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A theoretical study is undertaken of the dynamics of a ball which is bouncing 

inelastically on a randomly vibrating platform, motivated as a model problem of 

inelastic collapse. Of principal interest are the distributions of the number of flights 

fn  till the collapse and the total time cτ  elapsed before the collapse. In the strictly 

elastic case, both distributions have power law tails characterised by exponents which 

are universal, i.e. independent of the detail of the platform noise distribution. In the 

inelastic case, both distributions have exponential tails: ]exp[~)( 1 ff nnP θ−   and 

]exp[~)( 2 ccP τθτ − . The decay exponents 1θ  and 2θ  depend continuously on the 

coefficient of restitution and are nonuniversal; however, as one approaches the elastic 

limit, they vanish in a manner which turns out to be universal. An explicit expression 

for 1θ  is provided for a particular case of the platform noise distribution. 

 

PACS number(s): 02.50.–r, 05.40.–a, 45.70.–n 
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I. INTRODUCTION 

 

The study of granular materials and granular flows, see e.g. [1-3], has highlighted 

the importance of the concept of inelastic collapse [4,5]. The canonical example of 

inelastic collapse concerns a ball bouncing on a static platform in a constant 

gravitational field g . If 0u  is the initial velocity with which the ball is thrown up 

from the platform, the velocity at subsequent bounces decreases geometrically until 

the ball stops completely after a time )]1(/[2 0 rguc −=τ , where r  is the coefficient of 

restitution. Note that although the total number of flights until the collapse fn  is 

infinite, the total flight time until the collapse is actually finite. Analogous collapse 

transitions are also predicted theoretically for a ball bouncing on a periodically 

vibrating plate [6-8] and for a randomly accelerated particle near an absorbing 

boundary [9-13]. Elegant experimental studies of inelastic collapse in granular layers 

subject to vertical vibrations may be found in [14,15].  

 

The question we address in this paper is as follows: How do these two physical 

observables, namely (i) the number of flights fn  till the collapse and (ii) the total time 

cτ  elapsed before the collapse, behave for a ball bouncing on a platform which itself 

vibrates in a noisy manner? Let us first see what happens in a single collision between 

the ball and the platform. Let v  be the velocity of the platform and iu−  be the 

incident velocity of the ball. Then, just after the collision, the platform velocity 

remains unchanged at v  but the ball bounces with velocity 

 

v)1( rruu ib ++=           (1) 
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where the coefficient of restitution 10 ≤≤ r  and 1=r  corresponds to the elastic limit. 

This result can easily be derived by considering an inelastic collision between two 

particles of mass 1m  and 2m  with incident velocities 1u  and 2u  respectively. Let  1u′  

and 2u′  be the post-collision velocities. Conservation of momentum implies that 

22112211 umumumum ′+′=+  and inelasticity implies )( 1212 uuruu −−=′−′ . Solving these 

two equations when 12 mm >>  one gets 22 uu =′  and  211 )1( urruu ++−=′ . In our 

example, the platform corresponds to the massive particle with velocity v=2u  and 

the incident velocity of the ball is iuu −=1 . This gives the result in Eq. (1). Thus, the 

bounce velocity nu  of the ball after the n-th collision with the platform satisfies a 

simple recurrence relation 

 

nnn ruu η+= −1           (2) 

 

where nn r v)1( +=η  with nv  being the velocity of the platform at the time of the n-th 

collision. The recursion in Eq. (2) starts with initial value 00 >u .  

 

We take the simplest model of a noisy platform, which is broadly applicable if 

nnu v>> , by assuming that the velocities of the platform at different collision times 

are completely uncorrelated and each of them is drawn independently from a given 

distribution. This is equivalent to saying that the noise variables nη  in Eq. (2) are 

independent and identically distributed random variables, each drawn from a given 

distribution )(ηρ . We further assume that )(ηρ  is continuous and symmetric around 
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0=η , i.e. 0=nη , and we scale the noise so that it has unit variance, i.e. 12 =nη . 

Thus the typical platform velocity during a collision )1(~ Onv . In practice, once 

)1(~ Oun  there will be an increased likelihood that the platform velocity at impact 

will be positive [14] and the above assumptions break down. However, in such 

circumstances we will assume that the ball basically ‘sticks’ to the platform through a 

process known as chattering [7]. Hence, in what follows, noting that once the bounce 

velocity becomes negative for the first time the ball effectively hasn’t bounced, we 

will take this first-passage event as the definition of collapse.  

 

When the platform has noisy vibrations both the number of flights fn  and the 

total time cτ  till the collapse become random variables. Our main results, summarized 

below, concern the distributions )( fnP  and )( cP τ  of these two random variables. 

 

(i) In the strictly elastic case 1=r , we show that both of these distributions have 

power law tails: 1~)( α−
ff nnP   for large fn  and 2~)( αττ −

ccP  for large cτ , where 

the exponents 2/31 =α  and 3/42 =α  are universal, i.e., independent of the noise 

distribution )(ηρ , as long as it is continuous and symmetric. 

 

(ii)  In the inelastic case 1<r , on the other hand, both of these distributions have 

exponential tails: ])(exp[~)( 1 ff nrnP θ−   for large fn  and ])(exp[~)( 2 cc rP τθτ −  for 

large cτ . The decay exponents )(1 rθ  and )(2 rθ  depend continuously on r  and, 

moreover, they are nonuniversal as they depend explicitly on the noise distribution 

)(ηρ . The exact expressions for )(1 rθ  and )(2 rθ  for an arbitrary noise distribution 
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)(ηρ  are, in general, hard to obtain. As an illustration, we provide in an Appendix 

explicit results for )(1 rθ  for the special noise distribution, ]exp[)( 2
1 ηηρ −= . 

 

(iii)  As one approaches the elastic limit, 1→r , the decay exponents )(1 rθ  and 

)(2 rθ  vanish irrespective of the noise distribution. Most interestingly, the manner in 

which these decay exponents approach zero as 1→r  turns out to be universal. For 

example, we find that as 1→r , )1()(1 rar −≈θ  and 2/3
2 )1()( rbgr −≈θ  where g  is 

the gravitational constant and ba,  are universal constants independent of the noise 

distribution )(ηρ . We show that while 1=a  is trivial, ...405024.0=b  is nontrivial 

and is given by the smallest positive root of the equation, 0]22[22
=− bD

b
 where 

)(zDp   is the parabolic cylinder function of index p and argument z  [16].  

 

II. STRICTLY ELASTIC CASE 

 

We first consider the strictly elastic case 1=r , against which we wish to make 

comparison once we have considered the inelastic case 1<r . The recursion relation 

in Eq. (2) with 1=r  reduces to a standard random walk 

 

nnn uu η+= −1            (3) 

 

starting with the initial value 00 >u . The noise nη  is drawn independently for each n  

from the distribution )(ηρ  such that 0=nη  and 12 =nη . We would like to 

compute the probability distributions of (i) the number of flights or collisions fn  
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before the collapse, i.e., before the velocity nu  evolving via the random sequence in 

Eq. (3) becomes negative for the first time, and (ii) the total flight time ∑ =
= fn

n ngc u
0

2τ  

elapsed before the collapse.  

 

These two distributions are, in general, nonuniversal in the sense that they depend 

explicitly on the noise distribution )(ηρ  and are hard to compute for generic )(ηρ . 

For example, let us consider how one would calculate the distribution of the number 

of collisions before the collapse, ),( 0unP f . Define ),( 0unQ  to be the probability that 

the sequence in Eq. (3), starting at 0u , does not change sign unto step n . Then 

),(),1(),( 000 unQunQunP fff −−= . The probability ),( 0unQ  satisfies the following 

integral equation, 

 

uduuunQunQ ′−′′−= ∫
∞

)(),1(),( 0
0

0 ρ         (4) 

 

starting from the initial condition, 1),0( 0 =uQ  for all 00 >u . Eq. (4) follows from 

considering what happens at the first step: suppose the ball jumps from 0u  to 0>′u , 

with probability )( 0uu −′ρ . For the subsequent )1( −n  steps, the probability of no 

sign change, starting initially at u′ , is just ),1( unQ ′− . The range of the integral ],0[ ∞  

for u′  in Eq. (4) ensures that the process didn’t change sign in the first step. Note that 

Eq. (4) uses the Markov property of the sequence in Eq. (3). Even though the right 

hand side of Eq. (4) has a convolution form, the exact solution for arbitrary n  is 

difficult due to the fact that the lower limit of the integral is zero. Naturally, the 

distribution of the collapse time cτ  will be even harder to compute analytically. 
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There is, however, an important theorem due to Sparre Andersen [17] which, in 

relation to the sequence Eq. (3), states the following: Given initial condition 00 =u , 

the probability )(nP  that the process first becomes negative on the n-th step is 

actually independent of the step distribution )(ηρ , as long as it is continuous and 

symmetric. In fact, the theorem proves that ]!2/[)()( 2
1 nnnP π−Γ= , which implies 

that 2/3~)( −nnP  for large n  [18]. In our problem 00 >u , so this theorem does not 

strictly apply; nevertheless, it makes itself felt when discussing the tail of the 

distribution of the number of collisions before the collapse, )( fnP . We show later 

that whilst the distributions )( fnP  and )( cP τ  are generically nonuniversal, their tails 

are algebraic with exponents that are universal. The behaviour at the tails can be 

derived by analysing the corresponding quantities for a continuous time Brownian 

motion, which is much easier to analyse. Therefore, we first review these quantities 

for the continuous time Brownian motion. In subsection II.B, we use these results to 

predict the tails of the distributions in the discrete case. 

 

A. Continuous time Brownian motion 

 

Consider a Brownian motion )(ty  evolving in continuous time t  via the 

Langevin equation 

 

)(t
dt
dy ξ=            (5) 
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where )(tξ  is a zero mean white noise with correlator )()()( tttt ′−=′ δξξ . The 

motion starts at 0)0( yty == . It is relatively straightforward to compute the 

probability distributions of (i) the first-passage time ft  at which the process crosses 

zero for the first time, and (ii) the area swept out by the process till its first-passage 

time, ∫ ′′= ft
tdtyA

0
)( . Following [19], we first consider (for reasons that become clear 

later) the probability distribution ),( 0yTP  of the general observable 

 

 ∫ ′′=
ft

tdtyVT
0

)]([           (6) 

 

where )]([ tyV  is an arbitrary functional of the process )(ty  and ft  is the first-passage 

time of the process. It is useful to study the Laplace transform of this distribution, 

 

 ∫∫
∞

−=⎥⎦
⎤

⎢⎣
⎡ ′′−=

0
000 ),()]([exp),(~ dTeyTPtdtyVsysP sTt f      (7) 

 

where  denotes an average over all realizations of the process till its first-passage 

time. A typical path of the process over the time interval ],0[ ft  may be split into an 

initial step y∆  during the interval ],0[ t∆  followed by the remaining steps during the 

interval ],[ ftt∆ .  Then Eq. (7) can be written as 

 

 
y

tysVt
yysPetdtyVsysP f

∆

∆− ∆+=⎥⎦
⎤

⎢⎣
⎡ ′′−= ∫ ),(~)]([exp),(~

0
][

00
0     (8) 
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where ty ∆=∆ )0(ξ . The average in the second part of Eq. (8) is over all possible 

realizations of y∆ . Expanding in powers of t∆  and using the fact that the noise )(tξ  

is delta correlated, i.e., t∆≈ /1)0( 2ξ  as 0→∆t , one gets a backward Fokker-

Planck equation for ),(~
0ysP  in the space of the initial position 0y , 

 

 0),(~][
2
1

002
0

2

=⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂ ysPysV
y

.        (9) 

 

This differential equation is valid in the range ],0[0 ∞∈y  and satisfies the elementary 

boundary conditions 1)0,(~
0 =→ysP  and 0),(~

0 =∞→ysP . 

 

We now consider certain choices for ][yV  to make a connection with the 

problems of interest. For the first-passage time distribution we need to choose 

1][ =yV , so that ftT =  from Eq. (6). The solution of Eq. (9) with 1][ 0 =yV  can be 

easily obtained, 

 

 )2exp(),(~
00 ysysP −= .                  (10) 

 

Inverting the Laplace transform, we get the required first-passage time distribution, a 

result which is well-known, see e.g. [20,21],  

 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ff
f t

y
t

yytP
2

exp
2
1),(

2
0

2/3
0

0 π
                            (11) 
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valid for all 00 >y  and 0>ft . Of primary importance is the fact that in the limit 

2
0yt f >> , this distribution has an algebraic tail, 

 

 2/3
0

0 2
1),(

f
f t

yytP
π

≈ .                             (12) 

 

Regarding the distribution of the area ∫ ′′= ft
tdtyA

0
)(  swept under a Brownian curve 

till its first-passage time, we choose yyV =][  in Eq. (6) so that AT = . Then Eq. (9) 

with 00 ][ yyV =  has the solution 

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

Γ
=

9
8

3)(
2),(~ 3

0
3/103/1

3
1

6/16/7

0
syKysysP .                (13) 

 

where )(3/1 zK  is a modified Bessel function [16]. The Laplace transform in Eq. (13) 

can be inverted to give the distribution ),( 0yAP  for all 0>A  and all 00 >y  [19,21] 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Γ
=

A
y

A
yyAP

9
2exp

3
2),(

3
0

3/4
0

3
13/2

3/1

0 .                (14) 

 

Again, for 3
0yA >>  this distribution has an algebraic tail 

 

( ) 3/4
0

3
13/2

3/1

0 3
2),(

A
yyAP

Γ
≈ .                  (15) 
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Although the above results are relatively standard, the backward Fokker-Planck 

technique used will prove useful in the discussion of the inelastic case in section III. 

The same method was also employed in the context of an undamped particle moving 

in a random Sinai potential [22], and other examples may be found in [23]. 

 

B. The relationship between the discrete sequence and the  

continuous Brownian motion 

 

As mentioned above, the tails of various distributions in the discrete case can be 

obtained by analysing their continuous counterparts. To make the connection between 

the discrete and the continuous case, let us evolve the discrete sequence in Eq. (3) up 

to step 10 >>n , ensuring that it didn’t change sign in between. At step 0n , the typical 

value of )1(~ 0 Onu
on >> , a fact that simply follows from the central limit theorem. 

Let us now consider further evolution of the sequence for 0nn > , for which while 

)1(Oun >> , the increment )1(~ Ou nn ηδ = . We define a new scaled variable, 

0/ nuy nn =  which then evolves for 0nn >  as  

 

 nnn n
yy η

0
1

1
+= −                    (16) 

 

starting at )1(~/ 000
Onuy nn =  at 0nn = . We next define 0/1 nt =∆ . In the limit of 

large 0n , t∆  becomes small and tnnt ∆−= )( 0  can be considered as a continuous 

‘time’ variable. Writing ))(( 0 tnntyyn ∆−=≡ , dividing the Eq. (16) by 0/1 nt =∆  and 

taking the limit of large 0n , we get back Eq. (5) for the continuous time Brownian 
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motion following the identification nn ntt ηηξ 0/)( =∆=  . Thus, for 0nn >  (where 

0n  is large), we expect that the results for the discrete sequence and the continuous 

process will coincide. 

 

For example, the probability distribution ),( 0nnP f  of the number of flights fn  

before the collapse in the discrete sequence, for 0nn f > , can be read off the 

corresponding continuous result in Eq. (11) after making the substitutions 

0/
00

nuy nn =  and  000 /)()( nnntnnt fff −=∆−= ,  and we get 

 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

−
≈

)(2
exp

)(2
1),(

0

2

2/3
0

00

0 nn
u

nn
u

unP
f

n

f

n
nf π

.              (17) 

 

This distribution thus has a power law tail for 0nn f >>    

 

 2/3
0

0 2
1),(

f

n
nf n

u
unP

π
≈ .                 (18) 

 

This is the expression for the probability distribution of fn  given that the sequence 

didn’t change sign up to 10 >>n  and that the value of the sequence at step 0n  is 
0nu . 

To calculate the unconditional distribution, one then has to average the expression in 

Eq. (18) over 
0nu ,  
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 2/3
0

0
0 2

1),()(
f

n

unff n

u
unPnP

n π
≈= .               (19) 

 

The exponent 3/2 comes from the continuous case and hence is universal, i.e., 

independent of the noise distribution )(ηρ  of the discrete sequence. Naturally, this 

observation is intimately related to the Sparre Andersen theorem discussed earlier. 

Note, however, that the amplitude of the power law decay contains 
0nu  which 

depends explicitly on the noise distribution )(ηρ . 

 

In a similar way one can also derive, for the discrete sequence, the behaviour at 

the tail of the distribution )( cP τ  of the total time elapsed till the collapse, 

∑ =
= fn

n ngc u
0

2τ . We split this sum into two parts, Snc +=
0

ττ , where 
0nτ  is the time 

elapsed up to step 10 >>n  (given that the sequence didn’t change sign in between) 

and ∑= fn

n ng uS
0

2  is the time elapsed from step 0n  up to the collapse at step fn . For 

large cτ , 
0nS τ>>  and hence Sc ≈τ . So, to determine the distribution of cτ  for large 

cτ , we need to calculate the distribution ),(
0nuSP  of S , given 

0nu . Following the 

argument outlined before, the distribution ),(
0nuSP  can be directly read off from Eq. 

(14) after the substitutions 000 /)()( nnntnnt fff −=∆−=  and 0/)( nutyy nn =≡ , 

after first noting that 

 

An
g

tdtyn
g

yn
g

u
g

S
fff tn

nn
n

n

nn
n

2/3
0

0

2/3
00

2)(222

00

=′′≈== ∫∑∑
==

.              (20) 
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Using Eq. (14), we then get 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≈

gS
u

S
u

cuSP nn
n 9

4
exp),(

3

3/41
00

0
                 (21) 

 

where ( ) ( ) ]/[ 3/1
3
13/2

3
2

1 gc Γ= . For large S  this distribution has an algebraic tail 

 

3/41
0

0
),(

S
u

cuSP n
n ≈ .                   (22) 

 

Averaging over 
0nu  and using Sc ≈τ  for large cτ , we get 

 

3/41
0)(

c

n
c

u
cP
τ

τ ≈ .                   (23) 

 

Once again, the exponent 4/3 is universal since it comes from the continuous 

Brownian motion and is independent of the noise distribution )(ηρ .  

 

Noting that the same nonuniversal quantity 
0nu  appears in the amplitude of the 

tails of both the distributions )( fnP  in Eq. (19) and )( cP τ  in Eq. (23), we find that 

the amplitude ratio, 

 

])([
2

3
2

)(lim
)(lim

3/1
3
1

3/2

2/3

3/4

gnPn
P

ffn

cc

f

c

Γ
⎟
⎠
⎞

⎜
⎝
⎛==

∞→

∞→ πττ
ζ τ                 (24) 
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is a universal number independent of the noise distribution )(ηρ , providing that this 

distribution is continuous and symmetric.  

 

III. INELASTIC CASE 

 

We now turn to the sequence in Eq. (2) with 10 << r . As before, the sequence 

starts from the initial value 00 >u  and we want to compute two quantities: (i) the 

distribution )( fnP  of the number of flights before the collapse, i.e., before the 

velocity becomes negative for the first time, and (ii) the distribution )( cP τ  of the total 

time ∑ =
= fn

n ngc u
0

2τ  elapsed before the collapse. 

 

Unlike the elastic case 1=r , these two distributions are generically nonuniversal 

for 1<r  and depend quite explicitly on the noise distribution )(ηρ  [18]. The 

probability ),( 0unQ  that the sequence does not become negative up to step n , starting 

with 0u  at 0=n , satisfies the integral equation 

 

udruuunQunQ ′−′′−= ∫
∞

)(),1(),( 0
0

0 ρ                 (25) 

 

with the initial condition, 1),0( 0 =uQ  for all 00 >u . This equation appeared recently 

in the context of the persistence of a continuous stochastic process with discrete time 

sampling [24]. There, it was shown that ])(exp[~),( 10 nrunQ θ−  for large n ,  where 

the decay exponent )(1 rθ  depends continuously on r  and also on the form of the 
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noise distribution )(ηρ .  Thus, ])(exp[~)( 1 ff nrnP θ−   for large fn . For the special 

case of Gaussian noise )2/exp()( 2
2
1 ηηρ
π

−= , various methods have been developed 

to determine the decay constant )(1 rθ  accurately, though an exact explicit solution is 

still missing [24]. In an Appendix, we show how to explicitly determine )(1 rθ  for the 

exponentially distributed noise )exp()( 2
1 ηηρ −= , although the analysis is far from 

easy. The calculation of the collapse time distribution )( cP τ  is even harder. However, 

one expects that )( cP τ  also has a similar exponential tail, ])(exp[~)( 2 cc rP τθτ −  for 

large cτ  where the decay exponent )(2 rθ  is also nonuniversal.  

 

In the elastic case 1=r , both )( fnP  and )( cP τ  have power law tails. This means 

that both the decay exponents )(1 rθ  and )(2 rθ , characterizing the exponential tails 

for 1<r , must vanish as one approaches the elastic limit 1→r . We show later in this 

section that these two exponents vanish in a universal fashion in the limit 1→r : 

)1()(1 rar −≈θ  and 2/3
2 )1()( rbgr −≈θ , where 1=a  and ...405024.0=b  are 

universal constants independent of the noise distribution )(ηρ . The reason for this 

universality can be traced to the fact that in the limit 1→r , the discrete sequence in 

Eq. (2) can be approximated by a continuous time Ornstein-Uhlenbeck process.  

 

A. Continuous time Ornstein-Uhlenbeck process 

 

Consider a stochastic process y(t) evolving via the continuous time Ornstein-

Uhlenbeck (OU) equation 
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)(ty
dt
dy ξλ +−=                    (26) 

 

where )(tξ  is a zero mean white noise with correlator )()()( tttt ′−=′ δξξ  and the 

motion starts at 0)0( yty == . This represents the Langevin equation of a particle 

moving in a parabolic potential. We compute below the probability distributions of 

the two quantities of interest: (i) the first-passage time ft  at which the process first 

crosses zero and (ii) the area swept out by the process till its first-passage time, 

∫ ′′= ft
tdtyA

0
)( . 

 

As was the case with the ordinary Brownian motion studied in subsection II.A, 

we first consider the general case where we compute the probability distribution 

),( 0yTP  of the observable tdtyVT ft
′′= ∫ 0

)]([ . Using the same backward Fokker-

Planck technique, it is straightforward to show that the Laplace transform ),(~
0ysP  

satisfies the differential equation in 0y , 

 

 0),(~][
2
1

00
0

02
0

2

=⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

−
∂
∂ ysPysV

y
y

y
λ                 (27) 

 

with the boundary conditions 1)0,(~
0 =→ysP  and 0),(~

0 =∞→ysP . To calculate the 

first-passage time distribution, we choose 1][ =yV , so that ftT = . With 1][ 0 =yV , 

the exact solution of Eq. (27) is given by, 
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)0(
)2(),(~

/

0/2/
0

2
0

λ

λλ λ

s

sy

D
yDeysP

−

−=                    (28) 

 

where )(zDp  is the parabolic cylinder function of index p  and argument z  [16]. It is 

not easy to invert the Laplace transform in Eq. (28) to obtain explicitly the first-

passage time distribution ),( 0ytP f . However, there is an alternative way to obtain 

),( 0ytP f . We note that 
ftt

ytQytP dt
d

f
=

−= ),(),( 00  where ),( 0ytQ  is the probability 

that the process does not cross zero up to time t , starting at 0y . An exact expression 

of the survival probability ),( 0ytQ  is known, see e.g. [21, 24]; 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

−

−

t

t

e
eyytQ

λ

λλ
2

0
0

1
erf),( .                   (29) 

 

Differentiating Eq. (29) with respect to t  and setting ftt =  we get 

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−

−
= −

−

−

−

)1(
exp

)1(
2),( 2

22
0

2/32

2/3
0

0 f

f

f

f

t

t

t

t

f e
ey

e
eyytP λ

λ

λ

λ λ
π

λ .               (30) 

 

It is amusing, but rather hard to see immediately, that the Laplace transform of Eq. 

(30) is indeed given by Eq. (28). It follows from Eq. (30) that the first-passage time 

distribution has an exponential tail, 

 

 )exp(2),( 2/3
00 ff tyytP λλ

π
−≈ .                 (31) 
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for λ/1>>ft . Note that the decay coefficient λ  characterizing the exponential tail 

can also be computed directly from the Laplace transform in Eq. (28). Thus, since one 

can show that )(/2)0( 2
1

2
2/

/ +Γ=− λ
λ

λ π ss
sD , it follows that the Laplace transform in 

Eq. (28) has poles at λ)12( +−= ms  where ...2,1,0=m . The smallest negative pole 

(corresponding to 0=m ) is at λ−=s , which indicates that asymptotically for large 

ft , the distribution )exp(~),( 0 ff tytP λ− . 

 

We next compute the distribution of the area ∫ ′′= ft
tdtyA

0
)(  swept out by the 

process till its first-passage time by choosing yyV =][  so that AT = . Then Eq. (32) 

with 00 ][ yyV =  can also be solved explicitly, 

 

)2(
))(2(

),(~
2/3

2/

2
02/2/

0
32

322
0

−

−+
=

λ

λλ

λ

λλ

sD
syD

eysP
s

sy .                    (32) 

 

where )(zDp  is the parabolic cylinder function. Once again, it is hard to invert the 

Laplace transform in Eq. (32) exactly. However, we anticipate that asymptotically the 

area distribution has an exponential tail 

 

 )exp(~),( 0 AyAP γ− .                  (33) 

 

The decay constant γ  must equal the smallest negative pole of the Laplace transform 

in Eq. (32). The poles of the Laplace transform occur at the zeros of the denominator 

in Eq. (32). Thus γ  is the smallest positive root of the equation 



 20

 

0)2( 2/3
2/ 32 =− −λγ
λγ

D .                  (34) 

 

Hence, the scaled variable 2/2/3−= λγφ  satisfies the equation 0)2(2 =− φ
φ

D . 

Numerically, we find the smallest root, ...57279.0=φ  which determines γ  exactly, 

 

2/32/3 ...810048.02 λλφγ == .                 (35) 

 

It is difficult to determine the pre-factor in Eq. (33). However, knowledge of Eq. (35) 

is sufficient for the present purpose. 

 

B. The relationship between the discrete sequence  

and the continuous OU process 

 

In this subsection, we show that as one approaches the elastic limit, 1→r , the 

discrete sequence in Eq. (2) can be approximated by the continuous OU process in Eq. 

(26) with 1=λ . This is subtle, since the elastic limit itself, when 1=r , corresponds to 

Eq. (26) with 0=λ . To see what is going on, we first note from Eq. (2) that as the 

process evolves one can derive the general result 

 

 2
0

2
2

2
2

1
22

1
11 ur

r
ruru n

n

nn +
−
−

=+= − .                (36) 

 

Therefore, for 1<r  and as ∞→n , the velocity distribution tends to evolve towards a 

stationary distribution characterised by a second moment which also approaches its 
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stationary value, )1/(1 22 run −→ . Thus in the limit 01 →−= rε , the typical value 

of the velocity in its stationary state becomes large, ε/1~nu . It also follows from 

Eq. (36) that the number of steps 0n  needed for the system to reach this stationary 

state diverges as 0→ε , ε/1~0n . This suggests that we define a scaled variable, 

εnn uy =  which will also be of )1(O  for 0nn ≥  for the process which is constrained 

to be positive up to 10 >>n . Note that ε  plays a similar role as 0/1 n  in subsection 

II.B.  For 0nn > , the variable ny  evolves via the recursion,  

 

 nnnn yyy ηεε +−=− −− 11                   (37) 

 

starting at ε
00 nn uy =  at 0nn = . The rest follows as in subsection II.B. We choose 

ε=∆t  which is small in the elastic limit 0→ε , and hence tnnt ∆−= )( 0  becomes a 

continuous ‘time’ variable. Writing ))(( 0 tnntyyn ∆−=≡ , dividing Eq. (37) by 

ε=∆t  and taking the limit 0→ε , we find that )(ty  becomes an OU process as in 

Eq. (26) with 1=λ  and tt nn ∆== //)( ηεηξ . Thus, for 0nn >  (where ε/1~0n  is 

large), we expect that the results for the discrete sequence can be obtained from those 

of the continuous process. 

 

For example, the probability ),(
0nf unP  that the ball undergoes fn  flights before 

it collapses, for 0nn f > , can be read off from the corresponding continuous result in 

Eqs. (30) and (31) after substituting ε)()( 00 nntnnt fff −=∆−= , ε
00 nn uy =  and 

1=λ . For 0nn f >> , the distribution decays exponentially, 
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)exp(2),( 2/3
00 fnnf nuunP εε

π
−≈ .                 (38) 

 

As explained earlier, in general for any 1<r , we expect ])(exp[~)( 1 ff nrnP θ−  for 

large fn . The result in Eq. (38) shows that in the elastic limit 1→r , rr −=→ 1)(1 εθ   

independent of the noise distribution.  

 

In a similar way, one can find the tail of the distribution )( cP τ  of the total time 

∑ =
= fn

n ngc u
0

2τ , elapsed till the collapse, knowing the tail of the area distribution in 

Eq. (33). The steps are very similar to those in subsection II.B, except for the fact that 

one replaces 0n  by ε/1 . For example, as in Eq. (20), we find that for large cτ , 

AS gc
2/32 −≈≈ ετ  where A  is the area swept out by the continuous OU process till its 

first-passage time. Using the asymptotic distribution of A  in Eq. (33) and substituting 

1=λ , we then find that for large cτ    

 

 ⎥⎦

⎤
⎢⎣

⎡− cc gP τεφτ 2/3

2
1exp~)(                  (39) 

 

where ...57279.0=φ  is smallest positive root of 0)2(2 =− φ
φ

D . Since, for generic 

1<r , ])(exp[~)( 2 cc rP τθτ − , we find from Eq. (39) that the decay constant )(2 rθ  

vanishes in the elastic limit 1→r  in the following fashion, 

 

 2/3
2 )1()( rbgr −≈θ                    (40) 
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where  ...405024.02/ ==φb  is the smallest positive root of 0)22(22
=− bD

b
, and 

is a universal constant independent of the noise distribution )(ηρ .  

 

IV. DISCUSSION 

 

The relevance of the analysis in this paper in the context of the wider study of 

inelastic collapse may be summarised thus: Inelastic collapse persists in the presence 

of noise with features that are broadly universal when the coefficient of restitution is 

close to unity. In the highly complex world of real granular materials [1-3] this gives 

comfort in the pursuit of simple descriptions of the way such materials behave. 

Although the model studied is simplistic, and may be refined in many ways, 

particularly with regard to the precise interaction between ball and platform when 

both have comparable velocities, we believe the global features observed are broadly 

correct and will withstand more detailed scrutiny. That is not to say that a more 

thorough investigation would not be welcome or desirable. 

 

We conclude by briefly considering the distribution of the maximum value, M , 

attained by the process given by Eq. (2) during a first passage. This is actually quite 

straightforward to compute and provides a different perspective on the collapse 

transition. We first consider the continuous process Eq. (26) with initial condition  

0)0( yty ==  on the interval ],0[ L  and with absorbing barriers at 0=y  and Ly = . 

Let ),( 00 yLP  be the probability that the process is absorbed at 0=y . Then ),( 00 yLP  

is equivalent to the probability that )(ty  does not reach L  during its first passage, i.e. 
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)(),( 000 yLyPyLP m <=  where }0:)(max{ fm tttyy <≤= . It follows using a well-

known result that [25]  

 

0),(
2
1

00
0

02
0

2

=⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

−
∂
∂ yLP

y
y

y
λ                  (41) 

 

with boundary conditions 1)0,( 00 ==yLP  and 0),( 00 == LyLP . This equation is 

easily solved,  

 

)(
)(1),( 0

00 LF
yFyLP −= ;  dxeyF

y
x∫≡

0

2

)( λ .               (42) 

 

The probability density, ),( 0yyP m , for the maximum value my  is given by evaluating 

myLm LyLPyyP
=

∂∂= /),(),( 000 . Let us now consider the discrete problem for the 

elastic case with 1=r . Setting 0=λ  one finds that 2
00 /),( mm yyyyP =  for 0yym ≥ . 

Following the procedure described in subsection II.B., the tail of the discrete 

distribution is then given by 2~)( −MMP . For the inelastic case with 1<r , one sets 

1=λ  and follows the procedure described in subsection III.B. The tail of the discrete 

distribution when r−=1ε  is small is then given by )exp(~)( 2MMP ε− . Thus the 

velocity of the ball during the inelastic collapse process is unlikely to attain at any 

time a value significantly greater than ε/1~ .  
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APPENDIX: EXPLICIT RESULTS FOR THE EXPONENTIAL 

DISTRIBUTION 

 

In this Appendix we consider the discrete sequence nnn ruu η+= −1 , with an 

exponential noise distribution, )exp()( 2
1 ηηρ −= . The aim is to present an explicit 

calculation of the decay constant )(1 rθ , characterizing the exponential tail of the 

distribution of the number of flights till the collapse, ])(exp[~)( 1 ff nrnP θ−  for large 

fn . The analysis complements and adds to that provided in [18]. To proceed, let us 

define )( 0uuPn  to be the probability that the velocity after the n-th collision is u , 

given that the velocities after all the preceding )1( −n  collisions had been positive and 

that the initial velocity is 0u . Clearly, )( 0uuPn  satisfies the following recursion, 

 

udeuuPuuP uru
nn ′′= ′−−

∞

−∫
0

010 )(
2
1)(                 (A1) 

 

starting from the initial condition, )()( 000 uuuuP −= δ . Knowing )( 0uuPn  one can 

then calculate ),( 0unQ , the probability that there is no collapse till the n-th step, by 

integrating over all possible velocities at the n-th step, duuuPunQ n∫
∞

=
0 00 )(),( . The 

distribution of the number of flights before the collapse is then simply, 

),(),1(),( 000 unQunQunP fff −−= . Thus, to derive the tail behaviour of ),( 0unP f    

for large fn , we just need to know the solution of Eq. (A1) for large n . One expects 

that asymptotically for large n , )()( 0 ufuuP n
n ρ→  [24], where the information 
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about 0u  is contained in the proportionality constant. Substituting this asymptotic 

form into Eq. (A1), one obtains an integral-eigenvalue equation for )(uf , 

 

udeufuf uru ′′= ′−−
∞

∫
0

)(
2
1)(ρ                  (A2) 

 

where the eigenvalue )(rρ  depends continuously on r . 

 

This integral equation can be transformed, on differentiating twice with respect to 

u , into a differential equation 

 

)(1)(12

2

u
r
uf

r
uf

du
d θρ ⎟

⎠
⎞

⎜
⎝
⎛−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− .                (A3) 

 

For 0<u , the right hand side vanishes and one easily gets the solution 

 

uAeuf =)(                    (A4) 

 

where A  is an arbitrary constant and we have used the physical boundary condition,         

0)( =−∞→uf . For 0>u , the right hand side of Eq. (A3) represents a nonlocal term 

and the solution is nontrivial. The form of Eq. (A3), however, suggests one seeks a 

solution of the form ∑∞

=
−=

0
/)(

m
ru

m

m

ecuf  for 0>u . This ansatz indeed satisfies Eq. 

(A3) provided the coefficient mc  satisfies the recursion, )]1(/[ 2
1

m
mm rrcc −
− −= ρ .  
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Iterating this recursion, we can express every mc  with 0>m  in terms of a single 

constant 0c .  The solution for 0>u  is then given by 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−+= ∑ ∏
∞

=

−

=

−−

1

/

1
2

2

0 )1(
)()(

m

ru
m

k
k

k
mu m

e
r

rrecuf ρ .              (A5) 

 

We then need to match the solutions for 0<u  in Eq. (A4) and 0>u  in Eq. (A5) at 

0=u , i.e., the function )(uf  and its first derivative dudf /  must be continuous at 

0=u . The first condition determines 0c  in terms of A . The second condition 

determines )(rρ  which is given by the largest positive root of the equation 

 

0
)1(

)1()(2
1 1

2

2

=
−

+−+∑ ∏
∞

= =

−

m

m

k
k

k
mm

r
rrrρ .               (A6) 

 

As pointed out in [18], expressions of this type may be written in an alternative form 

using identities known from the theory of q-series. Thus, one can rewrite Eq. (A6) as 

 

0)1()1(
0

21

0

121 =−+− ∏∏
∞

=

−
∞

=

+−

n

n

n

n rr ρρ .                   (A7) 

 

Using the q-product notation, ∏∞

=∞ −≡
0

)1(),(
n

ntqqt , this can in turn be written 

succinctly as 

 

0),(),( 2121 =+ ∞
−

∞
− rrr ρρ .                 (A8) 
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Clearly, when 0=r  the solution of Eq. (A7) is 2/1=ρ , which is expected since the 

velocities are uncorrelated and the probability of nu  not changing sign is just n)2/1( . 

More generally, it is evident by inspection of Eq. (A7) that 1≤≤ ρr , so it follows that 

1)1( ==rρ . For any arbitrary value 10 << r , one can easily determine )(rρ  

numerically. Thus, for example, one finds ...588203.0)2.0( =ρ , ...670041.0)4.0( =ρ , 

...712667.0)5.0( =ρ , ...757826.0)6.0( =ρ , ...860729.0)8.0( =ρ  etc.  

 

Since )()]([~)( 0 ufruuP n
n ρ  for large n , we get nrunQ )]([~),( 0 ρ  as ∞→n . 

This implies that the distribution of the number of flights ])(exp[~),( 10 ff nrunP θ−     

for large fn  where 

 

)](ln[)(1 rr ρθ −=                   (A9) 

 

with )(rρ  obtainable from Eq. (A7) as indicated. Thus, for the special noise 

distribution )exp()( 2
1 ηηρ −= , it is possible to obtain )(1 rθ  to arbitrary accuracy for 

all 10 ≤≤ r . Since 1)( →rρ  as 1→r  it follows that )(1 rθ  vanishes when 1=r . To 

examine how, let us consider the function ∞∞≡ ),/(),(),( 22 qtqqtqth . It is easy to see 

by cancelling factors that the function ),( qth  satisfies the functional equation 

tqtqhqth −=1),(),( . By taking logarithms and expanding ),(ln qth  as a power series 

in t  one finds a formal solution [18] from which one may show as −→1q  that,  

 

)1(
)(

2
1

ln2
ln

1
1~),(

ln2
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ln2/1
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−

q
t
q
t

q
t

tq
tqth .             (A10) 
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We now note that one can write Eq. (A8) as 1),( 1 −=− rh ρ . By setting 1−= ρt  and 

rq =  in Eq. (A10) and setting the right hand side of Eq. (A10) equal to 1− , it follows 

that ...)1(/2)( 2/3 +−+≈ rrr πρ  as 1→r . By invoking Eq. (A9) it then follows in 

turn that ...)1(/21)( 2/3
1 +−−−≈ rrr πθ  as 1→r . This supports the more general 

claim in the main text that rr −≈1)(1θ  as 1→r  irrespective of the noise distribution.  
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