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We present an exact solution for the distribution P (hm, L) of the maximal height hm (measured
with respect to the average spatial height) in the steady state of a fluctuating Edwards-Wilkinson
interface in a one dimensional system of size L with both periodic and free boundary conditions. For
the periodic case, we show that P (hm, L) = L−1/2f

(

hmL−1/2
)

for all L > 0 where the function f(x)
is the Airy distribution function that describes the probability density of the area under a Brownian
excursion over a unit interval. For the free boundary case, the same scaling holds but the scaling
function is different from that of the periodic case. Numerical simulations are in excellent agreement
with our analytical results. Our results provide an exactly solvable case for the distribution of
extremum of a set of strongly correlated random variables.

PACS numbers: 81.10.Aj, 05.70.Np, 05.40.-a, 02.50.-r

Fluctuating interfaces are amongst the most well stud-
ied nonequilibrium systems due to their simplicity as
well as numerous practical applications in systems such
as growing crystals, molecular beam epitaxy, fluctuating
steps on metals and growing bacterial colonies [1]. While
the past studies mostly focused on the scaling proper-
ties of the surface roughness characterized by the average
width of the surface height [1], the more recent theoreti-
cal and experimental studies have dealt with a variety of
other important characteristics of a fluctuating interface.
These include the distribution of the width of heights in
the steady state [2], the statistics of first-passage events
or persistence [3,4], the density of local maxima or min-
ima of heights [5], the distribution of the spatially av-
eraged height [6] as well as the distribution of height at
any fixed point in space [7] in growing one dimensional
Kardar-Parisi-Zhang (KPZ) interfaces [8], the cycling ef-
fects [9], the distribution of extremal Fourier intensities
[10] etc.

Recently Raychaudhuri et. al. [11] studied a different
characteristic, namely the global maximal relative height
(MRH) (measured with respect to the spatially averaged
growing height) of a fluctuating interface. This is an im-
portant observable for two principal reasons. First, it
has important technogical significance such as in batter-
ies where a short circuit occurs when the highest point
of a metal surface on one electrode reaches the opposite
one [11]. Secondly, the maximal height is an extreme
observable measuring a rare event. While the extreme
value statistics is well understood for a set of independent

random variables [12], only recently physicists have been
paying attention to the distribution of the extremum of a
set of correlated random variables, as this question is ap-
pearing increasingly frequently in a number of problems
ranging from disordered systems [13] to various problems
in computer science such as growing search trees [14] and
networks [15]. In a fluctuating interface, the heights are
strongly correlated and hence a knowledge of the distri-

bution of their maximum (or minimum) would provide
important insights into this important general class of
extreme value problems where the random variables are
correlated.

In Ref. [11], the authors argued quite generally that
the MRH hm of an interface in its stationary state in
a finite system of size L scales as the roughness of the
surface, hm ∼ Lα for large L, where α is the roughness
exponent. This indicates that the normalized probabil-
ity density (pdf) of hm has a scaling form, P (hm, L) ∼
L−αf (hm/L

α). This was demonstrated numerically in
[11] for a one dimensional lattice model belonging to the
Edwards-Wilkinson (EW) universality class [16], where
α = 1/2. Further, it was argued that the scaling func-
tion f(x) is sensitive to the boundary conditions [11].

In this Letter, using simple path integral techniques
we present an exact solution of the scaling function f(x)
for the one dimensional EW model, both for the peri-
odic and the free boundary conditions. For the periodic
boundary case, we show that the scaling function f(x) is
the so called Airy distribution function (not to be con-
fused with the Airy function) which is the pdf of the area
under a Brownian excursion over a unit interval and has
been well studied in the mathematics literature [17–20].
We also calculate exactly the corresponding scaling func-
tion for the free boundary condition and show that it is
different from the periodic case. All the moments of hm

are also computed exactly for both the boundary condi-
tions. These results are in excellent agreement with the
simulation results obtained by the numerical integration
of the discretized 1-d EW equation. Our results thus pro-
vide an exactly solvable case for the distribution of the
extremum of a set of strongly correlated random variables.

Our starting point is the one dimensional EW model
[16] which prescribes a linear evolution equation for the
height H(x, t),
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∂H(x, t)

∂t
=
∂2H(x, t)

∂x2
+ η(x, t), (1)

where η(x, t) is a Gaussian white noise with zero mean
and a correlator, 〈η(x, t)η(x′t′)〉 = 2δ(x − x′)δ(t − t′).
The equation (1) has a soft (zero wave vector) mode since

the spatially averaged height H(x, t) =
∫ L

0
H(x, t)dx/L

keeps on growing with time (typically as
√

t/L) even in
a finite system of size L. Hence, it is useful to subtract
this zero mode from the height and define the relative
height, h(x, t) = H(x, t)−H(x, t) whose distribution then
reaches a stationary state in the long time limit in a finite
system. Note that, by definition,

∫ L

0

h(x, t)dx = 0. (2)

We will see later that this constraint of zero total area
under the relative height h plays an important role in de-
termining the MRH distribution. All the other nonzero
modes of h evolve identically as those of the actual height
H .

We first consider the periodic boundary condition,
h(0) = h(L). In this case, one can decompose the
relative height h(x, t) into a Fourier series, h(x, t) =
∑

∞

m=−∞
h̃(m, t)e2πimx/L. Substituting this in Eq. (1),

one finds that different nonzero Fourier modes decou-
ple from each other and one can easily calculate any
correlation function. In particular, it is easy to see
that the height h(x, t) at any given point converges to
a stationary Gaussian distribution as t → ∞, Pst(h) =

e−h2/2w2

/
√

2πw2 where the width w(L) =
√

〈h2〉 =
√

L/12 for all L. Moreover, one can also show that
〈∂xh∂x′h〉 → δ(x−x′)−1/L in the stationary state. The
local slopes ∂xh are thus uncorrelated except for the over-
all constraint due to the periodic boundary condition,
∫ L

0 dx ∂xh = 0 that gives rise to the residual 1/L term.
These informations can be collected together to write the
joint probability distribution of the heights (multivariate
Gaussian distribution) in the stationary state as,

P [{h}] = C(L) e
−

1

2

∫ L

0

dτ(∂τh)2
δ [h(0) − h(L)] ×

× δ

[

∫ L

0

h(τ)dτ

]

, (3)

where C(L) is a normalization constant and the two delta
functions take care respectively of the periodic bound-
ary condition and the zero area constraint in Eq. (2).
The constant C(L) =

√
2πL3/2 can be evaluated exactly

by integrating Eq. (3) over all heights and setting it to
unity [21]. One can check that if one integrates out all
the heights in Eq. (3) except at one point, one recovers
the single point stationary height distribution mentioned
before.

We next define the cumulative distribution of the
MRH, F (hm, L) = Prob [max{h} < hm, L]. The pdf of

the MRH is simply the derivative, P (hm, L) = ∂F (hm,L)
∂hm

.
Clearly F (hm, L) is also the probability that the heights
at all points in [0, L] are less than hm and can be formally
written using the measure in Eq. (3) as a path integral,

F (hm, L) = C(L)

∫ hm

−∞

du

∫ h(L)=u

h(0)=u

Dh(τ) e−
1

2

∫ L

0

dτ(∂τ h)2 ×

× δ

[

∫ L

0

h(τ)dτ

]

I(hm, L), (4)

where I(hm, L) =
∏L

τ=0 θ(hm−h(τ)) is an indicator func-
tion which is 1 if all the heights are less than hm and zero
otherwise. All the paths inside the path integral prop-
agate from its initial value h(0) = u to its final value
h(L) = u, where u ≤ hm (since by definition hm is the
maximum). A change of variable, y(τ) = hm − h(τ) and
v = hm − u in the path integral in Eq. (4) gives,

F (hm, L) = C(L)

∫

∞

0

dv

∫ y(L)=v

y(0)=v

Dy(τ) e−
1

2

∫

L

0

dτ(∂τy)2 ×

× δ

[

∫ L

0

y(τ)dτ −A

]

I(hm, L), (5)

where I(hm, L) =
∏L

τ=0 θ(y(τ)) and A = hmL. Note
that hm appears only through A in the delta function,
and hence F (hm, L) = F(A,L). In subsequent calcula-
tions, we will keep a general A in Eq. (5) and will finally
use A = hmL. Next we take the Laplace transform with
respect to A in Eq. (5) and identify the quantity in-
side the exponential as the action corresponding to a sin-

gle particle quantum Hamiltonian, Ĥ ≡ − 1
2

∂2

∂y2 + V (y),

where V (y) = λy for y > 0 and V (y) = ∞ for y ≤ 0.
The latter condition takes care of the indicator function.
Using the standard bra-ket notation we get,

∫

∞

0

F(A,L)e−λAdA = C(L)

∫

∞

0

dv < v|e−ĤL|v >

= C(L)Tr
[

e−ĤL
]

, (6)

where Tr is the trace. Thus our problem is reduced to
calculating just the eigenvalues of the above Hamilto-
nian Ĥ which has only bound states and hence discrete
eigenvalues. Solving the Schrödinger equation, one finds
that the wavefunction (up to a normalization constant)
is simply ψE(y) = Ai

[

(2λ)1/3(y − E/λ)
]

where Ai(z) is
the standard Airy function [22]. This wavefunction must
vanish at y = 0 which determines the discrete eigenval-
ues, Ek = αkλ

2/32−1/3 for k = 1, 2 . . ., where αk’s are the
magnitude of the zeros of Ai(z) on the negative real axis.
For example, one has α1 = 2.3381 . . ., α2 = 4.0879 . . .,
α3 = 5.5205 . . . etc. Upon formally inverting the Laplace
transform in Eq. (6) and putting A = hmL we find
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F (hm, L) =
√

2πL3/2

∫ +i∞

−i∞

dλ

2πi
eλhmL

∞
∑

k=1

e−αkλ2/32−1/3L.

(7)

Taking derivative with respect to hm in Eq. (7) and
making a change of variable, λ = sL−3/2, we arrive at
our main result, P (hm, L) = L−1/2f

(

hmL
−1/2

)

for all
L, where the Laplace transform of f(x) is given by

∫

∞

0

f(x)e−sxdx = s
√

2π

∞
∑

k=1

e−αks2/32−1/3

. (8)

Interestingly, the right hand side of Eq. (8) turns out
precisely to be the Laplace transform of the pdf of the
area under a Brownian excursion over a unit interval [19].
A Brownian excursion over the interval [0, 1] is simply a
Brownian motion pinned at zero at the two ends of the
interval and conditioned to stay positive in between. In-
verting the Laplace transform in Eq. (8) one obtains
f(x), known as the Airy distribution function [19],

f(x) =
2
√

6

x10/3

∞
∑

k=1

e−bk/x2

b
2/3
k U(−5/6, 4/3, bk/x

2), (9)

where bk = 2α3
k/27 and U(a, b, z) is the confluent hyper-

geometric function [22]. In Fig. 1, we have plotted f(x)
in Eq. (9) using the Mathematica and compared it with
the numerical scaling function generated by collapsing
the data for 3 different system sizes obtained by numer-
ically integrating the space-time discretized form of Eq.
(1). Evidently the agreement is very good.

It is easy to obtain the small x behavior of x from Eq.
(9), since only the k = 1 term dominates as x→ 0. Using
U(a, b, z) ∼ z−a for large z, we get as x→ 0,

f(x) → 8

81
α

9/2
1 x−5 exp

[

− 2α3
1

27x2

]

. (10)

This essential singular tail near x → 0 was conjectured
in [11] based on numerics, though the exact form was
missing. The asymptotic behavior at large x is more
tricky to derive [23] from Eq. (9). Even the calcula-
tion of moments from Eq. (8) is rather nontrivial. How-
ever, it is possible to write down an exact recursion re-
lation for the moments [18,19] and using these results,
we get 〈hn

m〉 = MnL
n/2 where M0 = 1, M1 =

√

π/8,

M2 = 5/12, M3 = 15
√
π/64

√
2, M4 = 221/1008 etc.

Only the second moment 〈hn
m〉 = 5L/12 was computed

before in [11] by using a different method. Finally, one
finds that for large n, Mn ∼ (n/12e)n/2. Substituting an
anticipated large x decay of the form, f(x) ∼ exp[−axb]
in Mn =

∫

∞

0 f(x)xndx, we get Mn ∼ (n/abe)n/b for large
n. Comparing this with the exact large n behavior of Mn

we get a = 6 and b = 2, indicating f(x) ∼ exp[−6x2] as
x→ ∞.

There is an alternative elegant probabilistic derivation
of the above result which we outline briefly. It proceeds
by establishing the equivalence,

h(x) ≡ B(x) − 1

L

∫ L

0

B(τ)dτ, (11)

where h(x) is the stationary EW interface with peri-
odic boundary condition, B(x) is a Brownian bridge (a
Brownian motion such that B(0) = B(L) = 0) and ≡
means that the left hand side (lhs) has the same prob-
ability distribution as the right hand side (rhs). First,
by construction the rhs satisfies the area constraint in
Eq. (2). Secondly, both the lhs and rhs of Eq. (11)
are Gaussian variables and hence to establish the equiv-
alence in Eq. (11), it is sufficient to show that their re-
spective two-point correlators are identical. For example,
one finds [21] from Eq. (1) that in the stationary state,
〈h(x)h(x′)〉 = [L2/6 − L|x − x′| + (x − x′)2]/2L for all
L. Similarly, one can calculate the two-point correlator of
the rhs using the representation, B(τ) = x(τ)−τx(L)/L,
where x(τ) is ordinary Brownian motion starting at
x(0) = 0 and with a correlator, 〈x(τ)x(τ ′)〉 = min(τ, τ ′).
This representation guarantees that B(0) = B(L) = 0.
We find that the two-point correlator of the rhs is exactly
the same as 〈h(x)h(x′)〉. This establishes the equivalence
in law in Eq. (11) rigorously. Hence, the maximum of
h(x) will have the same distribution as the maximum of
the rhs of Eq. (11) which, incidentally, was computed by
Darling in the context of statistical data analysis and he
found [17] exactly the same Laplace transform as in Eq.
(8).

We next consider the free boundary condition where
the two ends of the interface are held free. In this case,
the joint distribution of heights in the stationary state is
given by the same formula as in Eq. (3), except without
the delta function δ [h(0) − h(L)]. This changes the nor-
malization constant to C(L) = L. However, unlike the
simple trace in the periodic case in Eq. (6), the Laplace
transform in the free case turns out to be more compli-
cated [21]. Omitting details, we find the same scaling
as in the periodic case, P (hm, L) = L−1/2f

(

hmL
−1/2

)

,
though the scaling function has a different Laplace trans-
form f̃(s) =

∫

∞

0 f(x)s−sxdx,

f̃(s) = s2/32−1/3
∞
∑

k=1

C(αk)e−αks2/32−1/3

, (12)

where C(α) = [
∫

∞

−α
Ai(z)dz]2/[Ai′(−α)]2 and Ai′(z) =

dAi(z)/dz. This Laplace transform does not seem to have
appeared before in the mathematics literature. One can
again express the function f(x) in terms of the conflu-
ent hypergeometric function [21], a Mathematica plot of
which is shown in Fig. 1 that matches well with the nu-
merical simulations. The small x behavior can again be
found easily and we get,
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f(x) → 2
√

2

27
√
π
C(α1)α

7/2
1 x−4 exp

[

− 2α3
1

27x2

]

, (13)

where C(α1) = 3.30278 . . ., evaluated using the Math-
ematica. Thus the function f(x) decays slightly faster
as x → 0 compared to the periodic case in Eq. (10).
We also calculated the moments exactly [21], 〈hn

m〉 =
µnL

n/2 where µ0 = 1, µ1 =
√

2/π, µ2 = 17/24,

µ3 = 123
√

2/140
√
π etc. We found that for large n,

µn ∼ [n/3e]n/2 which provides the asymptotic large x
tail of f(x), f(x) ∼ exp[−3x2/2] that falls off less rapidly
than the periodic case where f(x) ∼ exp[−6x2].

0 1 2 3
x

0

1

2

3

4

f (
x)

FIG. 1. The scaling function f(x) for the MRH distribu-
tion for both the periodic (the top 4 curves) and the free
(the lower 4 curves) boundary conditions. In both cases, the
numerical curves (shown by symbols) are obtained by collaps-
ing the data from the numerical integration of the space-time
discretized form of the EW equation (1) for 3 system sizes
L = 256, L = 384 and L = 512. They are compared to the
corresponding analytical scaling functions (solid lines).

To conclude, we note that apart from the theoretical
interests as a solvable model, many experimental systems
are well described by the 1-d EW equation (1). Exam-
ples include, amongst others, the high-temperature step
fluctuations in Si(111)-Al surfaces [4,24] and the displace-
ments of nonmagnetic particles in dipolar chains at low
magnetic field [25]. Besides, the displacements of beads
in a polymer chain with harmonic interaction (the Rouse
model [26]) also evolve via the 1-d EW equation. Thus
our results are relevant in these systems and it would be
interesting to see if the MRH distribution can be mea-
sured experimentally in such systems.

We thank Y. Shapir, S. Raychaudhuri and C. Dasgupta
for useful correspondence and discussions.
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