dz

z5/3

(

e−z − 1
)



1 +
Γ(−1

2
, 2
3
ǫs3/2

z
)

4
√
π



 .(D.5)

Then, by noting that, for small x, Γ(−1/2, x) → 2/
√
x, we get

∫

∞

0
dF (e−ǫF−1)Ψ(F, s) =

√

3

8π
Ai(0)

ǫ1/6

s3/4

∫

∞

0

dz

z7/6

(

1− e−z
)

=
25/6Γ(−4/3)

32/3π

ǫ1/6

s3/4
.(D.6)

By finally performing the inverse Laplace transform, we obtain

I3(ǫ, t) =
25/6Γ(−4/3)

32/3πΓ(3/4)

ǫ1/6

t1/4
+O(ǫ1/3). (D.7)
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