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Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices
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We present a simple Coulomb gas method to calculate analytically the probability of rare events where the
maximum eigenvalue of a random matrix is much larger than itstypical value. The large deviation function that
characterizes this probability is computed explicitly forWishart and Gaussian ensembles. The method is quite
general and applies to other related problems, e.g. the joint large deviation function for large fluctuations of top
eigenvalues. Our results are relevant to widely employed data compression techniques, namely the principal
components analysis. Analytical predictions are verified by extensive numerical simulations.
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Rare events where one of the eigenvalues of a random ma-
trix is much larger than the others play an important role in
data compression techniques such as the “Principal Compo-
nents Analysis” (PCA). PCA is a very useful method to detect
hidden patterns or correlations in complex, high-dimensional
datasets. A non-exhaustive list of applications includes image
processing [1, 2, 3], biological microarrays [4, 5], population
genetics [6, 7], finance [8, 9], meteorology and oceanogra-
phy [10]. The main idea behind PCA is very simple. Consider
a rectangular(M ×N) matrixX whose entriesXij represent
some data. For instance,Xij might represent examination
marks of thei-th student (1 ≤ i ≤ M ) in the j-th subject
(physics, mathematics, chemistry, etc., with1 ≤ j ≤ N ). The
product(N × N) symmetric matrixW = XT X represents
the covariance matrix of the data and it contains information
about correlations. In PCA, one first identifies eigenvalues
and eigenvectors ofW . The data are maximally scattered and
correlated along the eigenvector (“principal component”)as-
sociated with the largest eigenvalueλmax. The scatter pro-
gressively reduces as lower and lower eigenvalues are con-
sidered. The subsequent step is the reduction of data dimen-
sionality, achieved by setting to zero those components corre-
sponding to low eigenvalues. Therationale is that retaining
the largest components will preserve the major patterns in the
data and only minor variations are filtered out.

The above description of PCA makes it clear that the effi-
ciency of the method crucially depends upon the gap between
the top eigenvalues and the “sea” of intermediate and small
eigenvalues. In particular, the further is the maximum eigen-
valueλmax spaced from all the others, the more effective the
projection and the compression procedure will be. A ques-
tion then naturally arises: how good is PCA for random data?
This issue has a twofold interest. First, in many situations, the
data are high-dimensional and have random components. Sec-
ond, random ensembles provide null models needed to gauge
the statistical significance of results obtained for non-random
datasets. To address the question just formulated, one needs to
compute the probability of rare events where the largest eigen-
valueλmax has atypically large fluctuations. The purpose of
this Letter is to provide a simple physical method, based on
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FIG. 1: The dashed line shows schematically the Marcenko-Pastur
average density of states for Wishart matrices with the aspect-ratio
parameterc ≡ N/M = 1 and the full line is the distribution of the
maximum eigenvalueλmax. The PDF is centered around the mean
value 〈λmax〉 = 4N and typically fluctuates over a scale of width
N1/3. The probability of fluctuations on this scale is described by
the known Tracy-Widom distribution (green curve). The red (blue)
line on the right (left) describes the right (left) large deviation tail of
the PDF, which is the object of interest in this paper.

the Coloumb gas method in statistical physics, that allows us
to compute analytically the probability of these rare events for
a general class of random matrices.

Let us start by considering Wishart matrices [11], which
are directly related to PCA and multivariate statistics [12].
Wishart matrices are defined via the productW = XT X
of a (M × N) random matrix X having its elements
drawn independently from a Gaussian distribution,P [X ] ∝
exp

[

−β
2

tr(X†X)
]

. The Dyson indicesβ = 1, 2 correspond

respectively to real and complexX [13]. Without any loss of
generality, we will assume hereafter thatM ≥ N . In addition
to the aforementioned PCA applications, Wishart matrices ap-
pear in antenna selection in communication technology [14],
nuclear physics [15], quantum chromodynamics [16], statis-
tical physics of directed polymers in random media [17] and
nonintersecting Brownian motions [18].
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The spectral properties ofW = XT X are well-known. For
example,N eigenvalues{λi}’s of W are nonnegative random
variables with a joint probability density function (PDF) [19]

P [{λi}] ∝ e−
β

2

P

N
i=1

λi

N
∏

i=1

λ
α β/2

i

∏

j<k

|λj − λk|β , (1)

whereα = (1 + M − N) − 2/β. This can be written as
P [{λi}] ∝ exp [−βE ({λi}) /2], with the energy

E[{λi}] =

N
∑

i=1

(λi − α log λi) −
∑

j 6=k

ln |λj − λk| , (2)

coinciding with that of a2-d Coulomb gas of charges with
coordinates{λi}. Charges are confined to the positive half-
line in the presence of an external linear+logarithmic poten-
tial. The external potential tends to push the charges towards
the origin, whilst the Coulomb repulsion tends to spread them
apart. A glance at (2) indicates that these two competing
mechanisms balance for values ofλ scaling as∼ N . Indeed,
from the joint PDF (1), one can calculate the average density
of eigenvalues,ρN (λ) = 1

N

∑N
i=1

〈δ(λ − λi)〉 ≈ 1

N f
(

λ
N

)

,
with the Marcenko-Pastur (MP) [20] scaling function :

f(x) =
1

2πx

√

(b − x)(x − a) . (3)

Here,c = N/M (with c ≤ 1) and the upper and lower edges

areb =
(

c−1/2 + 1
)2

anda =
(

c−1/2 − 1
)2

. For all c < 1,
the average density vanishes at both edges of the MP sea. For
the special casec = 1, we havea = 0, b = 4 and the average
densityf(x) = 1

2π

√

(4 − x)/x for 0 ≤ x ≤ 4, diverges as
x−1/2 at the lower edge (see Fig.1).

The MP expression shows that the maximum eigenvalue
λmax has the average value〈λmax〉 ≈ bN for largeN . Typ-
ical fluctuations ofλmax around its mean are known to be
of O(N1/3) [12, 17]. More specifically,λmax = b N +
c1/6 b2/3 N1/3 χ, where χ has anN -independent limiting
PDF,gβ(χ), the well-known Tracy-Widom (TW) density [21].
The TW distribution forβ = 1, 2 has asymmetric tails [21]

gβ(χ) ∼ exp

[

− β

24
|χ|3

]

as χ → −∞ , (4)

∼ exp

[

−2β

3
χ3/2

]

as χ → ∞. (5)

In contrast, the probability ofatypically large, e.g.∼ O(N),
fluctuations ofλmax from its meanbN are not captured by the
TW distribution. Note that these configurations are precisely
those relevant here, as they are ideally suited for the PCA to
work accurately.

How does the PDFP (λmax, N) look like for |λmax −
bN | ≫ O(N1/3) where the TW form is no longer valid? Us-
ing general large deviation principles, Johansson [17] proved
that for large fluctuations∼ O(N) from its mean, the PDF

P (λmax = t, N) has the form (for largeN ) :

P (t, N) ∼ exp

[

−β N2 Φ−

(

bN − t

N

)]

t ≪ bN ;

∼ exp

[

−β N Φ+

(

t − bN

N

)]

t ≫ bN ; (6)

whereΦ±(x) are the right (left) rate functions for the large
positive (negative) fluctuations ofλmax. The challenge is
to explicitly compute their functional forms. The approach
developed for Gaussian matrices [22] allows to compute the
left function Φ−(x) [23] but it does not apply to the right
tail. The problem of computing the right functionΦ+(x) is
solved hereafter. This is followed by the application of the
new method to Gaussian matrices and further generalizations.

The starting point of our method to computeΦ+(x) is
the energy expression (2). The Coulomb gas physics sug-
gests that when the rightmost charge is moved to the right,
λmax − bN ∼ O(N), the MP sea isa priori not subject
to forces capable of macroscopic rearrangements. Following
this physical picture, the right rate function is determined by
the energy cost in pulling the rightmost charge in the exter-
nal potential of the Coulomb gas and the interaction of the
charge with theunperturbedMP sea. This energy cost for
λmax = t ≫ bN can be estimated for largeN using Eq. (2)

∆E(t) = t − α ln(t) − 2N

∫

ln |t − λ| ρN (λ) dλ , (7)

whereρN (λ) is the MP average density of charges and the
integral describes the Coulomb interaction of the rightmost
charge with the MP sea. This energy cost expression is valid
up to an additive constant, which is chosen such that∆E(t =
bN) = 0 since our reference configuration is the one where
λmax = bN . For largeN , we scalet = zN , use the MP
expression (3) and the energy cost finally takes the form

∆E(z)

N
= z − 1 − c

c
ln(z)− 2

∫ b

a

ln(z − z′) f(z′) dz′ , (8)

valid for z ≥ b and up to an additive constant. The probabil-
ity of such a configuration isP (z, N) ∝ exp [−β∆E(z)/2].
Making a shift of variablez = b + x, it follows thatP (t, N)
for largeN and fort−bN ∼ O(N) agrees with the large devi-
ation behavior in Eq. (6). Progress is that we also have derived
the explicit expression of the right rate functionΦ+(x)

Φ+(x) =
x

2
− 1 − c

2c
ln

(

x + b

b

)

−
∫ b

a

ln

(

x + b − x′

b − x′

)

f(x′) dx′ , (9)

wherex > 0 and the additive constant was chosen to have
Φ+(0) = 0. The integral can be performed exactly and ex-
pressed as a hypergeometric function. Forc = 1 (a = 0 and
b = 4), we obtain

Φ+(x) =
x + 2

2
− ln(x + 4) +

1

x + 4
G

(

4

4 + x

)

, (10)
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FIG. 2: Numerical results (circles) for the maximum eigenvalue dis-
tribution− ln P (λmax = t, N) vs the scaled variable(t − 4N)/N .
Here,N = 10, Wishart matrices are real (β = 1) andc = 1. Com-
parisons are with the Tracy-Widom distribution (red line) and the ex-
act right (green line) and left (blue line) large deviation predictions.

whereG(z) =3 F2 [{1, 1, 3/2}, {2, 3}, z] is a hypergeometric
function (with a lengthy but explicit expression in terms of
elementary functions). For the sake of comparison, we also
report the simpler expression of the left rate function [23]:
Φ−(x) = ln

(

2/
√

4 − x
)

− x/8 − x2/64 for x ≥ 0.
The asymptotics ofΦ+(x) can be easily worked out from

Eq. (9). For largex, Φ+(x) ∼ x/2 independently ofc, while
the function has a nonanalytic behavior for smallx :

Φ+(x) ≈
√

b − a

3b
x3/2 as x → 0. (11)

This shows that, asλmax − bN ≪ O(N) from the right
side, the PDF ofλmax = t in Eq. (6) behaves as
exp

[

−βN(
√

b − a/3b) (t/N − b)3/2
]

. Expressing the expo-
nent in terms of the TW variableχ = c−1/6b−2/3N−1/3(t −
bN), we recover exactly the right tail behavior of the TW den-
sity in Eq. (5). Thus, the large deviation functionΦ+(x)
matches, for small argumentsx, the behavior of the TW den-
sity at large arguments. This is quite consistent with the
fact that the scales of the fluctuations for TW andΦ+(x) are
O(N1/3) andO(N), respectively. In fact, our method pro-
vides, as a bonus, a physical derivation of the right tail behav-
ior of the TW density (originally derived through the Painlevé
differential equation satisfied by the TW distribution [21]).

We confirmed theoretical predictions by extensive numer-
ical simulations. About1011 realizations of real (β = 1)
Wishart matrices of sizesN = 10, 26, 50, 100 and with dif-
ferent values ofc ≤ 1 were efficiently generated using the
tridiagonal results in [24]. We find very good agreement with
our analytical predictions for the right large deviations.For

example, in Fig. (2) we present the results forc = 1 and
N = 10. MonteCarlo numerical results are compared to the
TW density (obtained by numerically integrating the Painlevé
equation satisfied by the TW distribution [21]) andΦ+(x) in
Eq. (10), multiplied by N . For comparison, we also show
the corresponding left rate functionΦ−(−x) [23] multiplied
by N2. It is clear that, while the numerical data are well de-
scribed by the TW density near the peak of the distribution,
they deviate considerably from TW as one moves into the
tails, where our large deviation predictions work perfectly.

Our Coulomb gas method is quite general and it can be ap-
plied to other related problems. For example, we can compute
the right large deviation function ofλmax for Gaussian ran-
dom matrices. For the latter, the eigenvalues can be positive
or negative with joint PDF [25] :

P [{λi}] ∝ e−
β

2

P

N
i=1

λ2

i

∏

j<k

|λj − λk|β , (12)

where the Dyson indicesβ = 1, 2 and4 correspond to the
orthogonal, unitary and symplectic ensembles. The quadratic
nature of the potential in (12), in contrast to the linear term
appearing in (1), makes that the amplitude of a typical eigen-
value scales as∼

√
N . The average density of states for large

N has the scaling form,ρN(λ) ≈ 1√
N

fsc

(

λ√
N

)

, where the

famous Wigner semi-circular lawfsc(x) =
√

2 − x2/π has
compact support over[−

√
2,
√

2]. Thus,〈λmax〉 =
√

2N and
typical fluctuations ofλmax around its mean are known [21] to
be TW distributed over a scale of∼ O(N−1/6). Specifically,
λmax =

√
2N + aβ N−1/6 χ, with a1,2 = 1/

√
2, a4 = 2−7/6

andχ is a random variable with the TW distributiongβ(χ).
Again, the TW form describes the PDFP (λmax = t, N) only
in the vicinity oft =

√
2N over a small scale of∼ O(N−1/6),

while deviations from the TW form appear in the tails.
Fluctuations ofλmax over a scale∼ O(

√
N) are described

by large deviation functions, analogous to the Wishart casein
Eq. (6) but with a different scaling variable

P (t, N) ∼ exp

[

−β N2 Ψ−

(√
2N − t√

N

)]

t ≪
√

2N ;

∼ exp

[

−β N Ψ+

(

t −
√

2N√
N

)]

t ≫
√

2N.

As previously mentioned, the left rate functionΨ−(x) was re-
cently computed exactly in Ref. [22], but the right rate func-
tion Ψ+(x) was yet unknown. Our Coulomb gas approach
allows to solve this problem as well and gives forΨ+(x) :

Ψ+(x) =
z2 − 1

2
− ln(z

√
2) +

1

4z2
G

(

2

z2

)

. (13)

Here,z = λmax/N = x +
√

2, the hypergeometric function
G was defined earlier and the additive constant was chosen to
haveΨ+(0) = 0. The asymptotics ofΨ+(x) can be easily
derived: for largex, Ψ+(x) ∼ x2/2, while the non-analytic
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FIG. 3: Numerical results for the maximum eigenvalue distribution
(circles) forN = 10 real (β = 1) Gaussian matrices, compared with
the Tracy-Widom result (red line) and the exact right (greenline) and
left (blue line) large deviation functions.

behaviorΨ+(x) ≈ 27/4x3/2/3 holds for smallx. Using the

TW scaling variableχ =
(

λmax −
√

2N
)

N1/6/aβ, with aβ

defined after (12), it is easy to check that one recovers the
correct TW right tails for allβ = 1, 2 and4. This provides
again a physical derivation of the TW right tail.

We have realized simulations for Gaussian matrices with
sizesN = 10, 25 and50 and forβ = 1 and2. In Fig. (3) we
present the data for the PDF ofλmax (with N = 10, β = 1)
and compare with the TW form and the exact left function
Ψ− [22] and right rate functionΨ+(x) derived in Eq. (13).
As in the Wishart case, the TW form works well near the peak
t =

√
2N , but it fails as we move into the tails, where the

large deviation predictions are quite accurate.
Our Coulomb gas method lends to further generalizations

that we only briefly mention here. For instance, we can com-
pute the joint probability distribution for large fluctuations of
n top eigenvalues in Wishart and Gaussian random matrices.
If n ≪ N , the energy will be given by their mutual charge
interactions, the external potentials and their interaction with
the unperturbed MP sea. Integrals are the same as those com-
puted previously and yield the explicit expression for the joint
PDF. It is also possible to use our method to compute the large
deviation function for fluctuations of the smallest eigenvalue
λmin for Wishart matrices withc < 1. Note that the MP sea
remains unperturbed (and our method applies) forsmallfluc-
tuations ofλmin while the method in [22] applies for large
fluctuations ofλmin, which compress the MP sea.

In conclusion, we have presented a new Coulomb gas
method to compute large deviation probabilities of top eigen-
values for a general class of random matrices. The physi-

cal picture that emerges is quite transparent: when the top
eigenvalues are pulled to the right (towards large values) the
Marcenko-Pastur (or Wigner) sea is simply pinched and the
top eigenvalues do not drag all the other eigenvalues. In other
words, no macroscopic rearrangement of the sea occurs and
the top eigenvalues move in the effective potential defined by
the external potential of the Coulomb gas and by the elec-
trostatic potential generated by the charges in the sea. Our
predictions are formally valid for largeN yet our simulations
indicate that they work for moderateN as well. This further
adds to the relevance of the large deviation rate functions de-
rived here to data compression methods and their applications.
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