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Passive Sliders on Fluctuating Surfaces: Strong-Clustering States

Apoorva Nagar 1, Mustansir Barma 1 and Satya N. Majumdar 2

1 Department of Theoretical Physics,

Tata Institute of Fundamental Research,

Homi Bhabha Road, Mumbai 400 005, India
2 Laboratoire de Physique Theorique et Modeles Statistiques,

Universit’e Paris - Sud, Bât 100, Orsay, France

(Dated: June 5, 2007)

We study the clustering properties of particles sliding downwards on a fluctuating surface evolving
through the Kardar-Parisi-Zhang equation, a problem equivalent to passive scalars driven by a
Burgers fluid. Monte Carlo simulations on a discrete version of the problem in one dimension reveal
that particles cluster very strongly: the two point density correlation function scales with the system
size with a scaling function which diverges at small argument. Analytic results are obtained for the
Sinai problem of random walkers in a quenched random landscape. This equilibrium system too has
a singular scaling function which agrees remarkably with that for advected particles.
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Interesting correlations develop in a system of particles
which are driven by a fluctuating field but do not react
back on it. This problem of semiautonomously coupled
systems is of general interest and importance. In the
context of fluid dynamics, it comes up as the passive
scalar problem, where a density field (e.g. dye particles)
or a temperature field is advected by a stirred fluid [1, 2].
The interplay of fluid advection and random thermal
noise can lead to two distinct behaviours of the passive
scalar field — it may either spread out [1, 3], or show
a tendency to collapse and form clustered aggregates.
The clustered state can arise when either the passive
scalar flow [4] or the fluid itself [5] is compressible.
Clustering also arises in models of thin film growth in
binary systems where domain walls between the two
different species can act like passive particles while
surface growth is the driving field [6, 7].

In this paper, we study the clustered state that
occurs in a simple but nontrivial model, namely non-
interacting, passive particles sliding downwards on a
fluctuating one-dimensional interface described by the
Kardar-Parisi-Zhang (KPZ) equation. This problem can
be mapped onto that of particles advected by a noisy
Burgers fluid. Some aspects of this problem have been
earlier studied by Drossel and Kardar [6, 7]. However,
the questions we study here are different and our results
indicate that the system reaches a new type of steady
state, namely the strong-clustering state (SCS). The
signature of the SCS is the divergence at origin of
the two-point density-density correlation function as
function of the separation scaled by the system size.
This divergence provides a measure of clustering in the
system, and distinguishes the SCS from normal phase
separated states [8] and also from fluctuation-dominated
phase separated states [9, 10] where a similar scaling

function approaches a constant value, though in a
singular fashion, at small argument.

Our numerical results show that the SCS occurs over a
wide range of parameter values in the advection problem,
and the power law which characterises the divergence is
universal. It should be noted that our studies incorpo-
rate the important time-dependent correlations of the
driving field. Moreover we show analytically that in the
limit of a stationary interface, the equilibrium state of
the sliding particles is an SCS, and determine the form
of the scaling function. Remarkably, we find that the
calculated equilibrium scaling function describes very
well the SCS for the strongly nonequilibrium advection
problem as well.

The evolution of the one-dimensional interface is de-
scribed by the KPZ equation [11]

∂h

∂t
= ν

∂2h

∂x2
+
λ

2
(
∂h

∂x
)2 + ζh(x, t) (1)

where h is the height field, ζh is a Gaussian white noise
satisfying 〈ζh(x, t)ζh(x′, t′)〉 = 2Dhδ(x − x′)δ(t − t′). If
the mth particle is at position xm, its motion is governed
by

dxm
dt

= −a∂h
∂x

∣∣∣∣
xm

+ ζm(t) (2)

where the white noise ζm(t) represents the ran-
domising effect of temperature, and satisfies
〈ζm(t)ζm(t′)〉 = 2κδ(t − t′). Equation (2) is a strongly
overdamped Langevin equation of a particle in a poten-
tial h(x, t) that is also fluctuating, with a determining
the speed of sliding. In the limit when h(x, t) = h(x)
is static, a set of noninteracting particles would reach
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the equilibrium Boltzmann state with particle density
∼ exp(−βh(x)) at late times where β = a/κ. On the
other hand, when h(x, t) is time dependent, the system
eventually settles into a strongly nonequilibrium steady
state. The transformation v = −∂h/∂x maps Eq. (1)
(with λ = 1) to the Burgers equation, which describes a
compressible fluid with local velocity v. The transformed
Eq. (2) describes passive scalar particles advected by
the Burgers fluid. The ratio a/λ > 0 corresponds to
advection, the case of primary interest in this paper,
while a/λ < 0 corresponds to anti-advection (particles
moving against the flow).

Rather than analysing the coupled Eqs. (1) and (2)
directly, we study a lattice model which is expected to
have similar behaviour at large length and time scales.
The model consists of a flexible one-dimensional lattice
in which particles reside on sites, while the links or
bonds between successive lattice sites are also dynamical
variables which denote local slopes of the surface. The
total number of sites is L. Each link takes values +1
(upward slope → /) and −1 (downward slope → \). The
rules for surface evolution are : for advection, choose
a site at random, and if it is on a local hill (→ /\),
change the local hill to a local valley(→ \/); otherwise
leave it unchanged. For anti-advection, if a site is
at a local valley, change it to a local hill; otherwise
leave it unchanged [12]. We use periodic boundary
conditions, implying no overall tilt of the surface. After
every Ns surface moves we perform Np particle updates
according to the following rule : we choose a particle at
random and move it one step downward with probability
(1 + K)/2 or upward with probability (1 − K)/2. The
parameter K ranges from 1 (particles totally following
the surface slope) to 0 (particles moving independently
of the surface). We define the ratio Ns/Np as ω. The
continuum Eq. (1), valid for ω = 1, gets modified for
ω 6= 1. While the first two terms on the R.H.S. of Eq. (1)
get rescaled by ω, the noise term gets multiplied by

√
ω

[18]. The limit ω → 0 corresponds to the adiabatic limit
of the problem where particles move on a static surface
and the steady state is the thermal equilibrium state.
In our simulations, we update the surface and particles
at independent sites, reflecting the independence of the
noises ζh(x, t) and ζm(t) [13].

If ω is nonzero, the RMS displacement of each particle
is proportional to t1/z where z = 3/2 is the dynamical ex-
ponent of the KPZ surface [6, 14]. At large enough times
t ≫ Lz, the system settles into a nonequilibrium steady
state and develops interesting correlations, to which we
now turn. We begin by discussing results for advection,
for ω = K = 1. Figure 1 shows the two-point (un-
connected, scaled) density-density correlation function
G(r, L) = 〈nini+r〉L where ni is the number of parti-
cles at site i. The total number of particles N ≡ ∑

ni is
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FIG. 1: Two point scaled density correlation G(r, L) function
(advection) for K = 1, ω = 2 (top curve), 1 (middle), 1/2
(bottom). The line is a plot of Eq. (7) with β = 4. The
lattice sizes are L = 256 (�, +, •), 512 (�, ×, △) and 1024
(◦, ∗, N).

taken to be equal to L. The numerical results give strong
evidence that the scaling form

G(r, L) ∼ L−θY (r/L) (3)

is valid for r/L > 0 with θ ≃ 1/2. An unusual point is
that the scaling function Y (y) has a power law divergence
Y (y) ∼ y−ν as y → 0, with ν close to 3/2. Using this
result, we can find the probability p(r) of two particles
being at a distance r from each other in the limit L→ ∞,
p(r) = L

N2G(r, L) ∼ 1
r3/2

. This is in agreement with an
exact result for two second class particles in the asym-
metric exclusion process [15]. Another related quantity
is defined by first dividing the system into L/l bins of
of size l; then a particle is chosen at random and the
number N(l, L) of the particles lying in the same bin as
this particle is measured [6]. Using Eq.(3), we find that
N(l, L) ∼ c1L(1−c2l−ν+1), in better agreement with the
numerical results for N(l, L) than the l-independent form
of [6].

The central curve in Fig. 2 shows the scaled probability
P (n,L) that any site has occupancy n. This quantity, for
n > 0, shows the scaling form

P (n,L) ∼ 1

L2δ
f

( n

Lδ

)
(4)

with δ = 1. As y → 0, the scaling function f(y) seems to
behave as y−γ with γ ≃ 1.15. We will see below that the
values of exponents and the functional forms of the scal-
ing functions in Eqs. (3) and (4) agree surprisingly well
with those for the equilibrium case. Note that Eq. (4)
leads to 〈n2〉 ≡ G(0, L) ∼ L which is verified by direct
simulation. From simulations we also find that the num-
ber of occupied sites Nocc ≡ (1 − P (0, L))L varies as Lφ
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FIG. 2: Scaled probability distribution P (n, L) for ω =
1/2, 1, 2 (K = 1). The line is a fit to Eq. (9) with β = 2.3.
The lattice sizes are L= 512 (◦, ×, �), 1024 (�, +, ∗).

with φ ≃ 0.23, though the effective exponent seems to de-
crease systematically with increasing L. A scaling anal-
ysis yields δ = ν − θ and φ = δ(γ − 2)+ 1 with the latter
holding for 1 ≥ δ > 0 and γ > 1. We also monitored the
time dependent correlation function in the steady state.
We find that (see Fig. 3) the autocorrelation function

G̃(t, L) ≡ 〈ni(0)ni(t)〉L scales with system size as

G̃(t, L) ∼ Ỹ

(
t

Lz

)
. (5)

with z = 3/2. The scaling function shows a power law

behaviour Ỹ (ỹ) ∼ ỹ−ψ with ψ ≃ 2/3 as ỹ → 0.

These results lead to a simple picture of a typical SCS.
The scaling of the probability distribution P (n,L) with
n/L and the vanishing of the probability of finding an
occupied site (≡ Nocc/L) suggest that a large number of
particles (often of the order of system size) accumulate
on a few sites; the scaling of the two-point density-
density correlation function with L implies that the
particles are distributed over distances of the order of
L, while the divergence of the scaling function indicates
clustering of large-mass aggregates.

Now let us turn to the limiting adiabatic case ω → 0
corresponding to an equilibrium system of particles
at inverse temperature β ∝ ln((1 + K)/(1 − K)) dis-
tributed on a disordered, stationary surface. Instead of
considering the number density of many noninteracting
particles, we may consider equivalently the probability
density of a single particle moving on the surface and
average over all surface configurations, as in the Sinai
model [16]. For the KPZ equation in one dimension,
the distribution of heights in the stationary state is

described by Prob[{h(r)}] ∝ exp

[
− ν

2Dh

∫ (
dh(r′)
dr′

)2

dr′
]
.

Thus, any stationary configuration can be thought of as
the trace of a random walker in space evolving via the
equation, dh(r)/dr = ξ(r) where the white noise ξ(r) has
zero mean and is delta correlated, 〈ξ(r)ξ(r′)〉 = δ(r− r′).
This is exactly the surface considered in the Sinai model.
The probability ρ(r) ≡ nr/L of finding the particle at
position r is given by ρ(r) = exp[−βh(r)]/Z with the

partition function Z =
∫ L
0 exp[−βh(r′)]dr′.

The correlation function G(r, L)/L2 = 〈ρ(r0)ρ(r+ r0)〉
involves an average over the surface configurations sam-
pled from the stationary measure mentioned above:

L−2G(r, L) = 〈
[
e−β[h(r0)+h(r0+r)]

Z2

]
〉. (6)

The right hand side of Eq. (6) was evaluated exactly by
Comtet and Texier [17] in the context of one dimensional
disordered supersymmetric quantum mechanics, where
the right hand side of Eq. (6) is the correlation func-
tion in the ground state wave function. In the scaling
limit, r → ∞, L → ∞ with the ratio y = r/L fixed, one
finds G(r, L) ∼ L−1/2Y (r/L) where the scaling function
is given by

Y (y) =
1

β
√

2π
[y(1 − y)]−3/2. (7)

Note that the point r = 0 is not part of the scaling func-
tion; we have G(0, L) ≈ β2L/12. This formalism can also
be used to calculate the equilibrium probability density
P (ρ, L) [18]. Our results indicate that P (ρ, L) can be
written as the sum of two parts :

P (ρ, L) ≈
[
1 − ln2(L)

β2L

]
δ(ρ) +

4

β4L
g

[
2ρ

β2

]
θ

(
ρ− c

L

)
,

(8)
The first part refers to vacant stretches, and to the fact
that the number of occupied sites occupies a vanishing
fraction ∼ (lnL)2/L of the system. The scaling function
g(y) in the second part is given by

g(y) =
e−y

y
K0(y). (9)

where K0(y) is the modified Bessel function which
has the asymptotic behaviour [− ln(y/2) − 0.5772...] as
y → 0. The theta function incorporates a lower cutoff
on the validity of the scaling form and c is a constant
of O(1). Thus we see that in the ω → 0 limit, the
equilibrium state is an SCS.

Surprisingly, these equilibrium results reproduce quite
well the scaling exponents and scaling functions for
G(r) and P (n) for n ≥ 1 obtained numerically for the
nonequilibrium case ω = K = 1, as can be seen in
Figs. 1 and 2, though with different values of β. The
correlation function matches with β ≃ 4 while β ≃ 2.3
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FIG. 3: Scaled density-density autocorrelation function

G̃(t, L) (advection) in the nonequilibrium and equilibrium

(adiabatic limit) cases. The dashed line shows y ∼ x−2/3.
The lattice sizes are L=256 (�, ×), 512 (∗, +).

describes the probability distribution of number data
well. However, P (0, L) (and thus Nocc) does not agree
closely in the two cases. The equilibrium case can also
be used to shed light on the dynamical properties of the
nonequilibrium steady state. We compared our results
for G(t, L) with the density-density autocorrelation
function in the adiabatic ω → 0 limit. To find the latter,
we simulated a surface with height field h(r, t) evolving
according to KPZ dynamics, and evaluated the density
using the equilibrium weight ρ(r, t) = exp[−βh(r, t)]/Z.
As shown in Fig. 3, the results with β = 4 agree with the
autocorrelation function in the nonequilibrium system,
apart from a numerical factor.

Why do the equilibrium results describe the non-
equilibrium steady state so well? A partial explanation
may lie in the fact that the statistical properties of
the valleys where the particles settle down in both the
cases are similar; under advection dynamics, particles
slide down and reach the valleys relatively quickly,
allowing them to explore the terrain. So, at least in a
certain range of parameter space, the surface fluctuation
noise mimics the effect of temperature insofar as it
causes redistribution of particles over the landscape.
Intriguingly, the temperature depends on the property
under consideration — a phenomenon that deserves
further study.

The close correspondence between the SCS obtained
in the nonequilibrium case and the equilibrium case
ω = 0 suggests there may be some universal features as
parameters are varied. We confirm this by simulations,
varying ω in the regime 1/4 ≤ ω ≤ 4. We find that for
large L scaling is valid, with scaling functions which have
universal exponents characterising singular behaviour at

small values of r/L (for G(r, L)) and n/L (for P (n,L)).
Nonuniversal features emerge at large values of the
arguments r/L and n/L. For ω < 1, we find that P (n) is
nonmonotonic and shows a peak at large n (Fig. 2). Nu-
merically, we find that P (n = N)/P (n = N − 1) = 1/ω
(for ω ≤ 1), which can be argued for by considering the
processes which lead to the formation of an N particle
cluster from an N−1 particle cluster and vice versa [18].

We have also studied anti-advection, where particles
move opposite to the direction of surface motion. We
again find that the density-density correlation function
follows the scaling form of Eq. (3) but with θ = 0.
The scaling function Y (r/L) diverges as (r/L)−ν with
ν ≃ 0.33. Thus the steady state for anti-advection is also
an SCS; the correlation function depends strongly on the
size, and does not follow a size independent power law
as in [7]. It is also interesting to study passive sliders
on an Edwards-Wilkinson surface [19] instead of the
KPZ surface. Our simulations on this problem show an
SCS having the scaling form of Eq. (3) with θ = 0, and
ν ≃ 0.66. As for advection, the relation δ = ν − θ holds
in both these cases.

In conclusion, we remark on two open problems. First,
it would be worthwhile to understand better the cor-
respondence we have noted between the SCS in the
nonequilibrium advection and the SCS in the equilib-
rium, Sinai problem, and in particular why different
quantities in the former involve different temperatures
in the latter. Secondly, the existence and extent of clus-
tering induced by fluctuating potentials in higher dimen-
sions remain to be studied and established.
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