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We present a formalism for obtaining the statistical properties of functionals and inverse functionals of the
paths of a particle diffusing in a one-dimensional quenchedrandom potential. We demonstrate the implemen-
tation of the formalism in two specific examples: (1) where the functional corresponds to the local time spent
by the particle around the origin and (2) where the functional corresponds to the occupation time spent by the
particle on the positive side of the origin, within an observation time window of sizet. We compute the disorder
average distributions of the local time, the inverse local time, the occupation time and the inverse occupation
time, and show that in many cases disorder modifies the behavior drastically.

PACS numbers: 05.40.-a, 02.50.-r, 46.65.+g

I. INTRODUCTION

The statistical properties of functionals of a one dimen-
sional Brownian motion have been extensively studied and
have found numerous applications in diverse fields ranging
from probability theory [1, 2, 3], finance [4, 5, 6], meso-
copic physics [7], computer science [8], and in understanding
weather records [9]. The positionx(τ) of a one dimensional
Brownian motion evolves with timeτ via the Langevin equa-
tion

dx

dτ
= η(τ), (1)

starting fromx(0) = x0, whereη(τ) is a thermal Gaus-
sian white noise with mean〈η(τ)〉 = 0 and a correlator
〈η(τ)η(τ ′)〉 = δ(τ − τ ′). A functionalT is simply the in-
tegral up to timet

T =

∫ t

0

V
(((

x(τ)
)))

dτ, (2)

where V (x) is a prescribed non-negative function whose
choice depends on the specific observable of interest. For a
fixed initial positionx0 of the Brownian motion and a fixed
observation timet, the value ofT varies from one history or
realization of the Brownian path{x(τ)} to another (see Fig. 1)
and a natural question is: what is the probability density func-
tion (pdf)P (T |t, x0)?

Following the path integral methods devised by Feyn-
man [10], Kac showed [1, 2] that the calculation of the
pdf P (T |t, x0) can essentially be reduced to a quantum me-
chanics problem, namely solving a single particle Shrödinger
equation in an external potentialV (x). This formalism is
known in the literature as the celebrated Feynman-Kac for-
mula. Subsequently, this method has been widely used to
calculate the pdf ofT with different choices ofV (x) as de-
manded by specific applications. This has been reviewed re-
cently in Ref. [8]. In particular, two most popular applications
correspond respectively to the choices,V (x) = δ(x − a)
and V (x) = θ(x), where δ(x) is the Dirac’s delta func-
tion andθ(x) is the Heaviside step function. In the former
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FIG. 1: Schematic plots ofT defined by Eq. (2) as a func-
tion of t, corresponding to four different realizations of the paths
[{x(τ )}, for 0 ≤ τ ≤ t] denoted byR1, R2, R3 andR4 respec-
tively. For fixed t (t1 or t2 or t3 or t4, shown by vertical dashed
lines),T takes different value for different realizations. On the other
hand for a fixedT (horizontal dashed line) correspondingt is differ-
ent for different realizations:t1 for R1, t2 for R2, t3 for R3 andt4
for R4.

case, the corresponding functionalT (a) =
∫ t

0
δ(x(τ)− a) dτ

has the following physical meaning:T (a) da is just the time
spent by the particle in the vicinity of the pointa in space,
i.e., in the region[a, a + da], out of the total observation
time t. Note that, by definition,

∫

T (a) da = t. The func-
tional T (a) is known as the ‘local time’ (density) in the lit-
erature. In the second caseV (x) = θ(x), the functional
T =

∫ t

0
θ(x(τ)) dτ measures the time spent by the particle

on the positive side of the origin out of the total timet and is
known as the ‘occupation’ time. The probability distribution
of the occupation time was originally computed by Lévy [11],

http://fr.arXiv.org/abs/cond-mat/0601455v1
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∫ T

0
P (T ′|t, 0) dT ′ = 2

π arcsin
(

√

T/t
)

, and is known as the

arcsine law of Lévy. Since then, the local and the occupa-
tion times for pure diffusion, have been studied extensively
by mathematicians [12, 13, 14, 15, 16, 17]. Recently, the
study of the occupation time has seen a revival in physics
literature and has been used in understanding the dynamics
out of equilibrium in coarsening systems [18, 19], ergodicity
properties in anomalously diffusive processes [20, 21], inre-
newal processes [22], in models related to spin glasses [23],
in simple models of blinking quantum dots [24], and also in
the context of persistence [25, 26]. Local and Occupation
times have been also studied in the context of stochastic er-
godicity breaking [27], first passage time [28], diffusion con-
trolled reactions activated by catalytic sites [29] and diffusion
on graphs [30, 31]. In polymer science, a long flexible poly-
mer of lengtht is often modeled by a Brownian path up to
time t. In this context, the local time at a position~r is propor-
tional to the concentration of monomers at~r in a polymer of
lengtht.

A natural and important question is how to generalize the
Feynman-Kac formalism to calculate the statistical properties
of the functionals of the type in Eq. (2) whenx(τ) is not just
a pure diffusion process, but it represents the position of a
particle in an external random medium. While various prop-
erties of diffusion in random media have been widely studied
in the past [32, 33, 34, 35], the study of statistical properties
of functionals in random media is yet to receive its much de-
served attention. In this paper we undertake this task. More
precisely, we are interested in calculating the pdfP (T |t, x0)
of a functionalT as in Eq. (2) wherex(τ) now evolves via the
Langevin equation

dx

dτ
= F

(((

x(τ)
)))

+ η(τ) (3)

whereη(τ) represents the thermal noise as in Eq. (1) and
F (x) = −dU/dx represents the external force, the deriva-
tive of the potentialU(x), felt by the particle. Most generally,
the external potential consists of two parts,U(x) = Ud(x) +
Ur(x), a deterministic partUd(x) and a random partUr(x).
The random part of the potentialUr(x) is ‘quenched’ in the
sense that it does not change during the time evolution of the
particle, but fluctuates from one sample to another according
to some prescribed probability distribution. Consequently, the
pdfP (T |t, x0) will also fluctuate from one sample of the ran-
dom potential to another and the goal is to compute the disor-
der averaged pdfP (T |t, x0) where the. . . denote the average
over the distribution of the random potential. A popular model
for the random potential is the celebrated Sinai model [36],
where various disorder averaged physical quantities can be
computed analytically [32, 33, 37, 38, 39, 40, 41, 42], and
yet the results exhibit rich and nontrivial behaviors and also
capture many of the qualitative behaviors of more complex
realistic disordered systems. The Sinai model assumes that
Ur(x) =

√
σB(x) whereB(x) represents a Brownian motion

in space, i.e.,

dB

dx
= ξ(x) (4)

whereξ(x) is a Gaussian white noise with mean〈ξ(x)〉 = 0
and a correlator〈ξ(x)ξ(x′)〉 = δ(x − x′). The constantσ
represents the strength of the random potential.

In this paper, we first present a generalization of the
Feynman-Kac formalism to calculate the pdfP (T |t, x0) in
presence of an arbitrary external potentialU(x). To obtain
explicit results using this formalism, we next assume that the
random part of the potential is as in the Sinai model, i.e., our
external potential is of the formU(x) = Ud(x) +

√
σB(x),

whereB(x) is a Brownian motion in space andUd(x) is
the non-random deterministic part of the potential. It turns
out that the asymptotic behavior of the disorder averaged
pdf P (T |t, x0), quite generically, has three different quali-
tative behavior depending on the curvature of the determin-
istic potentialUd(x), i.e., whetherUd(x) has a convex (con-
cave upward) shape representing a stable potential (i.e., attrac-
tive force towards the origin), a concave (concave downward)
shape representing unstable potential (a repulsive force away
from the origin) or just flat indicating the absence of any ex-
ternal potential. To facilitate explicit calculation, we model
the deterministic potential simply by,Ud(x) = −µ|x|, so that
µ < 0 represents a stable potential,µ > 0 represents an un-
stable potential andµ = 0 represents a flat potential. This
specific choice facilitates explicit calculation, but the results
are qualitatively similar if one chooses another form of this
potential. Thus, in our model, we will consider the external
potential as

U(x) = −µ|x|+
√
σB(x) (5)

whereB(x) =
∫ x

0
ξ(x′) dx′ is the trajectory of a Brownian

motion in space (see Fig. 2). Note that the caseµ = 0 cor-
responds to the pure Sinai model. Figure (2) shows typical
realization of potentials forµ = 0, µ > 0 andµ < 0. The
corresponding force in Eq. (3) is simply given by

F (x) = µ sign(x) +
√
σξ(x). (6)

We will demonstrate how to calculate explicitly, using our
generalized Feynman-Kac formalism, the disorder averaged
pdfP (T |t, x0) when the external potential is of the form given
by Eq. (5). Despite the simplicity of the choice of the exter-
nal potential, a variety of rich and interesting behavior can be
obtained by tuning the parameterµ/σ, as shown in this pa-
per. We will present detailed results for the two functionals,
namely for the local time and the occupation time correspond-
ing to the choicesV (x) = δ(x) andV (x) = θ(x) respectively
in Eq. (2). Also, to keep the discussion simple, we will present
our final results forx0 = 0 corresponding to the particle start-
ing at the origin. However, our method is not limited only to
this specific choice. Some of these results were briefly an-
nounced in a previous letter [43].

In addition, in this paper we also introduce the notion of
‘inverse functional’, which is defined as follows. IfV (x) in
Eq. (2) is non-negative, then for each path{x(τ)}, T is a
non-decreasing function oft, which we formally denote by
T = g

(((

t|{x(τ)}, x0

)))

. Therefore for a given realization of
path {x(τ)} and givenT there is a unique value oft (see
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µ = 0
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FIG. 2: A classical particle (represented by•) diffusing in a typical realization of the potentialU(x) = −µ|x| +
√

σB(x), whereB(x)
represents the trajectory of a Brownian motion in space withB(0) = 0. The three figures are forµ = 0, µ > 0 andµ < 0 respectively. The
dash lines show the potential forσ = 0.

Fig. 1), which we formally write as the inverse of the func-
tionalg [49]

t = g−1
(((

T |{x(τ)}, x0

)))

. (7)

This inverse timet physically means the observation time that
is required for any given path{x(τ)} in order to produce a
prescribed value ofT . Of course, for the same valueT , for a
different path{x(τ)}, the value oft will be different. Thus,t
is a random variable for a fixedT , which takes different values
for different realizations of paths and we would like to com-
pute its pdf, which we denote byI(t|T, x0) and by definition
∫∞
0 I(t|T, 0) dt = 1. Clearly, this pdf will also differ from

sample to sample of the external potential in Eq. (5) and our
goal is to obtain the disorder averaged distributionI(t|T, x0).
In this paper, we present detailed results forI(t|T, 0) again
for the two choices ofV (x) = δ(x) andV (x) = θ(x) cor-
responding to the local time and the occupation time respec-
tively. The inverse local and occupation times are useful for
experimentalists as they provide an estimate on the required
measurement time. For example, in the context of polymers,
the inverse local time is the typical length of a polymer re-
quired to obtain a certain monomer concentration.

The rest of the paper is organized as follows. In Sec. II, we
present our general approach for computing the pdfP (T |t, x)
of the functionalT defined by Eq. (2) for a givent, and the
pdf I(t|T, x) of the inverse functional defined by Eq. (7) for
a givenT , for a given sample of the random potential, for
arbitrary starting position of the particlex(0) = x and for
arbitrary but non-negativeV (x). After this section we con-
sider the specific examples of local time and occupation time
by settingV (x) = δ(x) andV (x) = θ(x) respectively. We
will use different notations for the pdfs in the two examplesto
avoid any misunderstanding. In the first example, whereT is
the local time, we denote the pdf of the local timeP (T |t, 0)
for a givent by Ploc(T |t), and the pdf of the inverse local
time I(t|T, 0) for a givenT by Iloc(t|T ). In the second ex-
ample, whereT is the occupation time we denote the pdf of
the occupation timeP (T |t, 0) for a givent by Pocc(T |t) and
the pdf of the inverse occupation timeI(t|T, 0) for a given
T by Iocc(t|T ). While our final goal is to obtain the disor-
der averaged distributionsPloc(T |t), Iloc(t|T ), Pocc(T |t) and
Iocc(t|T ), it is however, instructive to study the pure case first,

before tackling the problem with disorder which is obviously
harder. In the same spirit, we have presented the detailed
discussions on the local time, inverse local time, occupation
time and inverse occupation time for the pure case (σ = 0)
in Secs. III, V, VII and IX respectively, before computing
their disorder average in Secs. IV, VI, VIII and X respectively.
Sec. XI contains some concluding remarks. Some of the de-
tails are relegated to the appendixes. The results are summa-
rized in Tables I, II, and III.

II. GENERAL APPROACH

In this section we will show how to compute the pdfs
P (T |t, x) andI(t|T, x) for arbitrary non-negativeV (x) and
arbitrary starting positionx(0) = x, for each realization
of random forceF (x), by using a backward Fokker-Planck
equation approach. In the following discussion we will de-
note the functional defined in Eq. (2) byg

(((

t|{x(τ)}, x0

)))

,
and useT as the value of the functional for a given path
[{x(τ)}, for 0 ≤ τ ≤ t].

SinceV (x) is considered to be non-negative,T defined by
Eq. (2) has only positive support. Therefore, a natural stepis
to introduce the Laplace transform of the pdfP (T |t, x) with
respect toT

Qp(x, t) =

∫ ∞

0

P (T |t, x)e−pT dT

=

〈

e−pg
(((

t|{x(τ)},x
)))

〉

x(0)=x

=

〈

exp

{

−p
∫ t

0

V [x(t′)] dt′
}〉

x(0)=x

, (8)

where〈 〉x(0)=x denotes the average over all paths that start at
the positionx(0) = x and propagate up to timet. Our aim
is to derive a backward Fokker-Planck equation forQp(x, t)
with respect to the initial positionx(0) = x.

We consider a particle starting from the initial positionx,
evolves via Eq. (3) up to timet + ∆t. Now we split the
time interval[0, t + ∆t] into two parts: an infinitesimal in-
terval[0,∆t], over which the particle experiences an infinites-
imal displacement∆x from its initial positionx and the re-
maining interval[∆t, t + ∆t] in which the particle evolves
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from a starting positionx + ∆x. Sincex(0) = x, one gets
∫∆t

0
V [x(t′)] dt′ = V (x)∆t + O[(∆t)2]. Therefore using

Eq. (8), and splitting the integral overt′ into the above two
time intervals we obtain

Qp(x, t+ ∆t) =

〈

exp

{

−p
∫ t+∆t

0

V [x(t′)] dt′
}〉

x(0)=x

= e−pV (x)∆t
〈〈〈

Qp(x+ ∆x, t)
〉〉〉

∆x
, (9)

where〈 〉∆x denotes the average with respect to all possible
displacements∆x.

Now, in the limit∆t→ 0, integrating Eq. (3) one gets,

∆x = F (x)∆t +

∫ ∆t

0

η(τ) dτ +O[(∆t)2]. (10)

Hence, using the zero mean and the uncorrelated properties of
the noise we get

lim
∆t→0

〈∆x〉
∆t

= F (x) and lim
∆t→0

〈(∆x)2〉
∆t

= 1, (11)

Therefore, by Taylor expanding Eq. (9) for small∆x, and tak-
ing the limit ∆t → 0, one arrives at the ‘backward’ Fokker-
Planck equation,

∂Qp

∂t
=

1

2

∂2Qp

∂x2
+ F (x)

∂Qp

∂x
− pV (x)Qp, (12)

with the initial conditionQp(x, 0) = 1, which is easily
checked by Eq. (8). The advantage of the above equation
over the usual Feynman-Kac formalism [1, 2] is that, in the
later case one has a ‘forward’ Fokker-Planck equation (spa-
tial derivative with respect to the final position) where after
obtaining the solution of the differential equation, one has to
again perform an additional step of integration over the final
position. In contrast, Eq. (12) involves the spatial derivatives
with respect to the initial position of the particle, and hence
no additional step of integration over the final position is re-
quired.

The standard practice of attacking the partial differential
equations of above type is by using the method of Laplace
transform. We define the Laplace transform ofQp(x, t) with
respect tot

u(x) =

∫ ∞

0

Qp(x, t)e
−αt dt

=

∫ ∞

0

dt e−αt

∫ ∞

0

dT e−pTP (T |t, x), (13)

where for notational convenience, we have suppressed theα
andp dependence ofu(x). Now by taking Laplace transform
of Eq. (12) with respect totwe obtain the ordinary differential
equation

1

2
u′′(x) + F (x)u′(x) − [α+ pV (x)]u(x) = −1, (14)

whereu′(x) = du/dx. The appropriate boundary conditions
u(x → ±∞) are to be derived from the observation that if

the particle starts atx → ±∞ it will never cross the origin
in finite time. Note that Eq. (14) is valid for each sample of
the quenched random forceF (x). Thus in principle, from the
solutionu(x) one obtainsP (T |t, x) by inverting the double
Laplace transform in Eq. (13) for each sample of quenched
random potential, and then takes the average over the disorder.

Our next goal in this section, is to show how to compute the
pdfI(t|T, x) for a given sample of the quenched random force
F (x). It turns out thatI(t|T, x) is related to the pdfP (T |t, x)
in their Laplace space as shown below. By definition we have,

I(t|T, x) =
〈

δ
(

t− g−1
(((

T |{x(τ)}, x
))))〉

x
. (15)

However, it is elementary that for each realization of path
{x(τ)}

δ
(((

t− g−1
(((

T |{x(τ)}, x
)))

)))

= δ
(((

T − g
(((

t|{x(τ)}, x
)))

)))

∣

∣

∣

∣

dT

dt

∣

∣

∣

∣

,

(16)
where |dT/dt| is the usual Jacobian of the transformation,
which is simplydT/dt as bothT and t have only positive
support. It immediately follows from the above two equations
that

I(t|T, x) =

〈

δ
((
(

T − g
((
(

t|{x(τ)}, x
))
)

))
)dT

dt

〉

x

. (17)

Therefore, Laplace transform ofI(t|T, x) with respect toT
reads

∫ ∞

0

dT e−pT I(t|T, x) =

〈

e−pg
(((

t|{x(τ)},x
)))

dg

dt

〉

x

= −1

p

∂

∂t
Qp(x, t), (18)

whereQp(x, t) is given by Eq. (8). Now taking a further
Laplace transform in Eq. (18) with respect tot, it is straight-
forward to obtain
∫ ∞

0

dt e−αt

∫ ∞

0

dT e−pT I(t|T, x) =
1− αu(x)

p
. (19)

Thus, we have established via Eqs. (18) and (19), the relation-
ships between the Laplace transforms of the pdf of the func-
tional T defined by Eq. (2) and the pdf of the inverse func-
tional defined by Eq. (7). Hence, again in principle, from the
solutionu(x) of the ordinary differential equation (14), one
obtainsI(t|T, x) by inverting the double Laplace transform in
Eq. (19) for each sample of quenched random potential, and
then takes the average over the disorder. Note that putting
α = 0 in Eq. (19) and inverting the Laplace transform with
respect top immediately verifies the normalization condition
∫∞
0
I(t|T, x) dt = 1.

In the rest of the paper, we will demonstrate how to imple-
ment this formalism for the particular examples of the local
time corresponding to the choiceV (x) = δ(x) and the occu-
pation time corresponding to the choiceV (x) = θ(x). Since
in these examples we consider the starting position of the par-
ticle to be the origin, we need to only find the solutionu(0) of
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the differential equation (14). In each example, we will con-
sider the pure cases (σ = 0) first, which help us anticipate the
general features of the results in the disordered case (σ > 0)
studied later.

III. LOCAL TIME WITHOUT DISORDER ( σ = 0)

In this caseV (x) = δ(x), corresponds toT in Eq. (2) being
the local time in the vicinity of the origin andP (T |t, 0) in
Eq. (13) beingPloc(T |t) — the pdf of the local timeT for
a given observation time window of sizet and the starting
position of the particlex(0) = 0. For our purpose we only
need the solutionu(0) of the differential equation (14), which
corresponds to the starting position of the particle being the
origin. However, to obtainu(0) we have to solve Eq. (14) in
the entire region ofx with the boundary conditionsu(x →
±∞) which are derived from the following observation. If
the initial positionx → ±∞, the particle can not reach the
origin in finite time, which means that the local timeT =
0. Therefore, by substitutingP (T |t, x → ±∞) → δ(T ) in
Eq. (13) one obtains the boundary conditions

u(x→ ±∞) =
1

α
. (20)

We have to obtain the solutionsu(x) = u+(x) for x > 0 and
u(x) = u−(x) for x < 0 by solving Eq. (14) separately in the
respective two regions,

1

2
u′′±(x) + F (x)u′±(x)− αu±(x) = −1, (21)

with the boundary conditionsu+(x → ∞) = 1/α and
u−(x → −∞) = 1/α, and then matching the two solutions
u+(x) andu−(x) atx = 0. The matching conditions are

u+(0) = u−(0) = u(0), u′+(0)− u′−(0) = 2pu(0). (22)

The first condition follows from the fact that the solution must
be continuous atx = 0 and the second one is derived by inte-
grating Eq. (14) acrossx = 0.

By making a constant shiftu±(x) = 1/α+A±y±(x), from
Eq. (21) one finds thaty±(x) satisfy thep-independent homo-
geneous equation

1

2
y′′±(x) + F (x)y′±(x)− αy±(x) = 0 (23)

with the boundary conditionsy+(x→ ∞) → 0 andy−(x→
−∞)→ 0. The constantsA± are determined by the matching
conditions given in Eq. (22), which can be rewritten as

A+y+(0) = A−y−(0) = u(0)− 1

α
, (24a)

A+y
′
+(0)−A−y

′
−(0) = 2pu(0). (24b)

Eliminating the constantsA± from Eq. (24), we obtain the
Laplace transformu(0), defined by Eq. (13) withP (T |t, 0) ≡

Ploc(T |t), as

u(0) =

∫ ∞

0

dt e−αt

∫ ∞

0

dT e−pTPloc(T |t)

=
λ(α)

α[p+ λ(α)]
. (25)

whereλ(α) is simply given by

λ(α) =
z−(0)− z+(0)

2
with z±(x) =

y′±(x)

y±(x)
. (26)

Note that puttingp = 0 in Eq. (25) and then inverting the
Laplace transform with respect toα readily verifies the nor-
malization condition

∫ ∞

0

Ploc(T |t) dT = 1. (27)

Sinceλ(α) is independent ofp, inverting the Laplace trans-
form in Eq. (25) with respect top yields

G(α) =

∫ ∞

0

dt e−αtPloc(T |t)

=
λ(α)

α
exp [−λ(α)T ] , (28)

which is valid for any arbitrary forceF (x). In the following
subsections we will consider qualitatively different types of
deterministic potentials to derive more explicit results.

A. Flat potential

We first consider the simple Brownian motion without any
external force,F (x) = 0. In this case the solutions of Eq. (23)
are obtained as

y±(x) = y±(0) exp
[

∓x
√

2α
]

. (29)

Using the solutions in Eq. (26) one getsλ(α) =
√

2α and
hence the Laplace transformG(α) in Eq. (28) becomes

G(α) =

∫ ∞

0

dt e−αtPloc(T |t) =

√
2√
α
e−

√
2αT . (30)

Now inverting the Laplace transform with respect toα, one
finds that the distribution of the local time is Gaussian for all
T andt,

Ploc(T |t) =

√
2√
πt

exp

[

−T
2

2t

]

. (31)

B. Unstable potential

Now we consider the case of a Brownian particle moving in
an unstable potentialU(x) such thatU(x → ±∞) → −∞.
The corresponding repulsive forceF (x) drives the particle
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eventually either to+∞ or to−∞. The pdf of the local time
Ploc(T |t) in the case of an unstable potential tends to a steady
distributionPloc(T ) as t → ∞, which can be computed ex-
plicitly. To see this consider the functionG(α) in Eq. (28). By
making a change of variableτ = αt, it follows from Eq. (28),

G(α) =
1

α

∫ ∞

0

dτ Ploc

(

T
∣

∣

∣

τ

α

)

. (32)

AssumingPloc(T |t→∞) = Ploc(T ), we find form the above
equation thatG(α) → Ploc(T )/α asα → 0. Comparing this
behavior with Eq. (28) gives

Ploc(T ) = λ(0) exp [−λ(0)T ] , (33)

providedλ(0) is a finite positive number. Thus generically
for all repulsive forceF (x), the local time distribution has a
universal Poisson distribution in the limitt → ∞. The only
dependence on the precise form of the forceF (x) is through
the rate constantλ(0).

The rate constantλ(0) can be expressed in terms of the
force F (x) in a more explicit manner. Puttingα = 0 in
Eq. (23) and solving the resulting equation with the bound-
ary conditionsy+(x → ∞)→ 0 andy−(x → −∞)→ 0 we
get

y+(x) = y+(0)

∫∞
x ψ2(y) dy
∫∞
0 ψ2(y) dy

, x > 0, (34)

y−(x) = y−(0)

∫ x

−∞ ψ2(y) dy
∫ 0

−∞ ψ2(y) dy
, x < 0, (35)

whereψ(y) = exp[−
∫ y

0
F (x) dx]. Substituting these results

in Eq. (26) gives the rate constant as

λ(0) =
1

2

[

1
∫ 0

−∞ ψ2(y) dy
+

1
∫∞
0
ψ2(y) dy

]

. (36)

Let us now consider a simple example where the potential
U(x) = −µ|x| with µ > 0, corresponding to the repulsive
forceF (x) = µ sign(x) from the origin. In this caseψ(y) =
exp[−µ|y|] and hence from Eq. (36) we getλ(0) = 2µ.

C. Stable potential

We now turn our attention to the complementary situation
when the potentialU(x) is stable, i.e.,U(x→ ±∞)→∞. In
this case the forceF (x) is attractive towards the origin so that
the system eventually reaches a well defined stationary state.
The stationary probability distributionp(x) for the position of
the particle is given by the Gibbs measure

p(x) =
e−2U(x)

Z
, (37)

whereU(x) = −
∫ x

0 F (x′) dx′ andZ is the partition function,

Z =

∫ ∞

−∞
e−2U(x) dx. (38)

In this case the Laplace transformG(α) of the pdf of the lo-
cal timePloc(T |t) is still given by Eq. (28). However, unlike
the unstable potential in the previous section, the distribution
Ploc(T |t) does not approach a steady state ast→∞. Instead
it has a rather different asymptotic behavior.

To deduce this asymptotic behavior, let us first consider the
average local time〈T 〉 =

∫ t

0 〈δ[x(t′)]〉 dt′. For larget′, the av-
erage〈δ[x(t′)]〉 approaches its stationary value〈δ[x(t′)]〉 →
p(0), wherep(0) = 1/Z from Eq. (37). Hence ast → ∞ the
ratioT/t approaches the limit

〈T 〉
t
→ 1

Z
, (39)

whereZ is given by Eq. (38). Thus for larget, the average
local time scales linearly with timet, which indicates that the
natural scaling limit in this case is whent → ∞, T → ∞
but keeping the ratior = T/t fixed. We will see that in this
scaling limit the local time distributionPloc(T |t) tends to the
following asymptotic form

Ploc(T |t) ∼ exp

[

−tΦ
(

T

t

)]

, (40)

whereΦ(r) is a large deviation function.
To compute the large deviation function we first substitute

this presumed asymptotic form ofPloc(T |t) given by Eq. (40)
in the Laplace transformG(α) =

∫∞
0 e−αtPloc(T |t) dt and

then make a change of variabler = T/t in the integra-
tion. The resulting integral can be evaluated in the largeT
limit by the method of steepest descent, which givesG(α) ∼
exp[−TW (α)] whereW (α) = minr[{α + Φ(r)}/r]. Com-
paring this result with Eq. (28) gives

minr

[

α+ Φ(r)

r

]

= λ(α), (41)

whereλ(α) is given by Eq. (26). Thusλ(α) is just the Leg-
endre transform ofΦ(r). Inversion of this transform gives the
exact large deviation function

Φ(r) = maxα[−α+ rλ(α)], (42)

with λ(α) given by Eq. (26). This is a general result valid for
any confining potentialU(x).

We will now explicitly compute the large deviationΦ(r) for
the particular potential given by Eq. (5) withµ < 0 andσ = 0.
Substituting the corresponding forceF (x) = −|µ| sign(x) in
Eq. (23) and solving the resulting differential equations with
the boundary conditionsy+(x → ∞) → 0 and y−(x →
−∞)→ 0 we get

y±(x) = y±(0) exp
[

∓
(

−|µ|+
√

µ2 + 2α
)

x
]

. (43)

Substituting these results in Eq. (26) we getλ(α) = −|µ| +
√

µ2 + 2α. From Eq. (42) one then gets the large deviation
function

Φ(r) =
1

2
(r − |µ|)2 . (44)
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It turns out that for this particular form of the forceF (x) =
−|µ| sign(x), the Laplace transform in Eq. (28) can be in-
verted to get the local time distributionPloc(T |t) exactly for
all T and t. The calculations are presented in appendix A.
We find that in the larget limit, the distribution reduces to the
asymptotic form

Ploc(T |t) ≈
1√
2πt

exp

[

− t
2

(

T

t
− |µ|

)2
]

, (45)

near the mean〈T 〉 = |µ|t, which verifies the result obtained
above by the large deviation function calculation.

In fact, the limiting Gaussian form of the distribution of the
local time near its mean value is quite generic for any stable
potentials (where the system eventually becomes ergodic) and
is just the manifestation of the central limit theorem. Fromthe
definition,T − 〈T 〉 =

∫ t

0{δ[x(t′)]− 〈δ[x(t′)]〉} dt′, it follows
that whenT → 〈T 〉, the random variablesδ[x(t′)]−〈δ[x(t′)]〉
at different timest′ become only weakly correlated. Then in
the limit whent is much larger than the correlation time be-
tween these variables, one expects the central limit theorem
to hold which predicts a Gaussian form forT near its mean
value〈T 〉.

IV. LOCAL TIME WITH DISORDER ( σ > 0)

So far we have considered the case where the random part
of the potential was not present. In this section we will study
the effect of the randomness by adding a random part to the
potential. In particular, we will consider the diffusive motion
of the particle when the forceF (x) is given by Eq. (6) with
σ > 0.

Equation (28) still remains valid for each realization of the
forceF (x), i.e., for each realization of{ξ(x)}. Our aim is
to compute the average of the pdf of the local timePloc(T |t)
over the noise history{ξ(x)}. From Eq. (28), one needs to
know the distribution ofλ(α) = [z−(0)− z+(0)]/2, which is
now a random variable sinceF (x) is random. The variables
−z+(0) andz−(0) are independent of each other and there-
fore their joint probability distribution factorizes to the indi-
vidual distributions. The calculations of these distributions
are presented in appendix B. Using the distributions ofz±(0)
from Eqs. (B9) and (B11) respectively witha± = α, one gets

exp[−λ(α)T ] =

[

q(T )

q(0)

]2

, (46)

with

q(T ) =

∫ ∞

0

wµ/σ−1 exp

[

− 1

2σ

{

w(1 + σT ) +
2α

w

}]

dw

(47)

= 2(2α)µ/2σ(1 + σT )−µ/2σKµ/σ

(

√

2α(1 + σT )

σ

)

,

(48)

whereKν(x) is the modified Bessel function of orderν [44]
andK−ν(x) = Kν(x). Averaging Eq. (28) over disorder we
finally get the exact formula

∫ ∞

0

dt e−αtPloc(T |t) = − 1

αq2(0)

d

dT

[

q2(T )
]

. (49)

However, it is not an easy task to invert the Laplace transform
to get the exact distributionPloc(T |t) for all T andt. In the
following subsections we will extract the asymptotic behav-
iors of Ploc(T |t), for the three cases, when the deterministic
part of the potential is: (i) flat corresponding toµ = 0, (ii) un-
stable corresponding toµ > 0 and (iii) stable corresponding
to µ < 0.

A. Flat potential (µ = 0) – Sinai model

We first consider a particle diffusing in the continuous Sinai
potential, i.e.,µ = 0 in Eq. (5). Our aim is to find out how
this random potential modifies the behavior of the local time.
In this case substitutingq(T ) and q(0) from Eq. (48) with
µ = 0 in Eq. (49) we get the Laplace transform of the disorder
averaged local time distribution as

∫ ∞

0

dt e−αtPloc(T |t) =

− 1

αK2
0

(√
2α/σ

)

∂

∂T
K2

0

(

√

2α(1 + σT )

σ

)

. (50)

We will now consider the interesting limit where botht andT
are large, but the ratioy = T/t is kept fixed. This corresponds
to taking the limitα → 0 with αT = s keeping fixed. In this
limit

K0

(√
2α

σ

)

→ −1

2
logα (51)

and

K0

(

√

2α(1 + σT )

σ

)

→ K0

(√
2s√
σ

)

. (52)

Therefore substitutingt = s/αy andT = s/α in Eq. (50), in
the limit α→ 0 we get

∫ ∞

0

dy e−s/y

[

s

αy2
Ploc

(

s

α

∣

∣

∣

∣

s

αy

)

]

=

− 4

log2 α

∂

∂s
K2

0

(√
2s√
σ

)

. (53)

The above equation suggests that, in the limitt → ∞ and
T → ∞, while their ratioT/t is kept fixed,Ploc(T |t) should
have the scaling form

Ploc(T |t) =
1

t log2 t
f1(T/t). (54)



8

Now substituting the above form in Eq. (53) and making the
change of variablẽy = 1/y, we obtain after straightforward
simplification

∫ ∞

0

dỹ e−sỹ

[

f1(1/ỹ)

ỹ2

]

= 4K2
0

(√
2s√
σ

)

. (55)

Note that the right hand side of the above equation is simply
the Laplace transform of the functionf1(1/ỹ)/ỹ2. Therefore
by using the identity

∫ ∞

0

e−a2/4ω

ω
e−sω dω = 2K0

(

a
√
s
)

(56)

and the convolution property of Laplace transform, we can in-
vert the Laplace transform in Eq. (55) with respect tos. Invert-
ing the Laplace transform and after simplification we finally
get

f1(1/ỹ) = 2ỹ

∫ 1/2

0

dx

x(1 − x) exp

[

− 1

2σỹx(1 − x)

]

. (57)

Therefore the scaling functionf1(y) is simply given by

f1(y) =
2

y

∫ 1/2

0

dx

x(1− x) exp

[

− y

2σx(1− x)

]

. (58)

By substitutingx(1 − x) = 1/z gives

f1(y) =
2

y

∫ ∞

4

dz
√

z(z − 4)
exp

(

− y

2σ
z
)

, (59)

where the integral can be evaluated exactly [44], which finally
gives the scaling function in Eq. (54) as

f1(y) =
2

y
e−y/σK0 (y/σ) . (60)

However the scaling given by Eq. (54) breaks down for very
smally (very smallT ) wheny ≪ σ. The scaling function is
displayed in Fig. 3. In the largey limit, using the asymptotic
the behaviorKν(x) ∼

√

π/2x e−x from Eq. (60) we find that
f1(y) ∼

√
2πσ y−3/2e−2y/σ.

B. Unstable potential(µ > 0)

In this case the behavior in the limitt→∞ can be obtained
by either settingα = 0 in the integral in Eq. (47) or taking the
α→ 0 limit in Kν(.) in Eq. (48), which gives

q(T )→ Γ(µ/σ)(2σ)µ/σ(1 + σT )−µ/σ, (61)

whereΓ(x) is the Gamma function [45]. Substitutingq(T )
andq(0) in Eq. (49) and inverting the Laplace transform with
respect toα gives

Ploc(T |t) = 2µ(1 + σT )−2µ/σ−1, (62)

0 1 2 3

0.5

1

y=�

�f 1(
y)

FIG. 3: The scaling functionf1(y) in Eq. (54). The solid line is
plotted by using Eq. (60), and the dash line is plotted by using the
limiting form f1(y) ∼

√
2πσ y−3/2e−2y/σ asy → ∞.

i.e., in the limit t → ∞, the distributionPloc(T |t) tends to
a steady state distributionPloc(T ) for all T ≥ 0. The dis-
order averaged local time distribution has a broad power law
distribution even though for each sample the local time has
a narrow exponential distribution (see Eq.(33) in Sec. III B).
This indicates wide sample to sample fluctuations and lack of
self-averaging.

C. Stable potential(µ < 0)

In this case substitutingq(T ) and q(0) from Eq. (48) in
Eq. (49) and denotingν = |µ|/σ we get

∫ ∞

0

dt e−αtPloc(T |t) = − 1

αK2
ν

(√
2α/σ

)

× ∂

∂T

[

(1 + σT )ν/2Kν

(

√

2α(1 + σT )

σ

)]2

. (63)

We consider the scaling limit where botht andT are large,
but their ratioy = T/t is kept fixed. This corresponds to
taking the limitα → 0 with keepingαT = s fixed, which
gives the following limiting forms

(1 + σT )→ σs

α
, (64)

Kν

(√
2α

σ

)

→ Γ(ν)

2

(

σ
√

2√
α

)ν

, (65)

Kν

(

√

2α(1 + σT )

σ

)

→ Kν

(√
2s√
σ

)

. (66)
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Substituting the above limits on the right hand side of Eq. (63)
and making change of variablest = s/αy andT = s/α on
the left hand side, it is straightforward to get

∫ ∞

0

dy e−s/y

[

s

αy2
Ploc

(

s

α

∣

∣

∣

∣

s

αy

)

]

=

− 4

(2σ)νΓ2(ν)

∂

∂s

[

sν/2Kν

(√
2s√
σ

)]2

, (67)

in the limit α → 0. This suggests the limiting form for
Ploc(T |t)

Ploc(T |t)→
1

t
f2(T/t), (68)

in the scaling limitt→∞ andT →∞ with a fixed ratioy =
T/t. To compute the scaling function we substitute the above
scaling form in Eq. (67), and make the change of variableỹ =
1/y. Then Eq. (67) simplifies to the Laplace transform
∫ ∞

0

dỹ e−sỹ

[

f2(1/ỹ)

ỹ2

]

=

4

(2σ)νΓ2(ν)

[

sν/2Kν

(√
2s√
σ

)]2

, (69)

which can be inverted with respect tos, by using the identity
∫ ∞

0

(a

2

)ν e−a2/4ω

ων+1
e−sω dω = 2sν/2Kν

(

a
√
s
)

(70)

and the convolution property of the Laplace transform. After
simplification, the inverse Laplace transform gives

f2(y) =
2y2ν−1

(2σ)2νΓ2(ν)

∫ 1/2

0

dx

xν+1(1− x)ν+1

× exp

[

− y

2σx(1 − x)

]

. (71)

By making a change of variablex(1 − x) = 1/z in the above
integral, it can be presented in the form

f2(y) =
2y2ν−1

(2σ)2νΓ2(ν)

∫ ∞

4

zν−1/2(z − 4)−1/2

× exp
(

− y

2σ
z
)

dz, (72)

which now can be expressed in more elegant forms [45] as

f2(y) =

[

2
√
π

σΓ2(ν)

]

( y

σ

)2ν−1

e−2y/σU(1/2, 1 + ν, 2y/σ),

(73)
whereU(a, b, x) is the Confluent Hypergeometric Function
of the Second Kind (also known as Kummer’s function of the
second kind) [45], which has the following limiting behaviors:

U(1/2, 1 + ν, x) ≈ Γ(ν)√
π
x−ν for smallx, (74a)

U(1/2, 1 + ν, x) ∼ 1√
x

for largex. (74b)

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

y/σ

σ
f 2

(y
) ւ

ν > 1

ւ
ν < 1

FIG. 4: The scaling functionf2(y) in Eq. (68), plotted by using
Eq. (73).ν = |µ|/σ.

The scaling functionf2(y) is displayed in Fig. 4. Using the
limiting behaviors from Eq. (74), one finds that the scaling
function decays asf2(y) ∼ y(4ν−3)/2e−2y/σ for largey. For
smally, the scaling function behaves asf2(y) ∼ yν−1, which
increases withy for ν > 1, however, diverges wheny → 0
for ν < 1, a behavior qualitatively similar to the Sinai case
(see Fig. 3). Forν < 1, the disorder wins over the strength
of the stable potential. In that situation when the particlegets
trapped in the wells of the random potential, the weak external
deterministic force often can not lift it out of the well and
send towards the origin. Therefore, the scaling functionf2(y)
carries very large weight neary = 0 (which corresponds to
very small local timeT for a given observation timet).

Note that, for the particular valueν = 1/2, the scaling func-
tion has a simple formf2(y) =

√

2/πσy exp(−2y/σ).

V. INVERSE LOCAL TIME WITHOUT DISORDER ( σ = 0)

The inverse local time means how long one has to observe
the particle until the total time spent in the infinitesimal neigh-
borhood of the origin isT . The double Laplace transform of
the pdf of the inverse local time is obtained by simply putting
x = 0 in Eq. (19). Correspondingu(0) in Eq. (19), which is
nothing but the double Laplace transform of the pdf of local
time, has already been evaluated in Sec. III and is given by
Eq. (25). Substitutingu(0) and replacingI(t|T, 0) with the
pdf of the inverse local timeIloc(t|T ), after straightforward
simplification, forx = 0 Eq. (19) reads
∫ ∞

0

dt e−αt

∫ ∞

0

dT e−pT Iloc(t|T ) =
1

p+ λ(α)
, (75)

whereλ(α) is given by Eq. (26), which depends on the force
F (x) through Eq. (23). Inverting the Laplace transform with
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FIG. 5: The pdfs of the inverse local time for stable (µ = −1/2), flat
(µ = 0) and unstable (µ = 1/2) potentials, plotted using Eq. (78)
andT = 2.

respect top gives the general formula
∫ ∞

0

dt e−αtIloc(t|T ) = exp [−λ(α)T ] , (76)

valid for arbitrary forceF (x), a result known in the mathe-
matics literature [17, 46].

We first consider the pure case where the force given by
Eq. (6) with σ = 0. Substituting solutions of Eq. (23)
for F (x) = µ sign(x) in Eq. (26) we obtainλ(α) = µ +
√

µ2 + 2α. Now using thisλ(α) in Eq. (76) and making a
change of the parameterα = β − µ2/2 we get

∫ ∞

0

dt e−βt
[

eµ2t/2Iloc(t|T )
]

= e−µT e−
√

2βT , (77)

where the right hand side is simply the Laplace transform of
eµ2t/2Iloc(t|T ) with respect tot. The Laplace transform can
be inverted to obtain the exact pdf of the inverse local time

Iloc(t|T ) =
T√
2πt3

exp

[

− (T + µt)2

2t

]

. (78)

with the normalization condition
∫ ∞

0

Iloc(t|T ) dt = e−(µ+|µ|)T =

{

1 for µ ≤ 0,
e−2µT for µ > 0,

(79)
which is simply obtained by puttingα = 0 in Eq. (76). As we
infer from Eq. (78), although in the limitt → 0 the inverse
local time distributionIloc(t|T ) ∼ exp(−T 2/2t) is indepen-
dent ofµ, for larget it depends on the nature of the poten-
tial, as shown in Fig 5. While in the absence of any force,
i.e.,µ = 0 the inverse local time distribution has a power-law
tail Iloc(t|T ) ∼ t−3/2, for the stable potential, i.e.,µ < 0,

it decays exponentiallyIloc(t|T ) ∼ exp(−µ2t/2). On the
other hand when the potential is unstable,µ > 0, as we see
from Eq. (79), the distributionIloc(t|T ) is not normalized to
unity. In this case the particle escapes to±∞with probability
(1− e−2µT ) and Eq. (78) gives the distribution only for those
events where the particle does not escape to±∞. Therefore
for µ > 0, it is appropriate to represent the full normalized
distribution as

Iloc(t|T ) =
T√
2πt3

exp

[

− (T + µt)2

2t

]

+
(

1− e−2µT
)

δ(t−∞). (80)

Note that the second term does not show up in the Laplace
transform ofIloc(t|T ) with respect tot.

VI. INVERSE LOCAL TIME WITH DISORDER ( σ > 0)

In this section, we switch on the disorder by considering
σ > 0 in the force given by Eq. (6). In the presence of disor-
der, taking the disorder average of Eq. (76) gives

∫ ∞

0

dt e−αtIloc(t|T ) = exp [−λ(α)T ], (81)

with λ(α) = [z−(0)−z+(0)]/2, where−z+(0) andz−(0) are
independent random variables, whose distributions are given
by Eqs. (B9) and (B11) respectively witha± = α. The object
exp [−λ(α)T ] on the right hand side of Eq. (81), has already
been evaluated in Sec. IV, which is given by Eq. (46). In
the following subsections we will determine the behavior of
Iloc(t|T ) in the scaling limitt → ∞, T → ∞, while keeping
their ratiox = t/T fixed, for the three qualitatively different
cases: (i)µ = 0, (ii) µ > 0 and (iii) µ < 0.

A. Flat potential (µ = 0) – Sinai model

Following the analysis of Sec. IV A, in the limitα → 0
with keepingαT = s fixed,

exp [−λ(α)T ]→ 4

log2 α
K2

0

(√
2s√
σ

)

. (82)

Therefore, substitutingt = xs/α andT = s/α, in the limit
α→ 0, Eq. (81) reads

∫ ∞

0

dx e−sx

[

s

α
Iloc

(sx

α

∣

∣

∣

s

α

)

]

=
4

log2 α
K2

0

(√
2s√
σ

)

.

(83)
This suggest the scaling form

Iloc(t|T ) =
1

T log2 T
g1(t/T ), (84)

in the limit t→∞, T →∞ but keepingx = t/T fixed. Sub-
stituting this scaling form in Eq. (83), after straightforward
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FIG. 6: The scaling functiong1(y) in Eq. (84). The solid line is
plotted by using Eq. (86), and the dash line is plotted by using the
limiting forms: g1(x) ≈

√
2πσx−1/2 exp(−2/σx) for smallx and

g1(x) ∼ 2 log(σx)/x for largex.

simplification one obtains

∫ ∞

0

dx e−sxg1(x) = 4K2
0

(√
2s√
σ

)

. (85)

Now direct comparison of the above equation with Eq. (55)
givesg1(x) = f1(1/x)/x

2, wheref1(x) is given by Eq. (60).
Substitutingf1(1/x) one obtains the scaling functiong1(x)
as

g1(x) =
2

x
e−1/σxK0 (1/σx) , (86)

which is displayed in Fig. 6. The scaling function increasesas
g1(x) ≈

√
2πσx−1/2 exp(−2/σx) for smallx and decays as

g1(x) ∼ 2 log(σx)/x at largex.

B. Unstable potential (µ > 0)

In this case the right hand side of Eq. (81) is given by

exp [−λ(α)T ] = (1+σT )−ν
K2

ν

(

√

2α(1 + σT )/σ
)

K2
ν

(√
2α/σ

) , (87)

with ν = µ/σ. Puttingα = 0 in the above equation gives
the normalization condition,

∫∞
0 Iloc(t|T ) dt = (1 + σT )−2ν ,

which implies that for the unstable potential, where the force
is repulsive from the origin, the particle escapes to±∞ with
probability 1 − (1 + σT )−2ν , and the disorder averaged
pdf Iloc(t|T ) obtained by inverting the Laplace transform in
Eq. (81) represents only those events where the particle does
not escape to±∞.

Now in the limit ofα→ 0 with αT = s keeping fixed, one
gets

Kν

(√
2α

σ

)

→ Γ(ν)

2
T ν/2

(

σ
√

2√
s

)ν

, (88)

Kν

(

√

2α(1 + σT )

σ

)

→ Kν

(√
2s√
σ

)

. (89)

Therefore Eq. (87) becomes

exp [−λ(α)T ]→ 4T−2ν

(2σ3)νΓ2(ν)

[

sν/2Kν

(√
2s√
σ

)]2

. (90)

In the corresponding limitT → ∞, t → ∞, but keeping
their ratiox = t/T fixed, using the scaling form

Iloc(t|T ) =
1

T 2ν+1
g2(t/T ) (91)

in Eq. (81) one finally arrives at the Laplace transform

∫ ∞

0

e−sxg2(x) dx =
4

(2σ3)νΓ2(ν)

[

sν/2Kν

(√
2s√
σ

)]2

.

(92)
The Laplace transform can be inverted with respect tos to ob-
tain the scaling functiong2(x) and in fact the inversion has
already been done in Sec. IV C. Comparing the above equa-
tion with Eq. (69) readily givesg2(x) = σ−2νf2(1/x)/x

2

wheref2(x) is given by Eq. (73). Substitutingf2(1/x) gives

g2(x) =

[

2σ
√
π

σ2νΓ2(ν)

]

e−2/σx

(σx)2ν+1
U(1/2, 1 + ν, 2/σx), (93)

whereU(a, b, x) is the Confluent Hypergeometric Function
of the Second Kind, whose its small and largex behaviors
are given in Eq. (74). The scaling functiong2(x) is dis-
played in Fig. 7. The scaling function increases asg2(x) ∼
exp(−2/σx) for smallx and eventually decreases for largex
asg2(x) ∼ 1/x2ν . In particular, forν = 1/2 it has a very
simple formg2(x) =

√

2/πσ3x−3/2 exp(−2/σx).

C. Stable potential (µ < 0)

Following the analysis of Sec. IV C, in the limitα → 0,
keepingαT = s fixed one gets

exp [−λ(α)T ] =
4

(2σ)νΓ2(ν)

[

sν/2Kν

(√
2s√
σ

)]2

, (94)

with ν = |µ|/σ.
On the other hand, in the corresponding limitT →∞, t→
∞, but keepingt/T = x fixed, using the scaling form

Iloc(t|T ) =
1

T
g3(t/T ), (95)



12

0 1 2 3 4

0.3

0.6

0.9

1.2

σx

σ
2ν
−

1
g

2
(x

)

ւ
ν = 1

←− ν = 2

FIG. 7: The scaling functionsg2(x) in Eq. (91) plotted by using
Eq. (93).ν = |µ|/σ.

one gets
∫ ∞

0

dt e−αtIloc(t|T ) =

∫ ∞

0

dx e−sxg3(x), (96)

with s = αT . Therefore, in this scaling limit Eq. (81) be-
comes

∫ ∞

0

dx e−sxg3(x) =
4

(2σ)νΓ2(ν)

[

sν/2Kν

(√
2s√
σ

)]2

.

(97)
Now comparing the above equation with Eq. (92) one gets

g3(x) = σ2νg2(x), (98)

where the scaling functiong2(x) is given by Eq. (93) and dis-
played in Fig. 7. WhileIloc(t|T ) has the same scaling function
(up to a multiplicative factor ofσ2ν ) for both stable and unsta-
ble potential, the physical behaviors, however, are quite differ-
ent. For the stable potential,Iloc(t|T ) is normalized to unity.
Note that the scaling functiong3(x) becomes narrower as one
increasesν, as expected since the particle becomes more lo-
calized near the origin. For the unstable potential, on the other
hand, the weight ofIloc(t|T ) decreases as(σT )−2ν , as one in-
creasesν, as expected since when the repulsive force from the
origin becomes stronger, the particle escapes to±∞ with a
higher probability.

VII. OCCUPATION TIME WITHOUT DISORDER ( σ = 0)

In this caseV (x) = θ(x), corresponds toT in Eq. (2) be-
ing the occupation time in the regionx > 0 andP (T |t, 0) in
Eq. (13) beingPocc(T |t) — the pdf of the occupation time for
a given observation time window of sizet and the initial po-
sition of the particlex(0) = 0. Again as before, we need to

solve the differential equation (14) forx > 0 andx < 0 sep-
arately and then match the solutions atx = 0. The matching
condition for the slope of the solutions is obtained by integrat-
ing Eq. (14) acrossx = 0. Thus the matching conditions are

u+(0) = u−(0) = u(0), and u′+(0) = u′−(0), (99)

whereu±(x) satisfy the following differential equations:

1

2
u′′+(x) + F (x)u′+(x)− (α + p)u+(x) = −1, (100)

for x > 0, and

1

2
u′′−(x) + F (x)u′−(x)− αu−(x) = −1, (101)

for x < 0. The boundary conditions ofu±(x) whenx→ ±∞
are obtained from the fact that if the starting position goes
to ±∞, the particle will never cross the origin in finite time:
P (T |t, x → ∞) = δ(t − T ) andP (T |t, x → −∞) = δ(T ),
and hence from Eq. (13)

u+(∞) =
1

α+ p
, and u−(−∞) =

1

α
. (102)

Writing u+(x) = 1/(α + p) + B+y+(x) andu−(x) =
1/α + B−y−(x), we obtain the homogeneous differential
equations fory±(x) as

1

2
y′′+(x) + F (x)y′+(x)− (α + p)y+(x) = 0, (103)

for x > 0, and

1

2
y′′−(x) + F (x)y′−(x)− αy−(x) = 0, (104)

for x < 0, with the boundary conditionsy+(x→∞) = 0 and
y−(x→ −∞) = 0. The constantsB± are determined by the
matching conditions given in Eq. (99), which can be rewritten
as

1

α+ p
+B+y+(0) =

1

α
+B−y−(0) = u(0), (105a)

B+y
′
+(0) = B−y

′
−(0). (105b)

Eliminating the constants from Eq. (105), we obtain the
double Laplace transform of the pdf of the occupation time

u(0) =

∫ ∞

0

dt e−αt

∫ t

0

dT e−pTPocc(T |t)

=
ℓ1(α, p)

α
+
ℓ2(α, p)

α+ p
,

(106)

where

ℓ1(α, p) =

[

z−(0)

z−(0)− z+(0)

]

, (107)

ℓ2(α, p) =

[ −z+(0)

z−(0)− z+(0)

]

, (108)
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andz±(x) = y′±(x)/y±(x). Note that

ℓ1(α, p) + ℓ2(α, p) = 1. (109)

Puttingp = 0, in Eq. (106) givesu(0) = 1/α, and hence in-
verting the Laplace transform with respect toα readily verifies
the normalization

∫ t

0

Pocc(T |t) dT = 1. (110)

For any symmetric deterministic potential the distribution
of the occupation time is symmetric about its mean〈T 〉 = t/2,
i.e., Pocc(T |t) = Pocc(t − T |t). Then, it follows from this
symmetry that

ℓ1(α+ p,−p) = ℓ2(α, p). (111)

In other words, the double-integral in Eq. (106) remains in-
variant under the following simultaneous replacements:(α +
p) → α and α → (α + p). Thus under these replace-
ments one must havez+(0)→ −z−(0) and vice versa, which
also implies thatz+(0) = −z−(0) for p = 0. Equivalently,
ℓ1(α, 0) = ℓ2(α, 0) = 1/2, which also directly follows from
Eqs. (109) and (111).

Therefore if one splits the distribution function into two
parts:Pocc(T |t) = RL(T |t) +RR(T |t) such that

∫ ∞

0

dt e−αt

∫ t

0

dT e−pTRL(T |t) =
ℓ1(α, p)

α
, (112)

∫ ∞

0

dt e−αt

∫ t

0

dT e−pTRR(T |t) =
ℓ2(α, p)

α+ p
, (113)

then it follows from the above discussion thatRL(t− T |t) =
RR(T |t). This symmetry of the distribution will come handy
later. Moreover, puttingp = 0 and inverting the Laplace trans-
forms with respect toα gives the normalization for each part
separately

∫ t

0

RL(T |t) dT =

∫ t

0

RR(T |t) dT =
1

2
. (114)

As an example, we first consider the pure case:σ = 0 in the
force given by Eq. (6). ForF (x) = µ sign(x), the solutions
of Eqs. (103) and (104) are obtained as

y+(x) = y+(0) exp
[

−
(

µ+
√

µ2 + 2(α+ p)
)

x
]

, (115)

for x > 0, and,

y−(x) = y−(0) exp
[(

µ+
√

µ2 + 2α
)

x
]

, (116)

for x < 0. These give the expressions forz±(0) =
y′±(0)/y±(0) as

z+(0) = −
[

µ+
√

µ2 + 2(α+ p)
]

,

z−(0) =
[

µ+
√

µ2 + 2α
]

.
(117)

In the following subsections we will consider the three differ-
ent cases: (i)µ = 0, (ii) µ > 0 and (iii) µ < 0.

A. Flat potential (µ = 0)

Forµ = 0, usingz+(0) = −
√

2(α+ p) andz−(0) =
√

2α
from Eq. (106) we get

∫ ∞

0

dt e−αt

∫ t

0

dT e−pTPocc(T |t) =
1

√

α(α+ p)
. (118)

Inverting the double Laplace transform with respect top and
then with respect toα finally reproduces the well known
Lévy’s “arcsine” law [11] for the pdf of the occupation time
of an ordinary Brownian motion,

Pocc(T |t) =
1

π
√

T (t− T )
, 0 < T < t. (119)

The distributionPocc(T |t) diverges on both endsT = 0 and
T = t, which indicates that the Brownian particle “tends” to
stay on one side of the origin.

B. Unstable potential(µ > 0)

Since forµ > 0, the force is repulsive from the origin
x = 0, one would expect the occupation time distribution
to be convex (concave upward), with minimum atT = t/2.
Now in the limit of large window sizet → ∞, the part of
the distributionPocc(T |t) to the left of the midpointT = t/2
approachesRL(T |t), as the midpoint itself goes to∞.

By making a change of variablez = αt, it follows from
Eq. (112)

∫ ∞

0

dz e−z

∫ z/α

0

dT e−pTRL(T |z/α) = ℓ1(α, p). (120)

Now the larget limit of RL(T |t) can be obtained by taking
α→ 0 in the above equation, where one realizes thatRL(T |t)
approaches a steady (t independent) distribution,RL(T |t →
∞)→ RL(T ), whose Laplace transform is given by

∫ ∞

0

dT e−pTRL(T ) = ℓ1(0, p), (121)

whereℓ1(0, p) is obtained from Eq. (107), by usingz±(0)
from Eq. (117), which gives

ℓ1(0, p) =
2µ

3µ+
√

µ2 + 2p
. (122)

The above Laplace transform can be inverted with respect to
p, which gives

RL(T ) = µ
√

2 e−µ2T/2

×
[

1√
πT
− 3µ√

2
exp

(

9µ2

2
T

)

erfc

(

3µ√
2

√
T

)]

. (123)

with the normalization
∫∞
0
RL(T ) dT = ℓ1(0, 0) = 1/2.
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The limiting behavior of the distribution is given by

RL(T ) ≈ µ
√

2√
πT

, (124)

for smallT and decays exponentially for largeT ,

RL(T ) ≈
√

2

9µ
√
π

e−µ2T/2

T 3/2
. (125)

C. Stable potential(µ < 0)

As we discussed earlier in Sec. III C in the context of
the local time, for generic stable potentialU(x) the system
eventually becomes ergodic at larget and hence the average
〈θ[x(t)]〉 approaches its stationary value〈θ[x(t)]〉 → Z+/Z,
whereZ =

∫∞
−∞ e−2U(x) dx is the equilibrium partition func-

tion andZ+ =
∫∞
0
e−2U(x) dx is the restricted partition

function. Therefore, for larget the average occupation time
〈T 〉 =

∫ t

0 〈θ[x(t′)]〉 dt′ scales linearly witht

〈T 〉 →
(

Z+

Z

)

t. (126)

Note that when the potentialU(x) is symmetric about zero,
the average occupation time〈T 〉 = t/2 for all t.

From the definition, T − 〈T 〉 =
∫ t

0
{θ[x(t′)] −

〈θ[x(t′)]〉} dt′, it follows that whenT → 〈T 〉, the random
variablesθ[x(t′)]−〈θ[x(t′)]〉 at different timest′ become only
weekly correlated. Then in the limit whent is much larger
than the correlation time between these variables, one expects
the central limit theorem to hold, which predicts a Gaussian
form for the distribution of the occupation timeT near the
mean value〈T 〉,

Pocc(T |t) ∼ exp

[

− (T − 〈T 〉)2
2σ2

]

, (127)

where the varianceσ2 = 〈T 2〉 − 〈T 〉2 can be obtained from
the Laplace transform of the moments

∫ ∞

0

〈T n〉 e−αt dt = (−1)n ∂
nu(0)

∂pn

∣

∣

∣

∣

p=0

, (128)

with u(0) given by Eq. (106).
For the particular attractive forceF (x) = −|µ| sign(x), us-

ing z±(0) from Eq. (117) in Eq. (106) and taking derivatives
with respect top in we get

−∂u(0)

∂p

∣

∣

∣

∣

p=0

=
1

2α2
, (129)

∂2u(0)

∂p2

∣

∣

∣

∣

p=0

=
1

2α3
+

1

4µ2α2
+O

(

1

α

)

. (130)

Therefore inverting the Laplace transform in Eq. (128) with
respect toα immediately gives〈T 〉 = t/2 for all t, and
〈T 2〉 = t2/4 + t/4µ2 for larget which givesσ2 = t/4µ2.

VIII. OCCUPATION TIME WITH DISORDER ( σ > 0)

Now we consider the occupation time when the disorder is
switched on:σ > 0 in Eq. (6). Our aim is to calculate the
disorder averagedPocc(T |t). As one realizes from Eqs. (106),
(107) and (108), to calculatePocc(T |t) one needs the distri-
bution of−z+(0) andz−(0), which are given by Eqs. (B9)
and (B11) witha+ = α + p anda− = α respectively. In
the following subsections, we will consider the three cases:
(i) µ = 0, (ii) µ > 0 and (iii) µ < 0.

A. Flat potential (µ = 0) – Sinai model

We first consider the diffusive motion of a particle in a con-
tinuous Sinai potential, where the potential itself is a Brown-
ian motion in space. In the limit of large window sizet the
left half of the disorder averaged pdf of the occupation time
RL(T |t) for 0 ≤ T ≤ t/2 is obtained by taking the disor-
der average in Eq. (112). The right half of the distribution
for t/2 ≤ T ≤ t is just the symmetric reflection of the left
part. The detailed calculations forRL(T |t) are presented in
appendix C.

We find thatRL(T |t) has a larget behavior

RL(T |t) ≈ 1

log t
R(T ), (131)

where the functionR(T ) is independent oft. The limiting
behaviors ofR(T ) are given by

R(T ) ≈
√

2σ√
πT

, (132)

asT → 0 and

R(T ) ∼ 1

2T
, (133)

for largeT .

B. Unstable potential (µ > 0)

Forµ > 0, we find that disorder does not change the asymp-
totic behavior of the distribution for the pure case qualita-
tively. The calculations are presented in appendix D. We find
that in the limitt → ∞ the left half of the disorder averaged
occupation time distribution tends to at independent form

RL(T |t) = RL(T ). (134)

In fact the smallT limit of RL(T ) remains same as in the pure
case

RL(T ) ≈ µ
√

2√
πT

. (135)

For largeT , the distributionRL(T ) still decays exponentially

RL(T ) ∼ e−bT , (136)
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where the decay coefficientb is, however, different from the
pure case (see Eq. D17).

C. Stable potential (µ < 0)

This particular situation, where one finds the interplay be-
tween two competing processes, is a very interesting one. On
one hand, as we discussed in Sec. VII C, the stable potential
in the absence of the disordered potential makes the system
ergodic in the larget limit, and as a result the pdf of the oc-
cupation time is peaked at= t/2 and decays fast away from
it. On the other hand, as we discussed in Sec. VIII A, without
any underlying deterministic potential the disorder averaged
pdf of the occupation time is convex (concave upward) with a
minimum atT = t/2 and diverges at the both endsT → 0 and
T → t. Therefore, if both the stable potential and disordered
potential are included, as their relative strengthν = |µ|/σ is
varied, one expects a phase transition at some critical valueνc

where the system looses ergodicity.
In the scaling limit where botht → ∞ andT → ∞, but

their ratioy = T/t is kept fixed, we find that the disorder
averaged pdf of the occupation time has a scaling form

Pocc(T |t) =
1

t
fo(T/t). (137)

The calculation of the scaling functionfo(y) is presented in
appendix E, where we find the Beta law

fo(y) =
1

B(ν, ν)
[y(1− y)]ν−1

, 0 ≤ y ≤ 1, (138)

whereν = |µ|/σ andB(ν, ν) is the Beta function [44]. Now
if one tunes the parameterν by varying eitherµ or the disorder
strengthσ, the distributionPocc(T |t) exhibits a phase transi-
tion in the ergodicity of the particle position atνc = 1 (Fig. 8).
For ν < νc the distributionfo(y) in Eq. (137) is convex with
a minimum aty = 1/2 and diverges at the two endsy = 0, 1.
This means that particle tends to stay on one side of the origin
such thatT is close to either0 or t. In other words the paths
with small number of zero crossings carry more weight than
the ones that cross many times. Forν > νc the scenario is
exactly opposite, wherefo(y) is maximum at the mean value
y = 1/2 indicating that particle tends to spend equal times
on both sides of the originx = 0, such that paths with large
number of zero crossings, for whichT is closer tot/2 carry
larger weight. Similar phase transition in the ergodicity prop-
erties of a stochastic process as one changes a parameter, was
first noted in the context of diffusion equation [19], and later
found for a class of Gaussian Markov processes [20] and in
simple models of coarsening [47, 48].

A very interesting observation about Eq. (138) is that for
ν = 1/2, the result is same as Lévy’s result for the one-
dimensional Brownian motion given by Eq. (119). It seems
as if the attractive force cancels the effect of disorder exactly
at ν = 1/2. However, this is no more true in the context of
the local time.

0 0.5 1
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1
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2

y

f o(y)
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FIG. 8: The scaling functionsfo(x) in Eq. (137) plotted by using
Eq. (138).

IX. INVERSE OCCUPATION TIME WITHOUT
DISORDER (σ = 0)

In this caseI(t|T, 0) in Eq. (19) is replaced withIocc(t|T ),
which is the distribution of the timet needed to observe the
particle with a starting positionx = 0, until the total amount
of time spent on the positive sidex > 0 is T . Correspond-
ing u(0) in Eq. (19) withx = 0, which is the double Laplace
transform of the pdf of the occupation time, has already been
evaluated in Sec. VII, which is given by Eq. (106). Substitut-
ing u(0) in Eq. (19) gives

∫ ∞

0

dT e−pT

∫ ∞

T

dt e−αtIocc(t|T ) =
ℓ2(α, p)

α+ p
, (139)

whereℓ2(α, p) is given by Eq. (108). Comparing the above
equation with Eq. (113), one can infer thatIocc(t|T ) and
RR(T |t) have the same functional form, i.e.,Iocc(t|T ) =
RR(T |t) and especially for symmetric deterministic potential
Iocc(t|T ) = RR(T |t) = RL(t− T |t).

It is useful to present the above equation in the following
form,

∫ ∞

0

dz e−z

∫ ∞

0

dτ e−ατ Iocc

(

τ +
z

β

∣

∣

∣

∣

z

β

)

= ℓ1(β, α − β),

(140)
which has been obtained by substitutingp = β − α in
Eq. (139) and subsequently making the change of variables
βT = z andτ = t − T . On the right hand side, we have
substitutedℓ2(α, β − α) = ℓ1(β, α− β), using Eq. (111) and
ℓ1(α, p) is given by Eq. (107). Now by taking the limitβ → 0
in Eq. (140), one obtains the largeT behavior ofIocc(t|T ).

For the pure case,σ = 0 in Eq. (6), we have already
obtainedz±(0) in Sec. VII, which are given by Eq. (117)
and hence we can evaluateℓ1(α, p) and ℓ2(α, p) by using
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FIG. 9: The pdf of the inverse occupation time for simple Brownian
motion.

Eqs. (107) and (108) respectively. In the following subsec-
tions we will analyze the behavior ofIocc(t|T ) for the cases
(i) µ = 0, (ii) µ > 0 and (iii) µ < 0.

A. Flat potential (µ = 0)

Forµ = 0, which is the case of a simple Brownian motion,
z+(0) = −

√

2(α+ p) andz−(0) =
√

2α. Therefore using
Eq. (108), from Eq. (139) we get
∫ ∞

0

dT e−pT

∫ ∞

T

dt e−αtIocc(t|T )

=
1√

α+ p(
√
α+
√
α+ p)

. (141)

Now inverting the Laplace transform with respect top gives
∫ ∞

T

dt e−αtIocc(t|T ) = erfc(
√
αT ), (142)

and further inverting the Laplace transform with respect toα
gives

Iocc(t|T ) =

√
T

πt
√
t− T

θ(t− T ). (143)

with the normalization condition
∫∞

T
Iocc(t|T ) dt = 1, which

is readily checked by puttingα = 0 in Eq. (142). The in-
verse occupation time has non-zero support only fort > T , as
shown in Fig. 9.

Note that, sinceRR(T |t) = Iocc(t|T ) =
√
T/πt

√
t− T

andRL(T |t) = RR(t − T |t) =
√
t− T/πt

√
T , adding

the two parts, Pocc(T |t) = RL(T |t) + RR(T |t) =

1/π
√

T (t− T ), one recovers Eq. (119).

B. Unstable potential(µ > 0)

For µ > 0, although one can invert the Laplace transform
in Eq. (139) with respect top exactly, the other Laplace trans-
form with respect toα can be inverted only in the largeT

limit. Therefore to keep the presentation simpler, we will con-
sider the largeT behavior ofIocc(t|T ) by analyzing Eq. (140)
in the limit β → 0.

By usingz±(0) from Eq. (117) in Eq. (107), one gets

ℓ1(0, α) =
2µ

3µ+
√

µ2 + 2α
, (144)

Therefore, Eq. (140) suggest thatIocc(t|T ) should only de-
pend on the difference(t− T ) at largeT

Iocc(t|T ) = I1(t− T ). (145)

Substituting this form in Eq. (140) in the limitβ → 0 gives
∫ ∞

0

dτ e−ατ I1(τ) = ℓ1(0, α), (146)

where puttingα = 0 gives the normalization
∫∞
0
I1(τ) dτ =

ℓ1(0, 0) = 1/2, indicating that the particle can escape to−∞
with probability1/2 for the unstable potential (the force is re-
pulsive from the origin). Now inverting the Laplace transform
with respect toα gives

I1(τ) = µ
√

2 e−µ2τ/2

×
[

1√
πτ
− 3µ√

2
exp

(

9µ2

2
τ

)

erfc

(

3µ√
2

√
τ

)]

, (147)

The limiting behavior of this distribution is given by

I1(τ) ≈
µ
√

2√
πτ
, (148)

for small τ = (t − T ) and decays exponentially for large
τ = (t− T ),

I1(τ) ≈
√

2

9µ
√
π

e−µ2τ/2

τ3/2
. (149)

C. stable potential(µ < 0)

It is reasonable to consider the difference variablet − T
instead oft, ast ≥ T . Therefore, we write

Iocc(t|T ) = I2(t− T, T ). (150)

Substituting this form andp = β − α in Eq. (139) one gets
∫ ∞

0

dT e−βT

∫ ∞

0

dτ e−ατI2(τ, T ) =
ℓ1(β, α− β)

β
,

(151)
where we have substitutedℓ2(α, β−α) = ℓ1(β, α−β) on the
right hand side, using Eq. (111). Usingz±(0) from Eq. (117)
for µ < 0, in Eq. (107) gives

ℓ1(β, α − β) =

[

√

µ2 + 2β − |µ|
√

µ2 + 2β +
√

µ2 + 2α− 2|µ|

]

, (152)
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Therefore, taking the smallβ limit in Eq. (151) gives

∫ ∞

0

dT e−βT

∫ ∞

0

dτ e−ατ I2(τ, T )

=
1

β + |µ|
√

µ2 + 2α− µ2
, (153)

and inverting the Laplace transform with respect toβ gives
∫ ∞

0

dτ e−ατI2(τ, T ) = exp
(

µ2T − |µ|T
√

µ2 + 2α
)

,

(154)
where puttingα = 0 confirms the normalization condition
∫∞
0
I2(τ, T ) dτ = 1. Now by inverting the other Laplace

transform with respect toα one gets the distribution

I2(τ, T ) =
|µ|T√
2πτ3

e−µ2(τ−T )2/2τ , (155)

whereτ = t− T .

X. INVERSE OCCUPATION TIME WITH DISORDER
(σ > 0)

In the presence of disorder, i.e.,σ > 0 in Eq. (6), taking the
disorder average in Eq. (139) gives
∫ ∞

0

dT e−pT

∫ ∞

T

dt e−αt Iocc(t|T ) =
ℓ2(α, p)

α+ p
, (156)

whereℓ2(α, p) is obtained by taking the disorder average of
Eq. (108), using the distributions of−z+(0) andz−(0) given
by Eqs. (B9) and (B11) respectively witha+ = α + p and
a− = α.

It is useful to consider a different form of the above equa-
tion, which is obtained by taking the disorder average of
Eq. (140)
∫ ∞

0

dz e−z

∫ ∞

0

dτ e−ατ Iocc

(

τ +
z

β

∣

∣

∣

∣

z

β

)

= ℓ1(β, α− β),

(157)
where by taking the limitβ → 0, one obtains the largeT
behavior ofIocc(t|T ).

A. Flat potential (µ = 0) – Sinai model

We will now study the largeT behavior ofIocc(t|T ), for
the Sinai potential (µ = 0), by analyzing Eq. (157) in the
limit β → 0.

It follows from Eq. (C2) that

ℓ1(β, α − β) =
m1(β, α− β)

Ω+Ω−
, (158)

wherem1(α, p) is given by Eq. (C3), and

Ω+ = 2K0

(√
2β

σ

)

and Ω− = 2K0

(√
2α

σ

)

. (159)

In the limit β → 0, sinceΩ+ ∼ − log β, hence

ℓ1(β, α− β) ∼ m1(0, α)
[

−2K0

(√
2α/σ

)

log β
] , (160)

which suggest the following scaling form at largeT ,

Iocc(t|T ) =
1

logT
I3(t− T ). (161)

Therefore in the limitβ → 0, substituting the above scaling
form in Eq. (157) and using Eq. (160) one gets

∫ ∞

0

dτ e−ατ I3(τ) =
m1(0, α)

2K0

(√
2α/σ

) . (162)

However, the above Laplace transform is the same one given
by Eq. (C11) in appendix C, whereα is replaced byp. There-
fore we can directly borrow the results obtained there. Using
the results from Eq. (C19) gives

I3(τ) ≈
√

2σ√
πτ

as τ → 0, (163)

and results from Eq. (C26) gives

I3(τ) ∼
1

2τ
as τ →∞. (164)

B. Unstable potential (µ > 0)

For µ > 0, Eq. (157) suggests that in the largeT limit,
Iocc(t|T ) will only depend on the difference(t− T ),

Iocc(t|T ) = I4(t− T ). (165)

Therefore in the limitβ → 0, using the above form in
Eq. (157) one gets

∫ ∞

0

dτ e−ατ I4(τ) = ℓ1(0, α), (166)

However, the above Laplace transform is the same one given
by Eq. (D3) whereα is replaced byp. Therefore borrowing
the results from appendix D readily gives

I4(τ) ≈
µ
√

2√
πτ
, (167)

for smallτ and

I4(τ) ∼ e−bτ , (168)

for largeτ , with the same constantb as in Eq. (D16).
The normalization condition

∫∞
0 I4(τ) dτ = ℓ1(0, 0)=1/2,

indicates that the particle escapes to−∞with probability1/2.
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FIG. 10: The scaling functionsgo(x) in Eq. (170) plotted by using
Eq. (173).

C. Stable potential (µ < 0)

We are interested in the behavior ofIocc(t|T ) in the scaling
limit where t → ∞ andT → ∞, but the ratiox = t/T is
kept fixed. SubstitutingT = z/α, t = xz/α andp = αs in
Eq. (156), we get
∫ ∞

1

dx

∫ ∞

0

dz e−(s+x)z

[

z

α
Iocc

(xz

α

∣

∣

∣

z

α

)

]

=
1−m3(α, s)

1 + s
,

(169)
wherem3(α, s) = ℓ1(α, αs) = 1 − ℓ2(α.p), given by
Eq. (E6). The above equation suggest the scaling form

Iocc(t|T ) =
1

T
go(t/T ), (170)

with the normalization
∫∞
1
go(x) dx = 1, which follows di-

rectly from the normalization
∫∞

T Iocc(t|T ) dt = 1. By substi-
tuting the above scaling form in Eq. (169) in the limitα→ 0,
after simplification one gets

∫ ∞

1

[

x− 1

x+ s

]

go(x) dx = m3(0, s), (171)

wherem3(0, s) is given by Eq. (E16). By making a change of
variabley = 1/x, Eq. (E16) reads

m3(0, s) =
1

B(ν, ν)

∫ ∞

1

[

x− 1

x+ s

]

(x− 1)ν−1

x2ν
dx. (172)

Therefore comparing Eq. (171) and Eq, (172) readily gives the
inverted Beta law

go(x) =
1

B(ν, ν)

(x− 1)ν−1

x2ν
, x > 1, (173)

which is displayed in Fig. 10. The scaling functiongo(x) has
a maximum atx = 2ν/(ν + 1) for ν > 1. However,go(x)

diverges nearx = 1 for ν < 1. Note that forν = 1/2,
Eq. (173) gives identical results to that of a pure Brownian
motion (µ = 0 andσ = 0), given by Eq. (143).

XI. CONCLUDING REMARKS

In this paper we have considered the motion of a particle
in a one dimensional random potential. We have presented a
general formalism for computing statistical properties offunc-
tionals and the inverse functionals of this process. We have
used a backward Fokker-Planck equation approach to calcu-
late the pdf of these functionals for each realization of the
quenched random potential. The most difficult part of the
problem is to carry out the disorder average on these pdfs.
Thus to demonstrate the formalism explicitly, we have chosen
the external potential to be the combination of a deterministic
part and a random part,U(x) = −µ|x| + √σB(x), where
B(x) is the trajectory of a Brownian motion in space. The
caseµ = 0 in the potential corresponds to the Sinai model.
The deterministic part of the external potential is stable for
µ < 0 and unstable forµ > 0. The pdfs of the functional
and the inverse functional vary from one realization ofB(x)
to another, and in this paper we have shown how to carry out
the disorder average on them, for two particular functionals,
namely, the local time and the occupation time, and their in-
verse. Despite the simplicity of the model, we get very rich
and interesting behaviors by tuning the parameterµ/σ, which
we have summarized in Tables I, II and III, forµ = 0, µ > 0
andµ < 0 respectively. In many cases the disorder changes
the behavior of the pdf drastically from the pure case (σ = 0).

A very interesting phase transition in the ergodicity of the
particle position occurs at a critical value of the parameter
|µ|/σ = 1, when the deterministic part of the potential is sta-
ble (µ < 0). For |µ|/σ < 1, when the particle gets trapped
in the wells of the random potential, the deterministic force
−|µ| sign(x) is not strong enough to lift it from the well and
push it towards the origin and hence there are small number of
zero crossings. On the other hand, for|µ|/σ > 1, the strong
deterministic force sends the particle frequently towardsthe
origin, and hence the system becomes ergodic. This change
in the ergodic properties shows up in the qualitative change
in the curvatures of the disorder averaged pdfs when the pa-
rameterν = |µ|/σ passes through unity. While forν < 1, the
disorder averaged pdf of the occupation timePocc(T |t) is con-
cave upward with a minimum atT = t/2 and diverges at both
endsT = 0 andT = t; for ν > 1 it is concave downward,
which goes to zero at the two endsT = 0 andT = t, and
has a maximum atT = t/2 (see Fig. 8). In the context of in-
verse occupation time, while forν < 1, the disorder averaged
pdf Iocc(t|T ) diverges near its lower endt = T and decreases
monotonically ast increases, forν > 1 it has a maximum at
t = [2ν/(ν + 1)]T and goes to zero at both endst = T and
t → ∞ (see Fig. 10). Similarly, the disorder averaged pdf of
the local timePloc(T |t) diverges near the lower endT = 0
and decreases monotonically asT increases forν < 1. On the
other hand forν > 1, it has a maximum and goes to zero at
both endsT = 0 andT →∞ (see Fig. 4).
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For the stable potential, another very interesting observa-
tion is that at|µ|/σ = 1/2, in the limit T → ∞ andt → ∞
while keeping the ratioT/t fixed, the exact asymptotic disor-
der averaged pdfs of the occupation timePocc(T |t) and inverse
occupation timeIocc(t|T ) become exactly identical to the re-
spective pdfsPocc(T |t) andIocc(t|T ) for the simple Brownian
motion (µ = 0 andσ = 0). It looks as if at the particular
value|µ|/σ = 1/2, the effect of disorder is exactly canceled
by the deterministic stable potential. However, similar con-
clusion is not true in the context of the local time and inverse
local time. Therefore, a physical understanding of what ex-
actly happens at this particular value of the parameter willbe
extremely useful.

There are several directions open for pursuing research far-
ther in this area. In this paper we have considered only the
average of the pdfs over disorder. However, in many cases, as
we have seen in this paper, the disorder broadens the distri-
butions considerably. For example, for the unstable potential
(µ > 0), even though for each realization of random poten-
tial the local time has a narrow exponential distribution, by
taking the disorder average one gets a broad power law dis-
tribution, which is the indication of large sample to sample
fluctuations and lack of self-averaging. Therefore, in thissit-
uations the knowledge about the disorder averaged pdf (first
moment) is not enough, and one requires to compute the other
higher moments (over disorder). Thus extending our formal-
ism to compute the full distribution (over disorder) of pdf will
be very useful.

The random part of the potential we have considered in this
paper is very particular, where the barrier heights grow as

√
x.

However, in realistic systems the random potential remainsof
order one throughout the sample. Therefore, it will be very
interesting to extend this formalism for more realistic random
potentials.

Recently several asymptotically exact long time results for
other quantities in Sinai model were obtained by using a real
space renormalization group method [39]. Using that method,
reproducing the exact results obtained in this paper remains
as challenging open problem. Another interesting direction is
to study the properties of functionals of a more general non-
Markovian stochastic process in random media, and to extend
our results to higher dimensions.

XII. APPENDIXES

APPENDIX A: PDF OF THE LOCAL TIME IN THE CASE
OF THE STABLE POTENTIAL, µ < 0 AND σ = 0 IN EQ. (6)

In this appendix we will derive the pdf of the local time
Ploc(T |t), for the stable potential (µ < 0) in the absence of
disorder (σ = 0). In this case by solving Eq. (23) with the
boundary conditionsy+(x→∞)→ 0 andy−(x→ −∞)→
0 we get

y±(x) = y±(0) exp
[

∓
(

−ν +
√

ν2 + 2α
)

x
]

, (A1)

whereν = |µ|. Substituting these results in Eq. (26) we get
λ(α) = −ν +

√
ν2 + 2α. Therefore the Laplace transform

G(α) in Eq. (28) becomes

G(α) =
−ν +

√
ν2 + 2α

α
exp

[

−
(

−ν +
√

ν2 + 2α
)

T
]

.

(A2)
Now making a shiftα = β − ν2/2, in Eq. (28) yields

∫ ∞

0

dt e−βt[eν2t/2Ploc(T |t)] =
√

2eνT e−
√

2βT

√
β + ν/

√
2
, (A3)

where the right hand side is the Laplace transform of
eν2t/2Ploc(T |t). Inverting the Laplace transform with respect
to β and after simplification gives the exact distribution of the
local time for allT andt,

Ploc(T |t) =

√
2√
πt
e−(T−νt)2/2t−νe2νT erfc

(

ν

2

√
t+

T√
2t

)

,

(A4)
where erfc(x) is the complementary error function. Note that
Eq. (A4) reduces to Eq. (31) forν = 0.

For larget, since

erfc

(

ν√
2

√
t+

T√
2t

)

∼ 1√
π

[

ν√
2

√
t+

T√
2t

]−1

× exp

(

−
[

ν√
2

√
t+

T√
2t

]2
)

, (A5)

Eq. (A4) simplifies to

Ploc(T |t) =

[

T

T + νt

]
√

2√
πt
e−(T−νt)2/2t. (A6)

Putting ν = 0 in the above equation one still recovers the
result given by Eq. (31). For non-zeroν, near the mean〈T 〉 =
νt, the pdf of the local time reduces to a Gaussian one

Ploc(T |t) ≈
1√
2πt

e−(T−νt)2/2t. (A7)

APPENDIX B: PDF OF THE SLOPE VARIABLES z±(0),
THAT APPEAR IN THE DISORDER AVERAGE

COMPUTATIONS

Both in the contexts of local and occupation time we have
a homogeneous differential equation of the type

1

2
y′′±(x) + F (x)y′±(x)− a±y±(x) = 0, (B1)

with the boundary conditionsy+(x → ∞) → 0 andy−(x →
−∞)→ 0, and the force

F (x) = µ sign(x) +
√
σξ(x), (B2)

with 〈ξ(x)〉 = 0 and〈ξ(x)ξ(x′)〉 = δ(x− x′). For each real-
ization of{ξ(x)} in the forceF (x), the solution of Eq. (B1)
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TABLE I: Flat potential.— Disorder averaged pdf’s of the local, inverse local, occupation and inverse occupation times of a particle starting
at the origin, diffusing in the Sinai potentialU(x) =

√
σB(x), whereB(x) represents the trajectory of a Brownian motion in space withthe

initial conditionB(0) = 0.

PURE CASE (σ = 0) DISORDERED CASE (σ > 0)

Ploc(T |t) =

√
2√
πt

exp

[

−T 2

2t

]

Ploc(T |t) t→∞,T→∞−−−−−−−−→
T/t fixed

1

t log2 t
f1(T/t)

f1(y) =
2

y
e−y/σK0 (y/σ)

Iloc(t|T ) =
T√
2πt3

exp

[

−T 2

2t

]
Iloc(t|T )

t→∞,T→∞−−−−−−−−→
t/T fixed

1

T log2 T
g1(t/T )

g1(x) =
2

x
e−1/σxK0 (1/σx)

Pocc(T |t) =
1

π
√

T (t − T )
, 0 < T < t

Pocc(T |t) = RL(T |t) + RL(t − T |t)

RL(T |t) t→∞−−−→ 1

log t
R(T )

R(T ) ≈
√

2σ√
πT

, for smallT

R(T ) ∼ 1

2T
, for largeT

Iocc(t|T ) =

√
T

πt
√

t − T
θ(t − T )

Iocc(t|T )
T→∞−−−−→
t>T

1

log T
I3(t − T )

I3(τ ) ≈
√

2σ√
πτ

, for smallτ

I3(τ ) ∼ 1

2τ
, for largeτ

is different, and for the disorder averaged computations per-
formed in this paper we finally require the distributions of
the stochastic variablesy′±(0)/y±(0) and in this appendix our
goal is to find these distributions.

By defining the variables

z±(x) =
y′±(x)

y±(x)
. (B3)

we find from Eq. (B1) thatz±(x), satisfy the stochastic Ric-
cati equation

z′±(x) = −z2
±(x) − 2F (x)z± + 2a±. (B4)

However, now the boundary conditions forz± in Eq. (23)
are not specified. Therefore for each realizations of{ξ(x)},
the solutions ofz±(x) involve one unknown each that can not
be eliminated due to the lack of the boundary conditions. In
other words, to find the distributions ofz±(x), we need the
respective distributions at some initial points, unfortunately
which are not specified.

It turns out, however, that this difficulty can be bypassed
by a method [37, 38, 41] which lets us to compute the dis-
tributions ofz+(0) andz−(0) without having the knowledge
of the boundary conditions onz+(∞) andz−(−∞). We will
present the method below for the present context.

First we consider Eq. (B4) forx > 0, i.e.,

z′+(x) = −z2
+(x)− 2[µ+

√
σξ(x)]z+(x) + 2a+. (B5)

Note thatz+(x) = y′+(x)/y+(x) is negative. We make
a change of variablex = −τ and substitutez+(−τ) =
− exp[φ(τ)] in Eq. (B5) to find that the new variableφ(τ)
satisfies a much simpler stochastic differential equation

dφ

dτ
= b(φ) + 2

√
σξ̃(τ), (B6)

whereξ̃(τ) = ξ(−τ) and thus〈ξ̃(τ)〉 = 0 and〈ξ̃(τ)ξ̃(τ ′)〉 =
δ(τ − τ ′). The source termb(φ) is given by

b(φ) = −eφ + 2a+e
−φ + 2µ. (B7)

Now we can interpret Eq. (B6) as a simple Langevin equa-
tion describing the evolution of a Brownian particle starting
at time τ = −∞, in a classical stable potentialUcl(φ) =

−
∫ φ

0 b(ϕ) dϕ = eφ + 2a+e
−φ − 2µφ − (2a+ + 1). Even

though we do not know the starting position of the particle
φ(−∞), it is completely irrelevant. No matter what the ini-
tial position is, eventually after a long time, i.e., whenτ is far
away from−∞, the system will reach equilibrium and hence
the stationary probability distribution ofφ is simply given by
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TABLE II: Unstable potential.— Disorder averaged pdf’s of the local, inverse local, occupation and inverse occupation times of a particle
starting at the origin, diffusing in the unstable random potentialU(x) = −µ|x| + √

σB(x), whereµ > 0 andB(x) represents the trajectory
of a Brownian motion in space with the initial conditionB(0) = 0. We denoteν = µ/σ.

PURE CASE (σ = 0) DISORDERED CASE (σ > 0)

Ploc(T |t) t→∞−−−→ Ploc(T ) , Ploc(T ) = 2µe−2µT
Ploc(T |t) t→∞−−−→ Ploc(T ), Ploc(T ) = 2µ(1 + σT )−(2ν+1)

Iloc(t|T ) =
T√
2πt3

exp

[

− (T + µt)2

2t

]

+ (1 − exp[−2µT ]) δ(t −∞)

Iloc(t|T )
t→∞,T→∞−−−−−−−−→

t/T fixed

1

T 2ν+1
g2(t/T )

+
(

1 − [1 + σT ]−2ν) δ(t −∞)

g2(x) =

[

2
√

π

σ2ν−1Γ2(ν)

]

e−2/σx

(σx)2ν+1
U(1/2, 1 + ν, 2/σx)

Pocc(T |t) = RL(T |t) + RL(t − T |t)

RL(T |t) t→∞−−−→ RL(T )

RL(T ) =µ
√

2 exp

[

−µ2T

2

]

×
[

1√
πT

− 3µ√
2

exp

(

9µ2

2
T

)

erfc

(

3µ√
2

√
T

)]

RL(T ) ≈ µ
√

2√
πT

, for smallT

RL(T ) ≈
√

2

9µ
√

π

e−µ2T/2

T 3/2
, for largeT

Pocc(T |t) = RL(T |t) + RL(t − T |t)

RL(T |t) t→∞−−−→ RL(T )

RL(T ) ≈ µ
√

2√
πT

, for smallT

RL(T ) ∼ e−bT , for largeT

b is given by the zero ofKν(
√

2p/σ) closest to origin in the left part
of the complex–p plane.

Iocc(t|T )
T→∞−−−−→
t>T

I1(t − T ) +
1

2
δ(t −∞)

I1(τ ) =µ
√

2 exp

[

−µ2τ

2

]

×
[

1√
πτ

− 3µ√
2

exp

(

9µ2

2
τ

)

erfc

(

3µ√
2

√
τ

)]

I1(τ ) ≈ µ
√

2√
πτ

, for smallτ

I1(τ ) ≈
√

2

9µ
√

π

e−µ2τ/2

τ 3/2
, for largeτ

Iocc(t|T )
T→∞−−−−→
t>T

I4(t − T ) +
1

2
δ(t −∞)

I4(τ ) ≈ µ
√

2√
πτ

, for smallτ

I4(τ ) ∼ e−bτ , for largeτ

b is the same constant as above.

the Gibbs measure

Pst(φ) = A exp

[

− 1

2σ
Ucl(φ)

]

= A exp

[

1

2σ

∫ φ

0

b(ϕ) dϕ

]

,

(B8)
where A is a normalization constant such that
∫∞
−∞ Pst(φ) dφ = 1. Now changing back to the origi-

nal variablez+(x) we obtain the distribution ofz+(0) as

P+ (−z+(0) = w) =
1

Ω+
wµ/σ−1 exp

[

− 1

2σ

{

w +
2a+

w

}]

,

(B9)

where

Ω+ =

∫ ∞

0

wµ/σ−1 exp

[

− 1

2σ

{

w +
2a+

w

}]

dw

= 2(2a+)µ/2σKµ/σ

(√
2a+

σ

)

.

(B10)

Similarly for x < 0, by puttingF (x) = −µ +
√
σξ(x) in

Eq. (B4) and substitutingz−(x) = exp[φ(x)] one finds that
φ(x) satisfies the same differential equation inx as Eq. (B6)
with ξ̃(x) = −ξ(x) anda+ is replaced witha−. Therefore
φ(x) has the same stationary distribution as Eq. (B8) and con-
sequently the distribution ofz−(0) is same as that of−z+(0),
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TABLE III: Stable potential— Disorder averaged pdf’s of the local, inverse local, occupation and inverse occupation times of a particle
starting at the origin, diffusing in the stable random potential U(x) = −µ|x| + √

σB(x), whereµ < 0 andB(x) represents the trajectory of
a Brownian motion in space with the initial conditionB(0) = 0. We denoteν = |µ|/σ.

PURE CASE (σ = 0) DISORDERED CASE (σ > 0)

Ploc(T |t) ∼ exp

[

−tΦ

(

T

t

)]

,

{{
{

t → ∞, T → ∞
T/t fixed

Φ(r) =
1

2
(r − |µ|)2 , nearr = |µ|

Ploc(T |t) t→∞,T→∞−−−−−−−−→
T/t fixed

1

t
f2(T/t)

f2(y) =

[

2
√

π

σΓ2(ν)

]

( y

σ

)2ν−1

e−2y/σU(1/2, 1 + ν, 2y/σ)

Iloc(t|T ) =
T√
2πt3

exp

[

− (T − |µ|t)2
2t

] Iloc(t|T )
t→∞,T→∞−−−−−−−−→

t/T fixed

1

T
g3(t/T )

g3(x) =

[

2σ
√

π

Γ2(ν)

]

e−2/σx

(σx)2ν+1
U(1/2, 1 + ν, 2/σx)

Pocc(T |t) ∼ exp

[

−tΦ

(

T

t

)]

,

{{
{

t → ∞, T → ∞
T/t fixed

Φ(r) = 2µ2

(

r − 1

2

)2

, near r =
1

2

Pocc(T |t) t→∞,T→∞−−−−−−−−→
T/t fixed

1

t
fo(T/t)

fo(y) =
1

B(ν, ν)
[y(1 − y)]ν−1 , 0 ≤ y ≤ 1

Iocc(t|T ) = I2(t − T, T ) θ(t − T )

I2(τ, T )
largeT−−−−→ |µ|T√

2πτ 3
exp

[

−µ2(τ − T )2

2τ

]

Iocc(t|T )
t→∞,T→∞−−−−−−−−→

t/T fixed

1

T
go(t/T )

go(x) =
1

B(ν, ν)

(x − 1)ν−1

x2ν
, x > 1

namely

P− (z−(0) = w) =
1

Ω−
wµ/σ−1 exp

[

− 1

2σ

{

w +
2a−
w

}]

,

(B11)
with

Ω− =

∫ ∞

0

wµ/σ−1 exp

[

− 1

2σ

{

w +
2a−
w

}]

dw

= 2(2a−)µ/2σKµ/σ

(√
2a−
σ

)

.

(B12)

Note that the distributions of−z+(0) and z−(0) given
by Eqs. (B9) and (B11) have maxima at(µ − σ) +
√

(µ− σ)2 + 2a± respectively and in the limitσ →
0 the distributions tend to delta functions around their
maxima. Therefore in the limitσ → 0 one re-
covers the pure case results by using the distribu-

tions P+ (z+(0)) = δ
(

z+(0) + [µ+
√

µ2 + 2a+]
)

and

P− (z−(0)) = δ
(

z−(0)− [µ+
√

µ2 + 2a−]
)

.

APPENDIX C: LEFT HALF OF THE DISORDER
AVERAGED PDF OF THE OCCUPATION TIME FOR SINAI

POTENTIAL ( µ = 0 AND σ > 0)

By taking the disorder average of Eq. (112) one gets

∫ ∞

0

dt e−αt

∫ t

0

dT e−pT RL(T |t) =
1

α
ℓ1(α, p). (C1)

Using the distributions of−z+(0) andz−(0) from Eqs. (B9)
and (B11) respectively witha+ = α + p anda− = α, from
Eq. (107) one gets

ℓ1(α, p) =
m1(α, p)

Ω+Ω−
, (C2)

where,

m1(α, p) =

∫ ∞

0

dw1

w1
exp

[

− 1

2σ

(

w1 +
2(α+ p)

w1

)]

×
∫ ∞

0

dw2

w1 + w2
exp

[

− 1

2σ

(

w2 +
2α

w2

)]

, (C3)

and

Ω+ = 2K0

(

√

2(α+ p)

σ

)

, Ω− = 2K0

(√
2α

σ

)

. (C4)
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Before we proceed further, let us take a detour to check the
normalization condition ofRL(T |t). By puttingp = 0 in the
above equations we get

Ω+ = Ω− = Ω = 2K0

(√
2α

σ

)

(C5)

and

m1(α, 0) =

∫ ∞

0

∫ ∞

0

dw1

w1

dw2

w2

[

w2

w1 + w2

]

× exp

{

− 1

2σ

[

w1 +
2α

w1

]}

× exp

{

− 1

2σ

[

w2 +
2α

w2

]}

. (C6)

Note that the above integral must remain invariant under the
transformationw1 ↔ w2 of the dummy variables. Therefore
we get

2m1(α, 0) =

[
∫ ∞

0

dw

w
exp

{

− 1

2σ

[

w +
2α

w

]}]2

= Ω2.

(C7)
Therefore we haveℓ1(α, 0) = 1/2, and inverting the Laplace
transform in Eq. (C1) with respect toα for p = 0 gives the
normalization condition

∫ t

0
RL(T |t) dT = 1/2.

Now we analyze the larget behavior ofR0(T |t). By mak-
ing a change of variablez = αt, it follows from Eq. (C1)

∫ ∞

0

dz e−z

∫ z/α

0

dT e−pTR0(T, z/α) = ℓ1(α, p). (C8)

In theα→ 0 limit, Ω+ = 2K0

(√
2p/σ

)

andΩ− ∼ − logα.
Therefore from Eq. (C2)

ℓ1(α→ 0, p) =
m1(0, p)

[

−2K0

(√
2p/σ

)

logα
] , (C9)

which suggest the following form forRL(T |t) at larget

RL(T |t) =
1

log t
R(T ), (C10)

whereR(T ) is independent oft.
Now using Eqs. (C9) and (C10), in the limitα → 0,

Eq. (C8) gives
∫ ∞

0

dT e−pTR(T ) =
m1(0, p)

2K0

(√
2p/σ

) , (C11)

wherem1(0, p) is obtained from Eq. (C3),

m1(0, p) =

∫ ∞

0

dw1

w1
exp

[

− 1

2σ

(

w1 +
2p

w1

)]

×
∫ ∞

0

dw2
e−w2/2σ

w1 + w2
. (C12)

By making change of variablesw1 = 2σx andw2 = 2σy in
the integrals in the above equation one gets

m1(0, p) =

∫ ∞

0

dx

x
exp

[

−
(

x+
p

2σ2x

)]

×
∫ ∞

0

dy
e−y

y + x
, (C13)

where now the integral overy can be expressed in terms of the
incomplete Gamma function [44]

∫ ∞

0

dy
e−y

y + x
= ex Γ(0, x). (C14)

Therefore, after straightforward simplification, Eq. (C13) be-
comes

m1(0, p) =

∫ ∞

0

dx

x
e−x Γ(0, p/2σ2x). (C15)

Now we will analyze the limiting behavior ofR(T ) for
small and largeT by taking the limit of large and smallp
respectively.

Since for largep

Γ(0, p/2σ2x) ≈ 2σ2x

p
e−p/2σ2x, (C16)

from Eq. (C15), one gets

m1(0, p) ≈
2σ2

p

∫ ∞

0

dx exp
[

−
(

x+
p

2σ2x

)]

=
2
√

2σ√
p
K1

(√
2p

σ

)

. (C17)

Since the asymptotic behavior ofKν(x) is independent ofν,
substitutingm1(0, p) from above in Eq. (C11) gives

∫ ∞

0

dT e−pTR(T ) ≈
√

2σ√
p
, (C18)

for small p, and by inverting the Laplace transform with re-
spect top one obtains

R(T ) ≈
√

2σ√
πT

, asT → 0. (C19)

To obtain the largeT behavior, we first consider the follow-
ing integral

D(z) =

∫ ∞

0

dx

x
e−xz Γ(0, p/2σ2x), (C20)

whereD(1) = m1(0, p), follows from Eq. (C15). Now by
differentiatingD(z) with respect toz, one can express it in
terms of the modified Bessel function as [44]

D′(z) = −
∫ ∞

0

dx e−xz Γ(0, p/2σ2x) = −2

z
K0

(√
2pz

σ

)

.

(C21)
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Now by integrating back again with respect toz, we obtain
m1(0, p) as

m1(0, p) = D(1) = 2

∫ ∞

1

dz

z
K0

(√
2pz

σ

)

= 4

∫ ∞

√
2p/σ

dx

x
K0(x), (C22)

where we have made the change of variable2pz/σ2 = x2.
Thep → 0 limit can be obtained from the limiting behavior
of the integral [45]

∫ ∞

y

K0(x) dx

x
∼ 1

2
(log y)2 asy → 0, (C23)

which gives

m1(0, p) ∼
1

2
(log p)

2
, asp→ 0. (C24)

SinceK0

(√
2p/σ

)

∼ − 1
2 log p, asp→ 0, Eq. (C11) gives

∫ ∞

0

dT e−pTR(T ) ∼ −1

2
log p, (C25)

asp → 0. Thus, inverting the Laplace transform with respect
to p one obtains

R(T ) ∼ 1

2T
, asT →∞. (C26)

APPENDIX D: LEFT HALF OF THE DISORDER
AVERAGED PDF OF THE OCCUPATION TIME FOR µ > 0

By taking the disorder average of Eq. (112) one gets

∫ ∞

0

dt e−αt

∫ t

0

dT e−pT RL(T |t) =
1

α
ℓ1(α, p). (D1)

As in the pure case (σ = 0), one also expects thet → ∞
behavior of the disorder averaged distribution to tend to at
independent form

lim
t→∞

RL(T |t) = RL(T ). (D2)

Therefore Eq. (D1) becomes
∫ ∞

0

dT e−pT RL(T ) = ℓ1(0, p). (D3)

Using the distributions of−z+(0) andz−(0) from Eqs. (B9)
and (B11) respectively witha+ = p and a− = 0, from
Eq. (107) one gets

ℓ1(0, p) =
1

Ω+Ω−

∫ ∞

0

dw1 w
µ/σ−1
1 exp

[

− 1

2σ

(

w1 +
2p

w1

)]

×
∫ ∞

0

dw2
w

µ/σ
2 e−w2/2σ

w1 + w2
, (D4)

with

Ω+ = 2(2p)µ/2σKµ/σ

(√
2p

σ

)

,

Ω− = (2σ)µ/σΓ(µ/σ).

(D5)

Now the integral overw2 in Eq. (D4) can be expressed as [44]

∫ ∞

0

dw2
w

µ/σ
2 e−w2/2σ

w1 + w2

= w
µ/σ
1 ew1/2σΓ

(µ

σ
+ 1
)

Γ
(

−µ
σ
,
w1

2σ

)

, (D6)

whereΓ(α, x) is the incomplete Gamma function. Therefore
Eq. (D4) becomes

ℓ1(0, p) =
µm2(p)

(2σ)µ/σ+1(2p)µ/2σKµ/σ(
√

2p/σ)
(D7)

where

m2(p) =

∫ ∞

0

dw1 w
2µ/σ−1
1 e−p/σw1Γ

(

−µ
σ
,
w1

2σ

)

. (D8)

The small and largeT behavior ofRL(T ) can be found by
analyzing Eq. (D7) in the limiting casesp → ∞ andp → 0
respectively.

Making a change of variablew1 = p/σx in Eq. (D8), and
then taking thep→∞ in the incomplete Gamma function,

Γ
(

−µ
σ
,

p

2σ2x

)

∼
( p

2σ2x

)−µ/σ−1

exp
(

− p

2σ2x

)

, (D9)

gives

m2(p) ≈ (2σ)2(2p)µ/σ−1

∫ ∞

0

dxx−µ/σ exp
[

−
(

x+
p

2σ2x

)]

,

(D10)
where the integral above on the right hand side can further be
expressed in terms of the modified Bessel function as [44]

∫ ∞

0

dxx−µ/σ exp
[

−
(

x+
p

2σ2x

)]

= 2(2σ)µ/σ−1(2p)−µ/2σ+1/2Kµ/σ−1

(√
2p

σ

)

. (D11)

Since the largex behavior orKν(x) is independent ofν,
Eq. (D7) simplifies to

ℓ1(0, p) ≈
µ
√

2√
p

as p→∞. (D12)

Therefore by inverting the Laplace transform in Eq. (D3) with
respect top, one gets

RL(T ) ≈ µ
√

2√
πT

, for smallT. (D13)
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Now we will analyze the the largeT behavior, by taking the
limit p → 0 in Eq. (D7). It is straightforward to obtain from
Eq. (D8) that

m2(0) =
(2σ)2µ/σ+1Γ(µ/σ)

4µ
, (D14)

which gives

ℓ1(0, p) ≈
1

4
Γ
(µ

σ

)

(

σ
√

2√
p

)µ/σ

K−1
µ/σ

(√
2p

σ

)

, (D15)

for small p. However if one takes the limitp → 0 now in
Kµ/σ(

√
2p/σ) in the above expression, it only gives the nor-

malization condition
∫∞
0 RL(T )dT = 1/2 and does not pro-

vide any information about the largeT behavior ofRL(T ).
We make the following ansatz

RL(T ) ∼ e−bT , (D16)

for largeT . Then the Laplace transform

∫ ∞

0

dT e−pT RL(T ) ≈ 1

p+ b
. (D17)

for small p. Therefore substituting Eqs. (D15) and (D17)
in Eq. (D3), one can conclude thatb is given by the zero
of Kµ/σ(

√
2p/σ) closest to origin in the left part of the

complex–p plane.

APPENDIX E: DISORDER AVERAGED PDF OF THE
OCCUPATION TIME FOR µ < 0

Taking the disorder average of Eq. (106) gives

∫ ∞

0

dt e−αt

∫ t

0

dT e−pT Pocc(T |t)

=
1

α+ p
+

p

α(α+ p)
ℓ1(α, p), (E1)

where we have substitutedℓ2(α, p) = 1− ℓ1(α, p).
We are interested in finding the behavior ofPocc(T |t), in

the scaling limitt → ∞, T → ∞, but keepingT/t = y
fixed, which corresponds to the limit of conjugate variables:
α → 0, p → 0, keepingp/α = s fixed. Substitutingz = αt,
T = yz/α andp = αs in Eq, (E1), we get

∫ 1

0

dy

∫ ∞

0

dz e−(1+sy)z

[

z

α
Pocc

(yz

α

∣

∣

∣

z

α

)

]

=
1 + sm3(α, s)

(1 + s)
,

(E2)
wherem3(α, s) = ℓ1(α, αs). Equation (E2) suggest the form,

Pocc(T |t) =
1

t
fo(T/t), (E3)

in the scaling limitt → ∞, T → ∞, while their ratioT/t
is kept fixed. In the limitα → 0, by substituting the above
scaling form in Eq. (E2), it is straightforward to obtain

∫ 1

0

dy
fo(y)

1 + sy
=

1 + sm3(0, s)

(1 + s)
, (E4)

where puttings = 0, gives the normalization condition
∫ 1

0 fo(y) dy = 1. Using this normalization, the above equa-
tion can be simplified to the following elegant form

∫ 1

0

1− y
1 + sy

fo(y) dy = m3(0, s). (E5)

Now by using the distributions ofz±(0) from Eqs. (B9)
and (B11) witha− = α anda+ = α(1 + s), from Eq. (107)
we get

m3(α, s) = ℓ1(α, αs)

=
1

Ω+Ω−

∫ ∞

0

dw1

∫ ∞

0

dw2
w2

w1 + w2

× w−ν−1
1 exp

[

− 1

2σ

{

w1 +
2α(1 + s)

w1

}]

× w−ν−1
2 exp

[

− 1

2σ

{

w2 +
2α

w2

}]

, (E6)

where

Ω+ = 2(2α)−ν/2(1 + s)−ν/2Kν

(

√

2α(1 + s)

σ

)

, (E7)

Ω− = 2(2α)−ν/2Kν

(√
2α

σ

)

, (E8)

with ν = |µ|/σ. Note that we simply can not take the limit
α→ 0 in the integrals in Eq. (E6), as it diverges in that limit.
However, it is possible to extract the divergent contribution
outside the integrals which finally cancels exactly with thedi-
vergence ofΩ±. This is done by making the change of vari-
ables

α(1 + s)

σw1
= x, and

α

σw2
= y, (E9)

in the integral to get

m3(α, s) =
σ2να−2ν(1 + s)−ν

Ω+Ω−

∫ ∞

0

dx

∫ ∞

0

dy

× xνyν−1

x+ (1 + s)y

× exp

[

−
{

x+
α(1 + s)

2σ2x

}]

× exp

[

−
{

y +
α

2σ2y

}]

. (E10)

Now the limit α → 0 can be taken in the above equation,
as, in this limitΩ+ → σνα−ν(1 + s)−νΓ(ν) and Ω− →
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σνα−νΓ(ν). Therefore from Eq. (E10) we get

m3(0, s) =
1

Γ2(ν)

∫ ∞

0

dy yν−1e−y

∫ ∞

0

xνe−x

x+ (1 + s)y
dx.

(E11)
Now the integration overx can be expressed in terms of the
incomplete Gamma function [44]

Γ(ρ, λ) =
e−ttρ

Γ(1− ρ)

∫ ∞

0

x−ρe−x

x+ λ
dx, [Reρ < 1, λ > 0],

(E12)
which gives

m3(0, s) =
ν(1 + s)ν

Γ(ν)

∫ ∞

0

y2ν−1esyΓ (−ν, (1 + s)y) dy.

(E13)
The right hand side, however, is one of the inte-
gral representation of the Gauss’s hypergeometric function
F (α, β; γ; z) [44], which gives

m3(0, s) =
1

2
F (1, ν; 2ν + 1;−s). (E14)

Now by using another integral representation [44]

F (α, β; γ;−s) =
1

B(β, γ − β)

∫ 1

0

yβ−1(1− y)γ−β−1

(1 + sy)α
dy,

(E15)
we get

m3(0, s) =
1

B(ν, ν)

∫ 1

0

1− y
1 + sy

[y(1− y)]ν−1 dy, (E16)

whereB(α, β) = Γ(α)Γ(β)/Γ(α + β) is the Beta func-
tion [44].

Now by comparing Eq. (E16) with Eq. (E5), one immedi-
ately gets

fo(y) =
1

B(ν, ν)
[y(1− y)]ν−1 , 0 ≤ y ≤ 1. (E17)
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