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Two random-walk related problems which have been studied independently in the past, the ex-
pected maximum of a random walker in one dimension and the flux to a spherical trap of particles
undergoing discrete jumps in three dimensions, are shown to be closely related to each other and are
studied using a unified approach as a solution to a Wiener-Hopf problem. For the flux problem, this
work shows that a constant c = 0.29795219 which appeared in the context of the boundary extrap-
olation length, and was previously found only numerically, can be derived analytically. The same
constant enters in higher-order corrections to the expected-maximum asymptotics. As a byproduct,
we also prove a new universal result in the context of the flux problem which is an analogue of the
Sparre Andersen theorem proved in the context of the random walker’s maximum.
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I. INTRODUCTION

Random walks arise in an astounding variety of problems in physics as well as mathematics, computer science,
etc., and great progress has been made in solving many of their deep and subtle properties. Two seemingly unrelated
problems, the expected maximum of a random walker in one dimension undergoing jumps drawn from a uniform

distribution, and the flux to a trap of particles undergoing random walks in three dimensions, have been studied
independently over the last several years, and their solutions seem to involve a similar numerical constant 0.29795219,
a coincidence that has not been noticed before. The similarity of these constants suggests that these two problems
may be intimately related. For the first problem, the constant was first computed numerically by evaluating a rather
complicated double series expansion [1, 2] and very recently, an exact closed form expression of the constant has been
found [3] that is valid not just for the uniform jump distribution, but for any arbitrary continuous and symmetric
jump distribution. For the second problem of flux to a spherical trap, the corresponding constant was computed only
numerically [4]. Therefore, finding the relation between the two problems raises the possibility that the flux problem
can be solved analytically for the first time. Indeed, this is what we accomplish in this paper.

The two problems we consider are:

Problem I: The asymptotic behavior of the expected maximum position of a discrete time random

walker moving on a continuous line. The position xn of the walker after n steps evolves for n ≥ 1 via,

xn = xn−1 + ξn (1)

starting at x0 = 0, where the step lengths ξn’s are independent and identically distributed (i.i.d) random variables
with zero mean and each drawn from the same probability distribution, Prob(ξn ≤ x) =

∫ x

−∞ f(y) dy, f(x) being
a continuous and symmetric probability density normalized to unity. Let Mn denote the positive maximum of the
random walk up to n steps (see Fig. 1),

Mn = max(0, x1, x2, . . . , xn). (2)

We are interested in the asymptotic large-n behavior of the expected maximum E(Mn). This question arose some
years ago in the context of a packing problem in two dimensions where n rectangles of variable sizes are packed
in a semi-infinite strip of width one [1, 2]. It was shown in Ref. [2] that for the special case of the uniform jump
distribution, f(x) = 1/2 for −1 ≤ x ≤ 1 and f(x) = 0 outside, for large n,

E[Mn] =

√

2n

3π
− 0.29795219028 · · ·+O(n−1/2). (3)
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FIG. 1: A typical configuration of a random walker in one dimension up to n steps, starting at 0 at n = 0 with Mn denoting
the maximum up to n steps.

The leading
√
n behavior is easy to understand and can be derived from the corresponding behavior of a continuous-

time Brownian motion after a suitable rescaling [2]. However, the leading finite-size correction term turns out to
be a nontrivial constant −c with c = 0.29795219028 . . . that was computed in Ref. [2] by enumerating a somewhat
intricate double series obtained after a lengthy calculation. Recently, it was shown [3] that for arbitrary continuous
and symmetric jump distribution f(x) with a finite second moment σ2 =

∫∞
0
x2f(x)dx, the expected maximum has

a similar asymptotic behavior as in the uniform case, namely,

E[Mn] = σ

√

2n

π
− c+O(n−1/2). (4)

Moreover, an exact expression for the constant c was found [3]

c = − 1

π

∫ ∞

0

dk

k2
ln

[

1 − f̂(k)

σ2k2/2

]

, (5)

where f̂(k) =
∫∞
−∞ f(x) eikx dx is the Fourier transform of f(x). In particular, for the uniform distribution, f(x) = 1/2

for −1 ≤ x ≤ 1 and f(x) = 0 outside, one has f̂(k) = sin(k)/k and one gets from Eq. (5) an exact expression,

c = − 1

π

∫ ∞

0

dk

k2
ln

[

6

k2

(

1 − sin k

k

)]

= 0.29795219028 . . . (6)

Problem II: The calculation of flux to a spherical trap in three dimensions. Consider first the classic
Smoluchowski problem [5] where point particles are initially distributed uniformly with density ρ0 outside a sphere of
radius R in three dimensions. Each particle subsequently performs continuous-time Brownian motion with a diffusion
constant D, independent of each other. One is interested in computing the flux of particles Φ(t) to the sphere at time
t. This can be done by solving the diffusion equation outside the sphere with an absorbing boundary condition on
the surface of the sphere and the result is well known [5, 6, 7]. One gets

Φ(t) = 4πRDρ0

[

1 +
R√
πD t

]

. (7)

valid for all t > 0. Also, as t→ ∞, the density profile outside the sphere becomes time independent and has a simple
form

ρ(r) = ρ0

(

1 − R

r

)

(8)
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FIG. 2: Independent Rayleigh flights in three dimensions in presence of a spherical trap with The discreteness of the jumps
shows up effectively in a renormalized sphere with a smaller where c

′
l is the Milne extrapolation length

for all r ≥ R. Far from the sphere the density remains unchanged from its initial value ρ0 and as one approaches the
surface of the sphere, the density vanishes.

An interesting issue, first studied in Ref. [4], is how do the steady-state profile in Eq. (8) and correspondingly the
expression of flux in Eq. (7) get modified when each of the point particles, instead of performing continuous-time
Brownian diffusion, undergoes discrete ‘Rayleigh flights’, i.e. a particle jumps, at every discrete time step τ , a fixed
step length l whose direction is chosen arbitrarily in the three-dimensional space (see Fig. 2). In Ref. [4], it was shown
that the expression for the flux, at late times t = nτ and for 0 < l ≤ 2R, now gets replaced by

Φ(t) = 4π(R− c′ l)D′ρ0

[

1 +
R− c′ l√
πD′ t

+O(t−3/2)

]

, (9)

where D′ = l2/6τ and c′ is a constant whose numerical value was obtained by an iterative numerical solution of the
density profile, with the result

c′ ≈ 0.29795219 (10)

The density profile ρn(r) after n steps also gets modified rather drastically, as found numerically in Ref. [4]. In
particular, the steady-state density profile ρ∞(r) in the discrete problem turns out to be quite different from its
continuous-time counterpart. While very far away from the sphere the steady-state density profile behaves as

ρ∞(r >> R) = ρ0

(

1 − R− c′l

r

)

(11)

where c′ is as in Eq. (10), the density actually tends to a nonzero constant as one approaches the surface of the sphere
from outside

ρ∞(r → R) = 0.408245
ρ0l

R
(12)

where the constant 0.408245 was evaluated numerically in Ref. [4]. This is in stark contrast to the continuous-time
Brownian case where the density vanishes on the surface of the sphere.

The distance c′ l is the ‘Milne extrapolation length’ [8, 9, 10] and represents the distance inside the surface where
the far steady steady-state solution in Eq. (11) extrapolates to ρ∞ = 0. This steady-state density distribution implies
the leading-order term of the flux given in Eq. (9). Thus at late times, the continuum formula for the flux in Eq. (7)
still remains valid for the discrete jump case, but with an effectively smaller radius R− c′ l of the trap as in Eq. (9).
Thus the effect on the flux due to the discrete nature of the jumps, at least at late times, is simply to renormalize the
radius of the trap to a smaller value.

Comparing Eqs. (6) and (10) one finds, rather amazingly, that the two constants c and c′, in these two a priori

unrelated problems, are identical at least up to 8 decimal places! This raises an interesting question: are they equal?
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In this paper, we indeed prove that c = c′. In the process, we also provide exact solutions to many other features of
the flux problem that were observed numerically in Ref. [4]. For example, we will calculate exactly the steady-state
density profile and will prove that indeed it approaches to a constant on the surface of the sphere as in Eq. (12) and

the constant 0.408245 is actually 1/
√

6. Our method consists in showing that both of these problems can be cast
into the same Wiener-Hopf type problem involving an integral equation over half-space, albeit with different initial
conditions. We then obtain explicit solutions to this Wiener-Hopf problem with these two different initial conditions.
The general solution turns out to be a product of two parts, one that explicitly depends on the initial condition and
the other part which is a ‘Green’s function’ that is independent of the initial condition. The constant c, given by the
exact expression in Eq. (6), is part of this ‘initial condition independent’ Green’s function and hence it appears in
both problems.

II. MAXIMUM OF A RANDOM WALKER AS A WIENER-HOPF PROBLEM

We consider a discrete time random walker hopping on a continuous line. The position xn of the walker evolves via
Eq. (1), starting at x0 = 0. The maximum Mn, defined in Eq. (2), is a random variable. Let qn(z) = Prob(Mn ≤ z)
denote the cumulative distribution of the maximum and q′n(z) = dqn/dz its probability density with z ∈ [0,∞]. Then,
a simple integration by parts gives

E[Mn] =

∫ ∞

0

zq′n(z)dz = −
∫ ∞

0

z
d

dz
(1 − qn(z)) dz =

∫ ∞

0

(1 − qn(z)) dz, (13)

where we have used the normalization condition, qn(∞) = 1. Using translational invariance and the fact that the
jump distribution is symmetric, one can also interpret qn(z) as the probability that a random walker, starting initially
at position z > 0, stays positive up to step n. Then it is easy to write down, using the Markov property of the
evolution in Eq. (1), the following recurrence relation [3], valid for all z ≥ 0,

qn(z) =

∫ ∞

0

qn−1(z
′)f(z − z′) dz′, starting with q0(z) = 1. (14)

The generating function q̃(z, s) =
∑∞

n=0 qn(z)sn then satisfies an inhomogeneous Wiener-Hopf integral equation [3]

q̃(z, s) = s

∫ ∞

0

q̃(z′, s)f(z − z′)dz′ + q0(z), (15)

where the inhomogeneous term q0(z) = 1 arises from the initial condition. We need to thus solve this integral equation
to obtain the full probability distribution qn(z) of the maximum. The mean value E[Mn] can then be computed from
Eq. (13).

III. FLUX TO A TRAP AS A WIENER-HOPF PROBLEM

We consider a sphere of radius R in three dimensions. Outside the sphere point particles are initially distributed
with uniform density ρ0. Particles subsequently perform independent Rayleigh flights, i.e. at every time step τ , each
particle, independently of others, jumps a fixed distance l in a direction chosen randomly. The object of interest is
the flux at late times t to the sphere. For simplicity, we assume τ = 1 (so that the jumps occur at integer steps) and
also l = 1. Since the particles are independent, one can alternately think of a single particle whose probability density
ρn(~r) at ~r after n steps evolves via the Markov equation [4]

ρn(~r) =

∫

W (~r|~r ′)ρn−1(~r
′)d~r ′ (16)

where W (~r|~r ′) = δ(|~r − ~r ′| − 1)/4π is the jump probability density at each step from ~r ′ to ~r and the integral in Eq.
(16) extends over the full three-dimensional space outside the sphere of radius R. The recursion relation in Eq. (16)
starts with the initial condition, ρ0(~r) = ρ0 for r > R and ρ0(~r) = 0 for r ≤ R. Since the initial condition is spherically
symmetric, it is clear that from Eq. (16) that this symmetry will be maintained at all n, implying ρn(~r) = ρn(r).
Thanks to this spherical symmetry, the three-dimensional problem thus becomes a one-dimensional problem where
one considers only the radial direction after integrating out the angular coordinates. Defining Pn(r) ≡ 4πr2ρn(r) as
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the probability that the particle is in the shell [r, r+ dr] after n steps, it follows that Pn(r) evolves via the recurrence
equation

Pn(r) =

∫

w(r| r′)Pn−1(r
′)dr′ starting with P0(r) = 4πr2ρ0θ(r −R) (17)

where θ(x) is the Heaviside theta function and w(r| r′) is the jump probability density from radius r′ to r, which can
be easily calculated by integrating the kernel W (~r|~r′) over the angular coordinates [4, 11]

w(r| r′)dr =
r dr

2r′
for |r′ − 1| < r < r′ + 1

= 0 otherwise. (18)

To simplify, one introduces a new quantity Fn(r) = Pn(r)/4πρ0r. The recursion relation for Fn(r), upon substituting
the explicit form of w(r|r′) from Eq. (18) in Eq. (17), then simplifies

Fn(r) =
1

2

∫ r+1

max(R,r−1)

Fn−1(r
′)dr′

=

∫ ∞

R

Fn−1(r
′)f(r − r′)dr′ (19)

where f(y) corresponds to the uniform probability density over the interval y ∈ [−1, 1], i.e. f(y) = 1/2 if −1 ≤ y ≤ 1
and f(y) = 0 otherwise. The recursion in Eq. (19) now starts with the initial condition, F0(r) = rθ(r −R). One can
simplify Eq. (19) further by introducing a shift, i.e. defining z = r −R and writing Fn(r) = Fn(z +R) = Qn(z), Eq.
(19) becomes, for all z > 0,

Qn(z) =

∫ ∞

0

Qn−1(z
′)f(z − z′) dz′, starting with Q0(z) = R+ z (20)

Defining the generating function, Q̃(z, s) =
∑∞

n=0Qn(z)sn, one obtains an identical Wiener-Hopf integral equation
as in Eq. (15),

Q̃(z, s) = s

∫ ∞

0

Q̃(z′, s)f(z − z′)dz′ +Q0(z), (21)

the only difference is in the inhomogeneous term Q0(z) = R + z that is set by the initial condition. One then needs
to solve this integral equation to obtain Qn(z), from which one can read off the density profile at step n

ρn(r) =
Pn(r)

4πr2
=
ρ0

r
Fn(r) =

ρ0

r
Qn(r −R). (22)

The flux to the sphere at time step n can then be computed from the following relation [4]

Φ(n) =

∫ ∞

R

dr′
∫ R

0

drw(r| r′)Pn−1(r
′) (23)

= πρ0

∫ R+1

R

[R2 − (r′ − 1)2]Fn−1(r
′)dr′ (24)

= πρ0

∫ 1

0

[2R(1 − z) − (1 − z)2]Qn−1(z) dz (25)

In going from Eq. (23) to (24) we have used the explicit form of w(r|r′) in Eq. (18).
We end this section with one remark. For a continuous-time Brownian motion it is quite standard [6, 12] that,

using the transformation ρ(r, t) = ρ0F (r, t)/r, the 3-d diffusion equation for the density field ρ(r, t) can be reduced
to a 1-d diffusion equation; the same trick naturally works for the 3-d Shrödinger equation as well. Based on this
fact, it is natural that a similar transformation ρn(r) = ρ0Fn(r)/r would also work for the discrete-time problem.
However, the fact, that the reduced 1-d problem satisfies exactly the same integral equation (albeit with a different
initial condition) with the same uniform kernel as the 1-d maximum displacement problem, is hard to guess apriori
without the explicit calculation as presented here.
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IV. WIENER-HOPF PROBLEM

We have seen from the previous sections that the two a priori different problems (I) maximum of a random walker
hoping on a line and (II) flux to a spherical trap in three dimensions can be both recast as the same Wiener-Hopf
integral equation problem, albeit with different inhomogeneous terms arising due to the difference in the initial condi-
tions of the two problems. The general mathematical problem then is to solve the following half-space inhomogeneous
integral equation for z > 0

ψ(z, s) = s

∫ ∞

0

ψ(z′, s) f(z − z′)dz′ + J(z). (26)

where the inhomogeneous source term J(z) is different for the two problems

J(z) = 1 for Problem I (27)

= R+ z for Problem II. (28)

Even though in both of these problems the kernel f(z − z′) corresponds to the uniform jump density, i.e.

f(x) =
1

2
for − 1 ≤ x ≤ 1

= 0 otherwise, (29)

it is useful to study the integral equation (26) with a general continuous and symmetric kernel f(z) = f(−z) that is
normalized

∫∞
−∞ f(z)dz = 1 and has a finite second moment σ2 =

∫∞
−∞ z2f(z)dz.

The explicit solution ψ(z, s) of Eq. (26) with different source terms as in Eqs. (27) and (28) will then provide the
solutions to the two problems. In Problem I, ψ(z, s) = q̃(z, s) =

∑∞
n=0 qn(z)sn provides the generating function for

the cumulative distribution of the maximum of the random walk up to n steps. In Problem II, ψ(z, s) = Q̃(z, s) =
∑∞

n=0Qn(z)sn gives the generating function for the density profile ρn(r) = ρ0Qn(z = r−R)/r of the particles outside
the sphere of radius R in three dimensions. It turns out, as will be shown later explicitly, that the difference in the
source term in Eqs. (27) and (28) actually leads to completely different types of solutions to the integral equation
(26). In Problem I, the solution qn(z) depends explicitly on n even at late times, i.e. for large n, and does not have an
n-independent stationary solution. Rather it has a scaling solution involving both z and n. In contrast, the solution
Qn(z) in Problem II approaches an n-independent stationary solution.

A. Explicit solution for exponential kernel

Before providing the general solution for arbitrary continuous and symmetric kernel f(z), it is instructive to derive
the explicit solutions with the two different source terms for a special kernel f(z) = exp[−|z|]/2. This will clearly
bring out how the different source terms lead to different behavior of the same integral equation. The exponential
kernel f(z) = exp[−|z|]/2 is special since one can recast the integral equation (26) into a differential equation by using
the identity f ′′(z) = f(z) − δ(z), where f ′′(z) = d2f/dz2. Differentiating Eq. (26) twice with respect to z and using
the above identity, one gets for all z > 0

d2ψ

dz2
= (1 − s)ψ(z, s) + J ′′(z) − J(z). (30)

Consider first Problem I where J(z) = 1. Then the most general solution of Eq. (30) is given by,

ψI(z, s) =
1

(1 − s)
+A1(s) e

−
√

1−s z +B1(s) e
√

1−s z, (31)

where A1(s) and B1(s) are two arbitrary z independent constants. Since the solution cannot diverge exponentially
as z → ∞, one gets B1(s) = 0. We need to still determine the constant A1(s). Here we use a method that is
slightly different from that used in Ref. [3]. We substitute the solution in Eq. (31) into the integral equation (26).
Performing the integration explicitly, one finds that the solution in Eq. (31) satisfies the integral equation if and only
if A1(s) = −[1 −

√
1 − s]/(1 − s). Thus, the full solution is given by [3]

ψI(z, s) =

∞
∑

n=0

qn(z)sn =
1

(1 − s)
− 1 −

√
1 − s

1 − s
e−

√
1−s z. (32)
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One can then get the expected maximum from this explicit solution by an integration and an expansion in powers of
s [3]

E[Mn] =
2√
π

Γ(n+ 3/2)

Γ(n+ 1)
− 1 ≃ 2

√

n

π
− 1 as n→ ∞, (33)

which is of the same general form as in Eq. (4) with σ =
√

2 and c = 1. In addition, it is also instructive to derive the
solution qn(z) for large n by analysing its generating function in Eq. (32) in the vicinity of s = 1. Taking the limits
s → 1 and z → ∞ but keeping z

√
1 − s fixed, one can replace the the generating function by a Laplace transform,

and inverting the Laplace transform one gets the scaling solution valid for large n

qn(z) ≃ erf

(

z√
4n

)

+
1√
πn

e−z2/4n, (34)

where erf(z) = 2 π−1/2
∫ z

0
e−u2

du is the error function. Note that the first term on the rhs of Eq. (34) corresponds
to the continuum solution of the diffusion equation for a particle starting at z > 0 and staying above an absorbing
boundary at 0, which is also the same as the cumulative probability that the maximum of a continuous-time Brownian
motion stays below z up to time t, provided one makes the standard correspondence σ2n = 2Dt between the discrete
step number n and the continuous time t, D being the diffusion constant for the Brownian motion. The second
term on the rhs of Eq. (34) corresponds to the leading correction due to discrete jumps and indeed is responsible
for the constant c in Eq. (4). This can be seen by substituting the scaling solution in Eq. (34) in the exact relation,
E[Mn] =

∫∞
0 (1 − qn(z))dz. Upon integrating, one recovers the large-n asymptotic solution in Eq. (33) and one sees

explicitly that indeed the constant c = 1 in Eq. (33) arises from the integration of the second term in Eq. (34).
We now turn to Problem II where J(z) = R+ z. Proceeding exactly as in the first case one finds that the explicit

solution of the differential equation (30) is given by

ψII(z, s) =
R+ z

1 − s
+A2(s) e

−
√

1−s z , (35)

where we have used the boundary condition that the solution cannot diverge exponentially as z → ∞. Substituting
this solution in the integral equation (26) fixes the constant A2(s) and we get the full solution,

ψII(z, s) =

∞
∑

n=0

Qn(z)sn =
R+ z

1 − s
+ (1 −R)

1 −
√

1 − s

(1 − s)
e−

√
1−s z. (36)

The behavior of Qn(z) for large n can be derived by analysing the generating function near s = 1. In this case, one
finds that for large n,

Qn(z) ≃ (z + 1) + (R − 1) erf

(

z√
4n

)

+
R− 1√
πn

e−z2/4n. (37)

Comparison with the asymptotic solution of Problem I in Eq. (34) shows that in Problem II, the solution approaches
an n-independent stationary solution as n→ ∞

Q∞(z) = z + 1 for all z ≥ 0. (38)

This solution is also independent of R; all terms containing R in Eq. (37) disappear in the long-time limit. The
corrections to this stationary solution for large n have the scaling forms similar to Problem I.

In fact, we will show in the next section that quite generically, i.e. for arbitrary continuous and symmetric kernel
f(z), the solution Qn(z) for Problem II always approaches a stationary solution Q∞(z) which is, generically, a
nontrivial function of z. However, for large z, we will show that this stationary solution has a rather simple asymptotic,

Q∞(z) ≃ z + c′ as z → ∞, (39)

where the constant c′ will be shown to be exactly equal to c in Eq. (5). In particular, for the uniform distribution
f(z) given in Eq. (29) where one can relate back to the original 3-d flux problem, we will show that indeed this same
constant c′ = c appears as the extrapolation length in the expression for flux in Eq. (9). In the particular example
of the exponential kernel f(z) = exp[−|z|]/2, we see explicitly that indeed c′ = c = 1 by inspecting Eqs. (38) and
(33). This thus proves a special case of the general result c′ = c valid for arbitrary continuous and symmetric kernel
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f(z). Note also that for this special case of the exponential kernel, the stationary solution Q∞(z) in Eq. (38) actually
retains its asymptotic form in Eq. (39) all the way down to z = 0. This property, however, is rather special to the
exponential kernel. For a generic continuous and symmetric kernel, Q∞(z) has a nontrivial form for small z as will
be shown in the next section.

Another quantity of interest, as we will see later in a more general context, is the transient behavior of Qn(0) for
Problem II. It follows by subsituting z = 0 in Eq. (36)

∞
∑

n=0

Qn(0)sn =
1

1 − s
+

R− 1√
1 − s

. (40)

Expanding the rhs of Eq. (40) in powers of s one gets

Qn(0) = 1 + (R − 1)

(

2n

n

)

1

22n
≃ 1 +

(R − 1)√
πn

as n→ ∞. (41)

We will see later that this transient behavior for the exponential kernel confirms, as a special case, the validity of a
general result in Eq. (96) proved for arbitrary continuous and symmetric kernels.

V. GENERAL SOLUTION TO THE WIENER-HOPF PROBLEM

In this section, we present an explicit solution to the integral equation (26) for the two different inhomogeneous
terms in Eqs. (27) and (28). Our result is valid for any arbitrary continuous and symmetric kernel f(z) that is
normalized,

∫∞
−∞ f(z)dz = 1 and with a finite second moment σ2 =

∫∞
−∞ z2f(z)dz. Our method relies on a beautiful

general formalism developed by Ivanov [13] to deal with half-space problems in the context of photon scattering. Let
us first summarize this formalism. Consider the integral equation (26) with an arbitrary source term J(z). There are
three steps to obtain the solution.

1. The first step is to define a Green’s function G(z, z1, s) that satisfies the same integral equation but with a delta
function source term, i.e.

G(z, z1, s) = s

∫ ∞

0

G(z′, z1, s)f(z − z′)dz′ + δ(z − z1). (42)

It is then easy to see that the solution of the inhomogeneous equation (26) is given by

ψ(z, s) =

∫ ∞

0

G(z, z1, s)J(z1)dz1. (43)

2. The next step is to determine the Green’s function G(z, z1, s) that satisfies Eq. (42). One first defines the double
Laplace transform,

G̃(λ, λ1, s) =

∫ ∞

0

dz e−λz

∫ ∞

0

dz1 e
−λ1z1 G(z, z1, s). (44)

Ivanov showed that this double Laplace transform can be determined in closed form by solving Eq. (42) and is
given by a simple form [13]

G̃(λ, λ1, s) =
φ(s, λ)φ(s, λ1)

λ+ λ1
, (45)

where the function φ(s, λ) is the following Laplace transform

φ(s, λ) =

∫ ∞

0

dz e−λz G(z, 0, s) (46)

3. The third step is to obtain an explicit expression [13] for the function φ(s, λ)

φ(s, λ) = exp



−λ
π

∫ ∞

0

ln
(

1 − sf̂(k)
)

λ2 + k2
dk



 , (47)

where f̂(k) =
∫∞
−∞ f(x) ei k x dx is the Fourier transform of the kernel f(x).



9

Substituting the explicit expression for φ(s, λ) from Eq. (47) into Eq. (45), one has an explicit expression for
the double Laplace transform G(λ, λ1, s). By inverting this double transform, one can obtain the Green’s function
G(z, z1, s), at least in principle. Subsequently, by performing the integral in Eq. (43) one obtains the required solution
ψ(z, s). In practice, however, these last two steps are difficult to carry out explicitly in general. However, for the two
special source terms in Eqs. (27) and (28), we show below that one can make progress.

A. General solution for Problem I

Consider first Problem I where J(z) = 1. Then, Eq. (43) gives

ψI(z, s) =

∫ ∞

0

G(z, z1, s)dz1. (48)

Let us define the Laplace transform

ψ̃I(λ, s) =

∫ ∞

0

ψI(z, s) e
−λz dz. (49)

Taking the Laplace transform with respect to z in Eq. (48) we get

ψ̃I(λ, s) =

∫ ∞

0

dz e−λz

∫ ∞

0

G(z, z1, s) dz1 = G̃(λ, 0, s). (50)

Eqs. (45) and (47) then give

ψ̃I(λ, s) =
1

λ
φ(s, λ)φ(s, 0) (51)

where φ(s, λ) is given in Eq. (47). Let us first evaluate φ(s, 0). Note that one cannot näıvely put λ = 0 in the
expression in Eq. (47) since the integral multiplying λ inside the exponential in Eq. (47) diverges as λ→ 0. Hence one
needs to extract the value of φ(s, 0) carefully. To achieve this, an alternate expression for φ(s, λ) that was obtained
in Ref. [3] turns out to be useful. It was shown in Ref. [3] that φ(s, λ) in Eq. (47) can also be written as

φ(s, λ) =
1

[√
1 − s+ σλ

√

s/2
] exp

[

−λ
π

∫ ∞

0

dk

λ2 + k2
ln

(

1 − sf̂(k)

1 − s+ sσ2k2/2

)]

. (52)

This representation is useful to derive the properties of φ(s, λ) near λ = 0. On the other hand, the representation in
Eq. (47) is useful to extract the asymptotic behavior of φ(s, λ) for large λ. Taking λ→ 0 limit in Eq. (52) one gets

φ(s, 0) =
1√

1 − s
, (53)

which, when substituted in Eq. (51) gives

ψ̃I(λ, s) =

∞
∑

n=0

sn

∫ ∞

0

qn(z) e−λz dz =
1

λ
√

1 − s
φ(s, λ) (54)

where φ(s, λ) is defined in Eq. (47) and has also an alternative expression as in Eq. (52). This result in Eq. (54) goes
by the name of the Pollaczek-Spitzer formula which was originally derived using completely different methods [14, 15].
This result was subsequently utilized in Ref. [3] to extract the constant c in Eq. (4) appearing as a subleading term
for large n in the expected maximum E[Mn] of a random walker.

B. General Solution for Problem II

We now turn to Problem II where J(z) = R+ z. We get from Eq. (43)

ψII(z, s) =

∫ ∞

0

(R + z1)G(z, z1, s)dz1. (55)
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Taking the Laplace transform, ψ̃II(λ, s) =
∫∞
0 ψII(z, s) e

−λz dz gives

ψ̃II(λ, s) =

∫ ∞

0

dz e−λz

∫ ∞

0

(R + z1)G(z, z1, s) dz1 = R G̃(λ, 0, s) − ∂G̃(λ, λ1, s)

∂λ1
|λ1=0. (56)

Eqs. (45) and (47) then give

ψ̃II(λ, s) =
1

λ

[

(

R+
1

λ

)

φ(s, 0) − ∂φ̃(s, λ1)

∂λ1
|λ1=0

]

φ(s, λ) (57)

where φ(s, λ) is given in Eq. (47) or alternately in Eq. (52). Using the representation in Eq. (52) one gets

∂φ̃(s, λ1)

∂λ1
|λ1=0 = − σ

(1 − s)

√

s

2
− 1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(

1 − sf̂(k)

1 − s+ sσ2k2/2

)

. (58)

Substituting this result in Eq. (57) and using ψ(s, 0) = 1/
√

1 − s from Eq. (53) gives

ψ̃II(λ, s) =
1

λ

[

1√
1 − s

(

R +
1

λ

)

+
σ

(1 − s)

√

s

2
+

1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(

1 − sf̂(k)

1 − s+ sσ2k2/2

)]

φ(s, λ). (59)

C. Analysis of the Results

Thus the Laplace transform of the solution to the integral equation (26) for both problems respectively with J(z) = 1
(Problem I) and J(z) = R+ z (Problem II) can be written as a product of two functions

ψ̃(λ, s) = W (s, λ)φ(s, λ) (60)

where φ(s, λ) is given in Eq. (47) or in Eq. (52) and is independent of the source term. The function W (s, λ), however,
depends explicitly on the source term, i.e. on the initial conditions of the original recursion relations in Eqs. (14) and
(20) and has different expressions for the two problems. While for Problem I it is rather simple

WI(s, λ) =
1

λ
√

1 − s
, (61)

for Problem II it has a more complicated expression

WII(s, λ) =
1

λ

[

1√
1 − s

(

R+
1

λ

)

+
σ

(1 − s)

√

s

2
+

1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(

1 − sf̂(k)

1 − s+ sσ2k2/2

)]

(62)

Since the function φ(s, λ) appears in both problems, it is useful to first list its asymptotic properties for small and
large λ. For small λ, it is convenient to use the representation in Eq. (52). On the other hand, for large λ, the
representation in Eq. (47) turns out to be more convenient. We find

φ(s, λ) ≃ 1√
1 − s

− α(s)λ+O(λ2) as λ→ 0 (63)

≃ 1 − β(s)

λ
+O(λ−2) as λ→ ∞ (64)

where the two functions α(s) and β(s) are given by

α(s) =
σ

(1 − s)

√

s

2
+

1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(

1 − sf̂(k)

1 − s+ sσ2k2/2

)

(65)

β(s) =
1

π

∫ ∞

0

dk ln
[

1 − sf̂(k)
]

. (66)

Now we are ready to obtain the constants c in Problem I and c′ in Problem II and show that indeed they are same,
as they both emerge from the properties of the function φ(s, λ) that is common to both the problems. We consider
the two problems separately.
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Expected maximum in Problem I: Consider first Problem I. Consider the Laplace transform of the distribution
of the maximum, E[e−λMn ] ≡

∫∞
0
e−λ zq′n(z) dz = λ

∫∞
0
e−λ zqn(z) dz. It follows from Eq. (54)

∞
∑

n=0

snE[e−λMn ] =
1√

1 − s
φ(s, λ). (67)

We expand both sides in λ for small λ and use Eq. (63) for the expansion of the rhs of Eq. (67). Comparing the term
linear in λ one gets

∞
∑

n=0

snE[Mn] =
α(s)√
1 − s

, (68)

where α(s) is given in Eq. (65). To extract the large n behavior of E[Mn], we need to analyse the generating function
in Eq. (68) near s→ 1. Expanding the rhs of Eq. (68) near s = 1 one gets

∞
∑

n=0

snE[Mn] ≃ σ√
2 (1 − s)3/2

+
1

π(1 − s)

∫ ∞

0

dk

k2
ln

[

(1 − f̂(k)

σ2k2/2

]

+O((1 − s)−1/2). (69)

Inverting one gets the large n result [3]

E[Mn] = σ

√

2n

π
− c+O(n−1/2), (70)

where the constant c is given by the integral in Eq. (5).

Steady-state density profile in Problem II: Turning now to Problem II, we first show that for large n, Qn(z)
approaches a stationary solution Q∞(z). From the definition, we have

∞
∑

n=0

sn

∫ ∞

0

Qn(z) e−λ z dz = ψ̃II(λ, s), (71)

where ψ̃II(λ, s) is given in Eq. (59). Thus, if Qn(z) → Q∞(z) as n→ ∞, then the lhs of Eq. (71) will behave as

∞
∑

n=0

sn

∫ ∞

0

Qn(z) e−λ z dz ≃ 1

1 − s

∫ ∞

0

Q∞(z)e−λ z dz as s→ 1. (72)

We now expand the rhs of Eq. (71) near s = 1 using the explicit expression of ψ̃II(λ, s) in Eq. (59). We find from Eq.
(59) that as s→ 1, the leading order term behaves as

ψ̃II(λ, s) ≃
σ φ(1, λ)√
2λ (1 − s)

. (73)

Comparing Eqs. (72) and (73) gives the exact Laplace transform of the stationary solution
∫ ∞

0

Q∞(z)e−λ z dz =
σ φ(1, λ)

λ
√

2
, (74)

where φ(1, λ) can be obtained by putting s = 1 either in Eq. (47) or alternately in Eq. (52). Both expressions are
equivalent and one gets

∫ ∞

0

Q∞(z)e−λ z dz =
σ

λ
√

2
exp

[

−λ
π

∫ ∞

0

dk

λ2 + k2
ln
(

1 − f̂(k)
)

]

(75)

=
1

λ2
exp

[

−λ
π

∫ ∞

0

dk

λ2 + k2
ln

(

1 − f̂(k)

σ2k2/2

)]

. (76)

As a check, one can verify that for the exponential kernel f(x) = exp[−|x|]/2 so that f̂(k) = 1/(1 + k2) and σ =
√

2,
Eq. (76) gives

∫ ∞

0

Q∞(z)e−λ z dz =
1

λ2
+

1

λ
(77)
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which, when inverted, gives Q∞(z) = z + 1, in agreement with Eq. (38).
For a general kernel f(z), it is difficult to invert the Laplace transform in Eqs. (75) or (76). However, one can easily

extract the asymptotic behavior for large and small z. Consider first the large z behavior. In this case, the expression
in Eq. (76) is more convenient. Expanding the rhs of Eq. (76) for small λ we get

∫ ∞

0

Q∞(z)e−λ z dz ≃ 1

λ2
− 1

λπ

∫ ∞

0

dk

k2
ln

[

1 − f̂(k)

σ2k2/2

]

. (78)

Inverting the Laplace transform, one gets

Q∞(z) ≃ z + c′ as z → ∞ (79)

where

c′ = − 1

π

∫ ∞

0

dk

k2
ln

[

1 − f̂(k)

σ2k2/2

]

= c (80)

thus proving one of the main results of this paper. In particular, for the uniform kernel in Eq. (29) such that

f̂(k) = sin(k)/k, we get

c′ = c = 0.29795219028 . . . (81)

The asymptotic exact result Q∞(z) → z+c′ as z → ∞ with c′ = 0.29795219028.., when substituted in Eq. (22) in the
steady-state n→ ∞ limit, provides the exact steady-state density profile in the original 3-d flux problem at distance
r >> R,

ρ∞(r >> R) =
ρ0

r
Q∞(r −R) = ρ0

(

1 − R− c′

r

)

, (82)

in perfect agreement with the numerically observed [4] behavior in Eq. (11) (note that we have set l = 1 in Eq. (11)).
Similarly, one can work out the small z behavior of Q∞(z) by analysing the large λ behavior of the Laplace

transform. In this case, the expression in Eq. (75) is more convenient. Expanding Eq. (75) for large λ one finds

∫ ∞

0

Q∞(z)e−λ z dz =
σ√
2

[

1

λ
− 1

πλ2

∫ ∞

0

dk ln
(

1 − f̂(k)
)

+O(λ−3)

]

(83)

Inverting the Laplace transform, we get

Q∞(z) ≃ σ√
2

+ bz as z → 0, (84)

where b is a new constant given by

b = − σ

π
√

2

∫ ∞

0

dk ln
(

1 − f̂(k)
)

. (85)

For the exponential case, f̂(k) = 1/(k2 + 1) and σ =
√

2 we get from Eq. (85)

b =
1

π

∫ ∞

0

dk ln

[

(k2 + 1)

k2

]

= 1. (86)

Thus from Eq. (84), for the exponential kernel, we get Q∞(z) = z + 1 as z → 0, in agreement with Eq. (38). For the

uniform case, f̂(k) = sin(k)/k and σ = 1/
√

3, we get

b = − 1

π
√

6

∫ ∞

0

dk ln

[

1 − sin(k)

k

]

= 0.653857 . . . (87)

Thus, for the uniform kernel, the small z behavior of Q∞(z) from Eq. (84) reads as

Q∞(z) ≃ 1√
6

+ (0.653857 . . . ) z as z → 0 (88)
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This is in perfect agreement with the numerical results obtained from the work of Ref. [4], Q∞(z) ≈ 0.408245+0.6538z
as z → 0 [16]. Substituting the result from Eq. (88) in Eq. (22) in the limit n→ ∞, we find the steady-state density
profile in the original 3-d flux problem near the surface r → R

ρ∞(r → R) =
ρ0

r
Q∞(r −R) ≈ ρ0

R

(

1√
6

+ 0.653857 · · · (r −R)

)

. (89)

In particular, on the surface, the steady-state density approaches to a constant value

ρ∞(R) =
1√
6

ρ0

R
, (90)

thus proving the numerically observed [4] relation in Eq. (12) and identifying the constant 0.408245 as 1/
√

6 (note
that we have set l = 1 in Eq. (12)).

Transient behavior in Problem II: Another quantity that was investigated numerically in Ref. [4] is the transient
behavior of Qn(0) for large n, where it was found that for the uniform kernel in Eq. (29)

Qn(0) ≈ 0.408245 +

(

R√
π
− 0.17

)

n−1/2 (91)

Our exact solution reproduces this result also. To see this, we investigate our explicit solution in Eq. (59) for a general
continuous and symmetric kernel. By taking λ→ ∞ limit in Eq. (71) we see that the lhs behaves as

∞
∑

n=0

sn

∫ ∞

0

Qn(z) e−λ z dz ≃ 1

λ

∞
∑

n=0

Qn(0)sn as λ→ ∞. (92)

On the other hand, expanding the exact expression of ψ̃II(λ, s) in Eq. (59) for large λ, we find that the rhs of Eq. (71)
behaves as

ψ̃II(λ, s) ≃
1

λ

[

α(s) +
R√
1 − s

]

as λ→ ∞ (93)

where α(s) is given in Eq. (65). Equating Eqs. (92) and (93) and using the expression for α(s) from Eq. (65) we get
an exact expression for the generating function

∞
∑

n=0

Qn(0)sn =
σ

(1 − s)

√

s

2
+

1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(

1 − sf̂(k)

1 − s+ sσ2k2/2

)

+
R√
1 − s

. (94)

Now, analysing the behavior near s = 1 of the rhs of Eq. (94), one can get the leading asymptotic behavior of Qn(0)
for large n. One gets the leading behavior near s = 1,

∞
∑

n=0

Qn(0)sn ≃ σ√
2 (1 − s)

+
(R− c)√

1 − s
(95)

where c is the same constant as in Eq. (5). Inverting, one obtains an exact asymptotic result for large n

Qn(0) ≃ σ√
2

+
(R − c)√

π
n−1/2 (96)

In particular, for the uniform kernel f̂(k) = sin(k)/k with σ = 1/
√

3 and c = 0.29795219028 . . . from Eq. (81) we get

Qn(0) ≃ 1√
6

+
(R− 0.29795219028 . . .)√

π
n−1/2 = 0.40824829 . . .+

(

R√
π
− 0.168101522 . . .

)

n−1/2, (97)

in excellent agreement with the numerical results [4] stated in Eq. (91).
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VI. SPARRE ANDERSEN THEOREM FOR PROBLEM I AND ITS ANALOGUE FOR PROBLEM II

The recursion relation in Eq. (14) satisfied by the qn(z)’s in Problem I has an explicit solution given in Eq. (54).
From this explicit solution, one can easily extract qn(0), the probability that a random walker starting at the origin
stays positive (or negative) up to n steps. Indeed, the integral

∫∞
0 qn(z)e−λzdz → qn(0)/λ in the λ → ∞ limit. On

the other hand, the rhs of Eq. (54) tends to 1/λ
√

1 − s as λ → ∞ since φ(s,∞) = 1. Matching the lhs and the rhs
gives,

∞
∑

n=0

qn(0)sn =
1√

1 − s
. (98)

Expanding the rhs of Eq. (98) in powers of s and identifying the coefficient of sn on both sides, one gets for all n

qn(0) =

(

2n

n

)

1

22n
. (99)

The amazing fact is that the result in Eq. (99) is universal for all n, i.e. it does not depend on the density function
f(z) as long as f(z) is continuous and symmetric. This, in fact, is the celebrated Sparre Andersen theorem which was
originally proved using combinatorial methods [17] and has since been reproduced by various other methods [15, 18].
In particular, one notes from Eq. (99) that in the limit of large n,

lim
n→∞

√
n qn(0) =

1√
π

= a universal constant (100)

A natural question is if there is an analogue of the universality à la Sparre Andersen theorem for Problem II. The
recursion relation for Problem II in Eq. (20) is identical to that of Problem I in Eq. (14), except that the initial
condition Q0(z) = R+ z is different from that in Eq. (14). The question is whether Qn(0) still remains universal with
this different initial condition. Indeed, the answer to this question is evident from our exact result in Eq. (94). It is
clear from Eq. (94) that unlike in Problem I, Qn(0) in Problem II is not universal for all n as it depends explicitly on

the density function f̂(k). However, one recovers universality (up to a constant scale factor σ ) asymptotically, i.e. in
the limit of large n. Indeed, it follows from Eq. (96)

lim
n→∞

Qn(0)

σ
=

1√
2

= a universal constant (101)

Thus Qn(0), scaled by σ, approaches a universal constant 1/
√

2 as n → ∞, independently of the density function
f(z) as long as f(z) is continuous, symmetric and has a finite second moment σ2 =

∫∞
−∞ z2 f(z) dz. The result in

Eq. (101) for Problem II can be thought of as an asymptotic analogue of the Sparre Andersen result in Eq. (100) for
Problem I.

VII. CONCLUSIONS

We have shown that the two apparently different discrete-time random walk problems, the expected maximum in
one dimension and the three-dimensional flux to a trap, are intimately related in that they end up satisfying the
same recursion relation, but with different initial conditions. We confirmed that the constant c′ in the flux problem is
identical to the constant c in the expected-maximum problem, and thus provide an exact derivation for this constant
which was previously found only numerically, fourteen years ago. We also find the surprisingly simple result that
the steady-state density in the flux problem reaches a constant at the boundary of the sphere, ρ∞(R) = ρ0l/(

√
6R)

or equivalently Q∞(0) = 1/
√

6, and find explicitly both the asymptotic time-dependent approach to that value, Eq.
(97), and the slope of the density at the wall at z = 0 in the steady state, Eq. (88).

For the flux problem, c′ represents the extrapolation length inside the boundary where the steady-state solution
far from the sphere ρ∞(r) = ρ0(r − R + c′ℓ)/r goes to zero. That is, the solution far from the sphere assumes the
form of the solution to the diffusion equation, but with the effective boundary somewhat inside the actual boundary.
Putting this expression into the formula for the flux, Φ = 4πr2D(d/dr)ρ∞(r), yields the leading term in Eq. (9) (with
l = 1). We evaluate Φ for large r where the solution is valid, and the result is naturally independent of r because it
is in steady state.

In this paper, we have presented explicitly the steady-state density profile for the 3-d discrete flux problem. As
mentioned above, this solution suffices to predict immediately the leading behavior of the flux Φ(t) as t → ∞ in Eq.
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(9). To obtain the subleading time-dependent term given in Eq. (9), it is necessary to study the large time asymptotic
behavior of the integral in Eq. (25). Indeed, using the asymptotic solution for Qn(z) derived here, it is possible
to calculate this subleading term explicitly; we have not presented this calculation here and it will be published
elsewhere [19]. It is worth remarking that in the result found for the flux in Eq. (9), the combination R− c′l enters in
the time-dependent correction in the same form as in the steady-state term — that is, the extrapolation-length idea
also figures in the asymptotically large-time behavior of the system.

We have considered the three-dimensional flux problem here, in which particles undergo a Rayleigh flight of unit step
length. The resulting equation, Eq. (20), can also be interpreted as representing a one-dimensional flux problem where
the particles undergo a uniformly distributed jump, with an adsorbing boundary at z = 0. For the one-dimensional
interpretation, however, the initial condition is uniform rather than linear as in (28). (Call this Problem II’). Then
Problems I and II’ become identical, with E[Mn] of the former, Eq. (13), corresponding to the total integrated flux
up to time n of the latter. For a uniform jump distribution, Eq. (3) thus gives the accumulated flux up to time n. In
Ref. [4], the quantity a(2)(n) of Eq. (10a) is equal to six times the flux at time n for precisely this one-dimensional
problem. Summing the data for a(2)(n)/6 up to time n (some of which data is presented in Table I of that paper),
we indeed find that Eq. (3) (including c) is satisfied, with the next correction approximately equal to 0.0921n−1/2. In

fact, the latter agrees with the prediction (1/5)
√

2/3πn = 0.09213177 . . .n−1/2 given in Ref. [2] and this prediction

also agrees with the conjectured behavior of a(2)(n) given in Eq. (21c) of Ref. [4]. Thus, we have verified an additional
conjecture of Ref. [4].

On the mathematical side, we have discussed explicit solutions to the Wiener-Hopf type integral equations for
continuous and symmetric kernel with a finite second moment σ2. This is because both the physics problems that we
were interested in this paper have kernels that satisfy these properties. Mathematically it is interesting to ask how
the solutions would change if the kernel is asymmetric or for example, does not have a finite second moment. This
later problem with diverging second moment corresponds to discrete-time Lévy flights and at least for the expected
maximum problem (Problem I), exact results using similar techniques have recently been obtained [3]. On the other
hand, while general solutions to the Wiener-Hopf type integral equations with asymmetric kernels can, in principle,
be obtained [13], they are mostly not explicit. Finding explicit solutions with asymmetric kernels remains a hard and
challenging problem.

Finally, our solution of the recursion relation in Eq. (14) with a constant initial condition includes, as a special
case, a simple derivation of the Sparre Andersen theorem that states that qn(0), i.e. the probability that starting at
0 a random walker’s path stays above (or below) 0 up to n steps, is independent of the jump density function as long
as it is continuous and symmetric. However, we have proved that for the same recursion relation, but with a linear
initial condition as in Eq. (20), the universality in Qn(0) holds only asymptotically for large n up to a constant factor,
i.e. the ratio Qn(0)/σ (where σ is the standard deviation associated with the jump density function) approaches to

a universal constant 1/
√

2, irrespective of the details of the jump density function as long as it is continuous and
symmetric. This paper provides a rigorous proof of this new theorem.
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Related Topics in Physics: Proceedings of the International Workshop held at Nice, France, Lecture Notes in Physics ed.

M.F. Shlesinger et al. , 262-268 (Springer-Verlag, 1994).
[19] R.M. Ziff, S.N. Majumdar and A. Comtet, to be published.


	Introduction
	Maximum of a Random Walker as a Wiener-Hopf problem
	Flux to a trap as a Wiener-Hopf problem
	Wiener-Hopf problem
	Explicit solution for exponential kernel

	General Solution to the Wiener-Hopf problem
	General solution for Problem I
	 General Solution for Problem II
	Analysis of the Results

	Sparre Andersen Theorem for Problem I and its Analogue for Problem II
	Conclusions
	References

