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Phase Transitionsin the Distribution of Bipartite Entanglement of a Random Pure State
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Using a Coulomb gas method, we compute analytically thegiitiby distribution of the Renyi entropies (a
standard measure of entanglement) for a random pure statlgje bipartite quantum system. We show that,
for any orderg > 1 of the Renyi entropy, there are two critical values at whiud éntropy’s probability distri-
bution changes shape. These critical points correspongiatdifferent transitions in the corresponding charge
density of the Coulomb gas: the disappearance of an integsaigularity at the origin and the detachement
of a single-charge drop from the continuum sea of all therotharges. These transitions respectively con-
trol the left and right tails of the entropy’s probabilitystlibution, as verified also by Monte Carlo numerical
simulations of the Coulomb gas equilibrium dynamics.

PACS numbers: 02.50.-r, 02.50.Sk, 03.67.Mn, 02.10.Yn

Entanglement is a crucial resource in quantum informc'zltioﬁz:fi1 A\ = 1. Let|\#) and|\P) denote the respective eigen-
and computationl]] as a measure of nonclassical correla-vectors ofp4 andpp. In this so-called Schmidt basis, an ar-
tions between different parts of a quantum system. To exbitrary pure state can be represented as
ploit such correlations to the maximum advantage in quantum N
algorithms, it is desirable to create states with large renta _ N DA B

' - ) ! e = VA @A) 1
glement. A potential candidate for such a state is a bigartit ) ; A @ AT @)

randompure state, iteverageentanglement entropy being al- ) L. .
P g 9 Py 9 This representation is very useful for characterizing the e

most maximal P, 3]. Such a random pure state can also bet | { betweer and B. F | ider t
used as a null model or reference point to which the entan'9 e!”tneln 't'e we(.et ?n . Oor exa;rrhp €, consl Ier WO
glement of an arbitrary time-evolving quantum state may pPPPOSItE imiting sSituations: (i) One of the eigenvaluesy s

compared. In addition, such random states are also rel'evant.)l\.ﬁ 'S unltyian\d//\ihe)\zemaw;g@zf_tl are |der:jt|(§r?lly ze{o.
guantum chaotic or non-integrable systems]. en, [¢) = i|A7) ® A7) factorizes an € system

is completelyunentangled. (ii) All eigenvalues are equal
The conclusion that a random pure state in a bipartite SYS\; = 1/N for all i). Then, all the states are equally present

tem has near maximal entropy is based only on the result fgp, Eq. (1) and the staté:)) is maximallyentangled. A stan-

the averageentropy P, 3]. Even though the average entropy dard measure of entanglement is the von Neumann entropy,

of the random state may h#oseto its maximal value, the SyN = —>_; AiIn ), which takes its minimum value in

probability of theclosenessnay actually be very small (see sijtyation (i) and its maximal value NN in situation (ii). An-

below). The quantitative evaluation of this probability re gther useful measure of entanglement is provided by Renyi's

quires to Compute the full probablllty distribution of tha-e entropieS, the quantities of major interest here:
tropy, namely its large deviation tails. In addition, the-di

tribution of bipartite entanglement may also be used to-char 1 n [XN: )\q]

)

acterize entanglement in a multipartite systein7. In this Sq = 1—gq
Letter we compute the full distribution of the Renyi entan-

glement entropies (defined later) for random pure states of hich also attain their minimum valugin situation (i) and
bipartite system. The calculation is realized using a Cmio their maximum valuén N in (ii). As ¢ — 1 andg — oo, the

gas method and is valid in the limit when both subsystems ar&enyi entropy tends respectively to the von Neumann entropy
large. A by-product of our results is the behavior of the prob Svn and—In Amax, Wherednax is the largest eigenvalue.

ability that the entropy approaches its maximal valugy. A pure statejy) is calledrandomwhen it is sampled ac-
We start with a standard bipartit ‘ B d cording to the uniform Haar measure (the unique unitarily
e start with a standard bipartite systett® 5 compose invariant measure) over the full Hilbert space. As a result,

of two sngjel)ler sub(s]&?temf{s an_dB, whose respective H|.Ibert the eigenvalue$); }'s also become random variables with the
spacest, ' andH;; ' have dimension&/ andM. For sim-  jsint distribution (forM = N) [3]:

plicity, we focus on theV = M case, though all our results v v

can be extended to th®& # M case. Letjy)) be a nor- 1 8_1

malized pure state of the full system with i|ts >density matrix A= Zo H A H A = Ael%6 (Z Ai — 1) - (3

p = [¥) (¢] satisfyingTr[p] = 1. The two reduced den- =t g<k =t
sity matrices are denotegly = Trp[p] andps = Tral[p]. Here, = 2 and thed-function enforces the unit trace con-
It is not difficult to prove that bottp, and pp share the straintTr[p4] = 1. Apart from this constraint,3) is identi-
same set of non-negative eigenvaldes, A2, ..., Ay} with cal to the eigenvalue distribution of random Gaussian Wisha

=1
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(covariance) matrices. For random matrices, the Dysorxinde P (& =N""s)
0 takes the value$, 2 or 4 depending on whether the ma-
trix is real, complex or quaternion. Hence, we shall stug)y (
for general3, even thoughs = 2 in the quantum context.
The normalization constarff, can be computed exactly us-
ing Selberg’s integralsy| as Z, ~ e~#N°/4, to leading order
in N.

Since the)\;’s are random variables distributed as &), the
von Neumann and the Renyi entropies 2y &re also random
variables. Statistical properties of these observabkesyedl
as others such as concurrence, purity, minimum eigenvalue
etc., have been studied extensively §, 6, 7, 8, 9, 10, 11].
In particular, the average von Neumann entr@Sy ) =  FIG. 1: The schematic distribution &f, = N'"9s = -V ¢
In N — 1/2, is close for largeV to its maximum value]. as a function ofs for fixed largeN. Two critical pointss = s1(q)
In contrast, few studies have addressed the full distdiusf ~ ands = s(q) separate three regimds /1 and /11 characterized
the entropy, an exception being the purify = Zf\’zl PER by the different optimfil densities shown in FLQ. The maximglly
for small N, the distribution of purity is known exacth[: entangled state = 1 is at the extreme left, in the large deviation

. ...~ . tail well-spaced from the averag€q). (Inset) The large deviation
for large IV, the Laplace transform of the purity distribution functions® for the distribution of2,, in the three different regimes.

was studied recently for positive Laplace variablgs How-  apaytical predictions (red solid line) are compared to theults
ever, the inverse Laplace transform of this quantity presid (blue points) of Monte Carlo numerical simulations of theu®@mnb

alo s

only partial information about the purity distribution. gas equilibrium dynamics.
The goal of our Letter is to compute analytically, for large
N and allg > 1, the full distribution of the Renyi entropies | ; y, (A N) (0, )
in (2), or equivalently ofS, = S A7 = exp[(1 — ¢)S,]. : - -

The quantities, satisfy the inequalitiea/!~7 < 33, < 1 for
q > 1, with the upper and lower bounds corresponding to the

; i 5N it o A A A
unentgngled. (i) and .the maX|ma_IIy entangled (i) situagion W oW 5 W 5 —
The distribution o, is written using 8) as @ o) ©

. q_ ) FIG. 2: Scheme of the optimal saddle-point dengityf the eigen-
P(Xq,N) = / [{Ai}]o <Z A q) Hd/\z' ) values, or equivalently of the Coulomb gas charges,ifof s <

s1(q) (regime 1),s1(q) < s < 5(¢q) () and's > 5(q) (ll). In the
regime Ill, the maximum eigenvalue becomes larger tharnalbth-

The approach we employed to trea) (s a saddle-point ers (v O(1/V)), as shown by the isolated bumptan (2c)

method to identify the configuration of the eigenval§igs}’s
that dominates for largeV. Configurations at largeV
are characterized by the continuous densith\, N) = .
“13°.8(A — \;) and the main challenge, accomplished When the control parameterexceedss; (¢) (regime I1), the
here is to find the saddle-point density(\, V). left edge of the support sticks to zero while the upper edge
Letus first summarize our main results. The normalizationl/N moves to the right as increases (Fig. 2b), till the sec-
SV A = 1 implies that the typical amplitude of the eigen- ond critical values(q) corresponding td, = 4. Fors > 5(q)
values/\ ~ 1/N and henc&, ~ N~ for large N. We de- (regime Il1), we find that one eigenvalue (the small bump in
fine then the rescaled intensive variables Ni-1 ., whose  Fig. 2c) splits off the sea of all the othéf — 1 eigenvalues,

lowest values = 1 corresponds to the maX|maIIy entangled Which remain~ O(1/N). This second phase transition is
situation (ii). In Fig. 1, a typical plot oP(%, = N'~%s, N) reminiscent of the real-space condensation phenomenon ob-

vs s is shown for largeN and fixedg > 1: the distribution ~ served in a class of lattice models for mass transport, wéere

has a Gaussian peak flanked on both sides by non-Gaussigingle lattice site carries a thermodynamically large nhasjs
tails. Specifically, we find two critical values= s;(¢) and Note that forg = 2, the presence of two phase transitions
s = 5(q) separating three regimes 1 (< s < s1(q)), Il was also noticed in Ref./] for the Laplace transform of the
(s1(q) < s < 5(¢)) and Il (s > 5(q)). At the first criti-  distribution P(33, N). However, the nature of the regime
cal points; (¢) the distribution has a weak singularity (third 11l was not elucidated and the corresponding optimal den-
derivative is discontinuous). At the second critical paifit), sity and the partition function were not calculated. To deri

a Bose-Einstein type condensation transition occurs (see bthe full distribution P(X2, N), one needs the partition func-
low). These changes are a direct consequence of two phasien in all three regimes, which is what we do here for all
transitions in the associated optimal charge density (sHow ¢ > 1 at large/N. We also find exact expressions for the two
Fig. 2). In regime I, the optimal charge density has a compaatritical points: 4795(q) = T'(¢+1/2)/(v/7I'(¢ +2)) and
support[¢; /N, (2 /N1, where(; is strictly positive (Fig. 2a). (4(q + 1)/3q) " %s1(q) = TI'(¢ + 3/2)/(v/7'(¢ + 2)). From



the Gaussian form near the peak= 5(¢), we also read off
the mean and the variance of the entréfyfor all ¢ :

1n§(q).
q—1"

q
20N2’

~
~

In(V)

(Sq) Var(S,) ~

Let us now briefly outline how the previous results are de

rived. By using 8) and @), we obtain

Z(Eq); Z2(5,) :/efﬁE({Ai}) Hd)‘i’ (6)

P4, N) = Zo

with E({A}) = —(1/2-1/8) X5, n(A) X, In [\ — |

and the integral runs over the subspace satistying the two co

straints,> ", \; = 1 and) ;A\ = X,. The expression for

E({\:}) is interpreted as the energy of a Coulomb gas o

charged particles with coordinat&sthat repel each other via

2-d logarithmic interactions and are also subject to an exte

nal logarithmic potential. In the larg¥' limit, we can char-

3

constrainty _, \; = 1, typically A\; ~ 1/N. Hence, the charge
density scales ag(\, N) ~ N p(AN) and we introduce the
rescaled variable = N?7'X,. We then replace the mul-
tiple integral in @) by a functional integral over all possible
normalized and rescaled charge density functiefs satis-
fying the three constraintsf p(z)dz = 1, [xp(z)dx = 1

‘and [ z9p(z)dx = s. The resulting functional integral over

p(z) is evaluated in the larg&/ limit via the saddle point
method. This constrained Coulomb gas approach has been
used successfully in a variety of contexts that include ke d
tribution of the top eigenvalues of Gaussian and Wishart ma-
trices [L3, 14, 15], phase transition in the restricted trace en-
semble [.6], purity partition function in bipartite systems][
nonintersecting Brownian interfaces/], quantum transport

fin chaotic cavities 9], information and communication sys-

tems [L9], and the index distribution for Gaussian random

rfields [20, 21] and Gaussian matriceg]].

The constrained Coulomb gas approach yields

acterize the configuration of the Coulomb gas’ charges by th@ (2, = N'"95) o [D[p] e PN E:lll. To the lead-

normalized densitp(A, N) = N=1 3" 6(A— \;). Due to the

Bl= [ [ dedeopta)mle = o+ ( | ot - ) i ( | dweot) -

where the Lagrange multipliers), ;11 andus enforce the con-

ing order inN, the effective energy reads

) T ( /0 " deatp(z) - s) @

The behavior fog # 2 is qualitatively similar, though the ex-

straints. For largeV, the method of steepest descent gives:pressions are cumbersonigl]. Settings = 1 + ¢ around the

P (S, =N'"%s) oc e PN*Elecl where p, () minimizes
the energy 5 E;[p]/ép = 0. This gives the integral equation

V(@) = o+ o e = [ pela) e = o'l (@
0

with V(x) acting like an effective external potential. Differ-
entiating once more with respecttdeads to

pele) s
r— T

p1 + quoz?t = 7’/ (9)
0

maximal entropy state = 1, the probability at this extreme
left tail scales as- ¢#N°/4, i.e. itis very small for largeV. As

s approaches; (¢) from below,; and the minimum o¥/ (z)

tend to zero. This signals that the charges now concentrate
near the origin and the onset of regime II.

Regime Il:For s1(¢) < s < 5(q), the charges concentrate
over a supporf0, L] (see Fig. 2b). Foy = 2, the optimal
charge density takes the simple fopa{z) = /(L — z)(A+
Bz)/(m\/z), whereA = 4(L — 2)/L* B = 8(4 — L)/ L3
and the right edgé = 6 — 2v/9 — 4s. Evaluating the energy
for large N, we getP (S, = s/N, N) ~ e AN ®11(s) with

whereP denotes Cauchy'’s principal part. The single-support

solution to @) is found by using Tricomi formulaZ3 and
yields the regimes sketched in Figs. 1 and 2.

Regime I:For1 < s < s1(q), we find thatu; < 0, u2 > 0
and the effective potentiadl (z) has a minimum at a nonzero

L6 5T

L2 L 8
Comparing {0) and (1), itis verified that the large deviation
functions match at the critical poist = 5/4 up to the second

D11(s) = —5 n(L/4) (11)

z. This indicates that the charges concentrate around thi&erivative,while the third is discontinuou®§3)(5/4) — _39

nonzero minimum over a suppdt, (2| for all ¢ > 1 (see
Fig. 2a). Forq = 2, the edgeg;» = 1 F 2y/s—1 and
the solutionp.(z) = /({2 — z)(x — (1)/(27(s — 1)) van-
ishes at both edges. This solution existsfpr> 0, i.e., for
s < s1(2) = 5/4, and the distributiorP (32 = s/N,N) ~
e~AN*®1(s) with the large deviation function

1

(IJI(S):—iln(s—l)—g. (10)

and @53})(5/4) = —16. The function®;;(s) is quadratic
®r7(s) ~ (s — 2)?/8 around its minimum at = 5(2) = 2.
Thus, the distributiorP (X2 = s/N, N) has a Gaussian peak
nears = 2, with the mean(X,) = 2/N and the variance
Var(Xy) = 4/(8N*) for large N. The corresponding expres-
sions for arbitrary; > 1 are given in ).

For anyg > 1, p; is positive,us — 0 ass — s(¢) and
ue < 0fors > 5(q). This indicates that the potentitil(z) in



(8) becomes non-monotonic fer> 3(q) : it increases around
the origin, reaches a maximum at = (—p; /qup)*/ (@1
and then decreases monotonically for> z*. It follows that

to the convexity ofy - A7 for ¢ > 1).
In conclusion, we have obtained the first complete charac-
terization of the quantum entanglement’s statistical progs

the minimum atr = 0 as well as the associated saddle-pointin a bipartite random pure state of large dimensidhsThe

solution becomenetastable This solution still exists over a
finite range fors > s(q) (e.g., forg = 2 over2 < s < 9/4).
Fors > 5(q), however, there is a secosthblesolution where
one eigenvalue splits off the sea of the remainidg — 1)
eigenvalues (see regime Il below). For> 5(q), the energy
associated with this stable solution is lower ®y O(1/N)
only, as compared to the energy of the metastable solution.
Regime Ill: For s > 3(q), the correct density of states
consists of two disjoint parts: (d)V — 1) eigenvalues re-

main ~ O(1/N), concentrated over a finite support includ-

ing the origin; (b) the top eigenvalug,,.. takes a larger

average of the Renyi entropies is indeed close to its largest
valueln N. This is, however, the mere consequence of the
typical amplitudel /N of the density matrix eigenvalues. The
distribution of the eigenvalues mostly affects thél) con-
tribution to the entropy. The probability to approdehV is
actually found to decay rapidly at lar@é, as clearly shown by

the full probability distribution of the Renyi entropiesrded
here. The spreading of the eigenvalues becomes prominent
in the regime Il (in Figs. 1 and 2) where a condensation oc-
curs and the contribution by the single top eigenvalue of the
density matrix is thermodynamically relevant.

value and moves away from the sea of all the others (see AcknowledgementsWe thank O. Bohigas and A. Scardic-
Fig. 2c). The saddle point method thus needs to be slightlynio for useful discussions.

revised. For simplicity, let us focus only gn= 2. We write
Amax = t and label the remainingV — 1) eigenvalues by
their continuous density(\) = x5 >=,,... 0(A = ;). We
then express the energy{{\;}] in (6) in terms ofp(\) and
t, treating both of them as variables. This givBgX, =
S,N) o [Dp [dt e PHsletl where the effective energy
Hg|p, t] has a long expression that incluges and three La-
grange multipliers enforcing the constrainfg]. Assuming
thatp(\) has a finite support ovéd, ¢] with ¢ < ¢, we min-
imize the effective energy over bothandt. The equations
0Hs/ép = 0 = OHg/0Ot are solved again using Tricomi’s
theorem P3]. Substituting the solutions fop(A\) andt in
the effective energy finally yields the distributid(Xs, N)
at the leading order itv. We have verified that in the regime
2 < s < 9/4, the resulting distribution coincides with that of
regime Il, i.e. the transition &, — 2/N is smooth. The
maximum eigenvalue.,,,, = ¢t dominates at the upper edge
of the regime Ill, whenXy ~ O(1), and we find P4] that
P(35 = 8,N) ~ (1 —S)AN*/2,

Numerical Simulations.To verify analytical predictions,
we simulated the distributior8) of the eigenvalues;, which
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