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We present a formalism for obtaining the statistical prapsrof functionals and inverse functionals of the
paths of a particle diffusing in a one-dimensional quenafzediom potential. We demonstrate the implemen-
tation of the formalism in two specific examples: (1) where fihnctional corresponds to the local time spent
by the particle around the origin and (2) where the funclicoaresponds to the occupation time spent by the
particle on the positive side of the origin, within an obsgion time window of sizé. We compute the disorder
average distributions of the local time, the inverse logakt the occupation time and the inverse occupation
time, and show that in many cases disorder modifies the bahdrastically.

PACS numbers: 05.40.-a, 02.50.-r, 46.65.+g

I. INTRODUCTION TA R

The statistical properties of functionals of a one dimen-
sional Brownian motion have been extensively studied and
have found numerous applications in diverse fields ranging
from probability theory[[1,12]13], financei[4) 5| 6], meso-
copic physicsl[[7], computer science [8], and in understagdi
weather records [9]. The positiar(r) of a one dimensional
Brownian motion evolves with time via the Langevin equa-
tion
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starting fromz(0) = 0, wheren(r) is a thermal Gaus-
sian white noise with meafn(r)) = 0 and a correlator
(n(t)n(r")) = é(r — 7’). A functionalT is simply the in-
tegral up to time
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t
T :/ V(z(r)) dr, 2
0 FIG. 1. Schematic plots ofl" defined by Eq.[[2) as a func-
tion of ¢, corresponding to four different realizations of the paths

where V(z) is a prescribed non-negative function Whose[éx(T)L for0 < r < ] denoted byRi, Ra, Ry and R4 respec-

choice depends on the specific observable of interest. For , .

fixed initial . fthe B . . d a fixed tively. For fixedt¢ (¢1 or ¢t or t3 or t4, shown by vertical dashed
Ixe m't',a p(_)SItlonxo of the rown-lan motion an. a hixe lines), T takes different value for different realizations. On thieest
observation time, the value ofI" varies from one history or - panq for a fixedr” (horizontal dashed line) correspondinig differ-

realization of the Brownian patfx:(7)} to another (see F_i 1) ent for different realizationst; for Ry, t» for Ra, t5 for Rs andts
and a natural question is: what is the probability densibcfu  for Rr,.

tion (pdf) P(T'|t, 20)?

Following the path integral methods devised by Feyn-
man [10], Kac showedl[1L] 2] that the calculation of the ) ) ;
pdf P(T|t, z¢) can essentially be reduced to a quantum mecase, the corresponding functiofila) = [ d(x(1) — a) dr
chanics problem, namely solving a single particle Shrgeiin has the following physical meaning:(a) da is just the time
equation in an external potenti#l(z). This formalism is spent by the particle in the vicinity of the poiatin space,
known in the literature as the celebrated Feynman-Kac forl-€., in the regionfa,a + da], out of the total observation
mula. Subsequently, this method has been widely used téme ¢. Note that, by definition 7'(a) da = t. The func-
calculate the pdf of” with different choices o/ (z) as de-  tionalT'(a) is known as the ‘local time’ (density) in the lit-
manded by specific applications. This has been reviewed rerature. In the second ca$gz) = 6(z), the functional
cently in Ref.[8]. In particular, two most popular applicets 7 = f(f 6(z(7)) dr measures the time spent by the particle
correspond respectively to the choicésx) = d(x — a) on the positive side of the origin out of the total timand is
and V(z) = 6(x), whered(z) is the Dirac’s delta func- known as the ‘occupation’ time. The probability distrilmrti
tion andf(x) is the Heaviside step function. In the former of the occupation time was originally computed by Lé&vy [11]
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foT P(T'|t,0) dT" = %amsm( /T/t), and is known as the Whereé(z) is a Gaussiar/1 white noise v/vith meé&f(z)) =0
arcsine law of Lévy. Since then, the local and the occupa@nd @ correlatoté(z)é(a’)) = d(z —a'). The constant

tion times for pure diffusion, have been studied extengivel "€Presents the strength of the random potential.

by mathematiciand [14, 13.114.115] 16] 17]. Recently, the !N this paper, we first present a generalization of the
study of the occupation time has seen a revival in physic§eynman-Kac formalism to calculate the pB{T'[t, o) in
literature and has been used in understanding the dynamif§eSence of an a_rbltrary extern-al potentiglr). To obtain

out of equilibrium in coarsening systems)[18] 19], ergagtici ©€XPlicit results using this formalism, we next assume that t
properties in anomalously diffusive procesdes [20, 21iein random part of _the_ potential is as in the Sinai model, i.ex, ou
newal processe5 [22], in models related to spin glagsés [23§Xternal potential is of the fori (z) = Ua(z) + o B(x),

in simple models of blinking quantum dofs [24], and also inWhere B(z) is a Brownian motion in space and,(z) is

the context of persistenck_(25.126]. Local and Occupatioﬁhe non-random deterr_mmstlc p_art of the pptentlal. It &urn
times have been also studied in the context of stochastic eRut that the asymptotic behavior of the disorder averaged
godicity breaking[[27], first passage tinle][28], diffusiaome ~ Pdf P(T'|t, o), quite generically, has three different quali-
trolled reactions activated by catalytic sites [29] andugiion ~ tative behavior depending on the curvature of the determin-
on graphsl[3d_31]. In polymer science, a long flexible poly-istic potentiallUy(x), i.e., whetheWy(x) has a convex (con-
mer of lengtht is often modeled by a Brownian path up to cave upward) shape representing a stable potential (iraca
timet. In this context, the local time at a positidtis propor-  tive force towards the origin), a concave (concave downjvard
tional to the concentration of monomersrin a polymer of ~ Shape representing unstable potential (a repulsive faveg a

lengtht. from the origin) or just flat indicating the absence of any ex-
A natural and important question is how to generalize the€rnal potential. To facilitate explicit calculation, weodrel
Feynman-Kac formalism to calculate the statistical propsr the deterministic potential simply by, (z) = —p|z|, so that

of the functionals of the type in EJ(2) wherr) is notjust 4 < 0 represents a stable potential > 0 represents an un-
a pure diffusion process, but it represents the position of gtable potential ang. = 0 represents a flat potential. This
particle in an external random medium. While various prop-specific choice facilitates explicit calculation, but tresults
erties of diffusion in random media have been widely studiecire qualitatively similar if one chooses another form o thi
in the past([32,_ 33, 34, B5], the study of statistical prapert Potential. Thus, in our model, we will consider the external
of functionals in random media is yet to receive its much deotential as

served attention. In this paper we undertake this task. More

precisely, we are interested in calculating the pdf'|¢, z) U(z) = —plz| +VoB(z) )
of a functionall’ as in Eq.[[R) where(7) now evolves via the .
Langevin equation whereB(x) = fo”“ &(2') da’ is the trajectory of a Brownian
motion in space (see Fifjl 2). Note that the case 0 cor-
dx responds to the pure Sinai model. Fi 2) shows typical
= F(e(r) +n(r) @3 reP P Que: (2) shows typ

realization of potentials for = 0, 4 > 0 andyu < 0. The

corresponding force in EQ1(3) is simply given b
wheren(7) represents the thermal noise as in Hq. (1) and P g I3 Py g y

F(x) = —dU/dz represents the external force, the deriva- I

tiv(e of the poténtiaU(z), felt by the particle. Most generally, Fx) = psignz) + Vot (). ©
the external potential consists of two palt§z) = Ug(z) +

U, (x), a deterministic part/;(«) and a random pa#/, ().
The random part of the potenti&l.(z) is ‘quenched’ in the
sense that it does not change during the time evolution of th
particle, but fluctuates from one sample to another accgrdin
to some prescribed probability distribution. Consequgettie
pdf P(T'|t, zo) will also fluctuate from one sample of the ran-
dom potential to another and the goal is to compute the diso

der averaged pdP(T'|t, o) where the— denote the average . ; a a .
over the distribution of the random potential. A popular relod Ing to the choice¥’(z) = 5(x)_andv(_z) . 0(z) respeptwely
in Eq. [2). Also, to keep the discussion simple, we will prése

for the random potential is the celebrated Sinai model [36]burfinal results forg = 0 corresponding to the particle start-

where various disorder averaged physical quantities can be - . e
computed analytically [32, 33, 87,138,139, 40| 41l 42], and9 at the origin. However, our method is not limited only to

yet the results exhibit rich and nontrivial behaviors arsbal this Spec'.flc ch0|c_e. Some of these results were briefly an-
nounced in a previous letter |43].

capture many of the qualitative behaviors of more complex In additi in thi Iso introd th i f
realistic disordered systems. The Sinai model assumes that n addition, In this paper we aiso introduce the notion o

_ ; : inverse functional’, which is defined as follows. W(x) in
i%ég;c_e \i/iB(:c) whereB(z) represents a Brownian motion Eq. [3) is non-negative, then for each path(r)}, T is a

non-decreasing function af which we formally denote by
dB T = g(t|{z(r)},z0). Therefore for a given realization of
qr §(x) (4)  path {z(7)} and givenT there is a unique value af (see

We will demonstrate how to calculate explicitly, using our
generalized Feynman-Kac formalism, the disorder averaged
df P(T'|t, o) when the external potential is of the form given
y Eq. [3). Despite the simplicity of the choice of the exter-

nal potential, a variety of rich and interesting behaviar ba
obtained by tuning the parametefo, as shown in this pa-
per. We will present detailed results for the two functi@nal
namely for the local time and the occupation time correspond



0 xT

FIG. 2: A classical particle (represented ®ydiffusing in a typical realization of the potentiél(xz) = —pu|z| + /o B(z), where B(z)
represents the trajectory of a Brownian motion in space With) = 0. The three figures are for = 0, 1 > 0 andu < 0 respectively. The
dash lines show the potential for= 0.

Fig.[), which we formally write as the inverse of the func- before tackling the problem with disorder which is obvigusl
tional g [49] harder. In the same spirit, we have presented the detailed
discussions on the local time, inverse local time, occopati
t =g " (TH{=z(r)}, z0). (7)  time and inverse occupation time for the pure case=( 0)
in Secs[1N,[V¥,[VTl and[IXR respectively, before computing
This inverse time physically means the observation time that their disorder average in SeEs] V] VI MIII ahdl X respedtjve
is required for any given patfiz(7)} in order to produce a Sec[X] contains some concluding remarks. Some of the de-
prescribed value df’. Of course, for the same val@g for a  tails are relegated to the appendixes. The results are summa
different path{z(7)}, the value ot will be different. Thus  rized in Table§lI[l, an&TlI.
is a random variable for a fixeéd, which takes different values
for different realizations of paths and we would like to com-
pute its pdf, which we denote bi¢|T, z() and by definition Il.  GENERAL APPROACH
ST I(t|T,0)dt = 1. Clearly, this pdf will also differ from
sample to sample of the external potential in ). (5) and our |n this section we will show how to compute the pdfs
goal is to obtain the disorder averaged distributlofiT’, z¢).  P(T|t,x) andI(¢|T, z) for arbitrary non-negativ® (z) and
In this paper, we present detailed results f6f{T’,0) again  arbitrary starting positionr(0) = =, for each realization
for the two choices of/(z) = 6(z) andV (z) = 6(x) cor- of random forceF'(z), by using a backward Fokker-Planck
responding to the local time and the occupation time respecequation approach. In the following discussion we will de-
tively. The inverse local and occupation times are useful fonote the functional defined in Edd(2) by(t[{z(7)}, z0),
experimentalists as they provide an estimate on the rejuireand use7’ as the value of the functional for a given path
measurement time. For example, in the context of polymerg{z(7)}, for0 <7 <t].
the inverse local time is the typical length of a polymer re- SinceV (x) is considered to be non-negatiiedefined by
quired to obtain a certain monomer concentration. Eqg. (@) has only positive support. Therefore, a natural step
The rest of the paper is organized as follows. In §&c. I, wdo introduce the Laplace transform of the paf7'|¢, =) with
present our general approach for computing thelpdf|¢,z)  respecttd’
of the functionall’ defined by Eq.[[2) for a given, and the o0
pdf I(¢|T,z) of the inverse functional defined by El (7) for ~ Qp(z,t) = / P(T|t,x)e”?" dT
a givenT, for a given sample of the random potential, for 0

arbitrary starting position of the particle(0) = x and for — <epg(t{r(r)}ﬂr)>

arbitrary but non-negative (z). After this section we con- 2(0)=x

sider the specific examples of local time and occupation time t

by settingV (x) = é(z) andV (z) = 0(x) respectively. We = <eXp{—p/ Viz(t')) dt’}> . (8)
will use different notations for the pdfs in the two examptes 0 z(0)==

avoid any misunderstanding. In the first example, wiéie  yhere( ), _, denotes the average over all paths that start at
the Iocal time, we denote the pdf of the local '.mﬁeT|t, 0)  the positionz(0) = z and propagate up to time Our aim

for a givent by Foc(T'|t), and the pdf of the inverse local s to derive a backward Fokker-Planck equation@y(z, ¢)
time I(¢[T’ 0) for a givenT' by lioc(t|T). In the second ex- ith respect to the initial position(0) = x.

ample, wherel" is the occupation time we denote the pdf of e consider a particle starting from the initial position

the occupation timeé>(T'|¢, 0) for a givent by Poc(T'|t) and  eyolves via Eq.[B) up to time + At. Now we split the
the pdf of the inverse occupation tind¢t|T’,0) for a given  time interval[0, ¢ + At] into two parts: an infinitesimal in-

T by Ioce(t|T). While our final goal is to obtain the disor- teryal[0, At], over which the particle experiences an infinites-
der averaged distribution8oc(T'|t), fioc(t|T'), Pocc(T'|t) and  imal displacemenf\z from its initial positionz and the re-
Toce(t|T), itis however, instructive to study the pure case first,maining interval[At, ¢ + At] in which the particle evolves
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from a starting position: + Az. Sincexz(0) = xz, one gets the particle starts at — +oo it will never cross the origin

OAt Viz(t))dt' = V(z)At + O[(At)?]. Therefore using in finite time. Note that Eq[{14) is valid for each sample of

Eq. [8), and splitting the integral over into the above two the quenched random foré&(x). Thus in principle, from the
time intervals we obtain solutionu(x) one obtainsP(T'|t, z) by inverting the double

Laplace transform in Eq[{1L3) for each sample of quenched
N At Vie(t)] dt’ random potential, and then takes the average over the disord
Qp(,t + At) = { expq —p ) [2(#)] Our next goal in this section, is to show how to compute the
2(0)=z pdf I(¢|T, ) for a given sample of the quenched random force
— e*pV(I)At<Qp(x + Az, t)> , @)  F(x). Ilttumns outthatl (¢|T, z) is related to the pdP(T'|t, z)
Az in their Laplace space as shown below. By definition we have,
where( ) A, denotes the average with respect to all possible
displacementaz. _ 1
Now, in the limit At — 0, integrating Eq.[[8) one gets, I[(tT,2) = (3 (t - g~ (TH{e(n)},2))), - (19)

At However, it is elementary that for each realization of path
Az = F(z)At + / n(r)dr +O[(At)?].  (10)  {z(7)}
0

Hence, using the zero mean and the uncorrelated propefties Q(t — g—l(T|{x(7)}, x)) = 5(T — g(t|{$(7)}7 x)) ‘ﬂ‘ ,
the noise we get dt

(16)
. (Ax) . {(Ax)?) where|dT/dt| is the usual Jacobian of the transformation,
Aim o = F(z) and Aim ———=1, (1) which is simplydT'/dt as bothT andt have only positive

i support. It immediately follows from the above two equasion
Therefore, by Taylor expanding E] (9) for smAlt, and tak- that

ing the limit A¢ — 0, one arrives at the ‘backward’ Fokker-

Planck equation, [T, 2) = <5(T gt} z)) cil_f>

0 10?2 0

(17)

x

Therefore, Laplace transform @f¢|T, =) with respect tal’

with the initial condition@,(z,0) = 1, which is easily '€ads

checked by Eq.[d8). The advantage of the above equation oo

over the usual Feynman-Kac formalism [, 2] is that, in the / dT e PP I(HT, x) = <€pg(t{z(7)}’x) %>
later case one has a ‘forward’ Fokker-Planck equation (spa- 0 x
tial derivative with respect to the final position) whereeaft - 190

obtaining the solution of the differential equation, ones ka pot
again perform an additional step of integration over thel fina
position. In contrast, EqL{12) involves the spatial deines
with respect to the initial position of the particle, and ben
no additional step of integration over the final positionds r

QP(‘Ta t)v (18)

where Q,(z,t) is given by Eq.[[B). Now taking a further
Laplace transform in Eq[18) with respecttdt is straight-
forward to obtain

quired. < [T _ 1 — au(z)
The standard practice of attacking the partial differéntia / dte t/ dT e PTI(t|T, 2) = ————. (19)
. . . 0 p
equations of above type is by using the method of Laplace
transform. We define the Laplace transformdf(z, t) with  Thus, we have established via E§S](18) &ndl (19), the ralatio

respect ta ships between the Laplace transforms of the pdf of the func-
- tional T' defined by Eq.[{2) and the pdf of the inverse func-

u(z) = / Qp(x, t)e =t dt tional defined by Eq[{7). Hence, again in principle, from the
0 solutionu(z) of the ordinary differential equatiofi{lL4), one

< [T _ obtainsI (¢|T, z) by inverting the double Laplace transform in
:/0 dte t/o dT e "' P(T|t,z), (13) Eq. [I3) for each sample of quenched random potential, and
then takes the average over the disorder. Note that putting
where for notational convenience, we have suppressed the , — ( in Eq. (I¥) and inverting the Laplace transform with
andp dependence af(z). Now by taking Laplace transform respect tgp immediately verifies the normalization condition
of Eq. (I2) with respect towe obtain the ordinary differential [T, @) dt = 1.
equation In the rest of the paper, we will demonstrate how to imple-
1 ment this formalism for the particular examples of the local
§u”(x) + F(z)u'(z) — [@ + pV(z)ju(z) = -1, (14) time corresponding to the choid&x) = §(x) and the occu-
pation time corresponding to the choitgz) = 6(x). Since
whereu/(z) = du/dx. The appropriate boundary conditions in these examples we consider the starting position of the pa
u(x — +o00) are to be derived from the observation that if ticle to be the origin, we need to only find the solutig{) of



the differential equatiorf{14). In each example, we will con Boc(T'|t), as

sider the pure cases & 0) first, which help us anticipate the - -

general features of the results in the disordered case () u(0) = / dt efoct/ dT e PT Boo(T'|t)
0

studied later. 0

AMa)
= . 25
afp + Ma)] (25)
lll. LOCAL TIME WITHOUT DISORDER ( o =0)
where)(«) is simply given by
In this casé/ (z) = §(z), correspondst@’ in Eq. ) being (0) — 2, (0) ' (2)
the local time in the vicinity of the origin ané(T|¢,0) in Ma) = 20 with 2y (o) = 222 (26)

Eq. (I3) beingPoc(T|t) — the pdf of the local timel" for 2 y+(z)
a given observation time window of sizeand the starting
position of the particle:(0) = 0. For our purpose we only
need the solution(0) of the differential equatiod.(14), which
corresponds to the starting position of the particle being t
origin. However, to obtain(0) we have to solve Eq[{14) in e

the entire region of: with the boundary conditions(z — /O Ploc(Tt) dT = 1. (27)
+00) which are derived from the following observation. If

the initial positionz — 400, the particle can not reach the Since\(«) is independent op, inverting the Laplace trans-

Note that puttingp = 0 in Eq. [Z%) and then inverting the
Laplace transform with respect toreadily verifies the nor-
malization condition

origin in finite time, which means that the local tinfé = form in Eqg. [2B) with respect tp yields
0. Therefore, by substitutin®(T'|t,z — +o0) — 4(T) in -
Eq. (I3) one obtains the boundary conditions Gla) = / dt et Pog(T'[t)
0
_ 1 AMa
ule — Fo0) = 7. 20 = 2 ep (AT ®)

We have to obtain the solutiongz) = u () forz > 0and  which is valid for any arbitrary forcé'(z). In the following
u(x) = u_(x) for z < 0 by solving Eq.[TH) separately in the subsections we will consider qualitatively different tgpef

respective two regions, deterministic potentials to derive more explicit results.
1 " !
—uy(x) + F(x)uy(zr) — oaus(x) = —1, 21
2 (@) () (@) +(2) (21) A. Flat potential

with the boundary conditions(z — o) = 1/a and

We first consider the simple Brownian motion without any
external forceF'(z) = 0. In this case the solutions of Eq.{23)
are obtained as

u_(x — —o0) = 1/«, and then matching the two solutions
u4(z) andu_(z) atx = 0. The matching conditions are

u4(0) = u—(0) = u(0), u/ (0)—u_(0)=2pu(0). (22) ye () = 12 (0) exp [?J:\/ﬁ} - (29)

The first condition follows from the fact that the solutionshu _ o
be continuous at = 0 and the second one is derived by inte- Using the solutions in Eq[{26) one getsn) = v2a and

grating Eq.[T4) across = 0. hence the Laplace transfor@(«) in Eq. (Z8) becomes
By making a constant shift. (z) = 1/a+ A1y+(x), from -
Eq. (2A) onefin_ds that, (x) satisfy thep-independent homo- Gla) = / dt e~ Pog(T'|t) = @eﬂ/ﬂj (30)
geneous equation 0 Va
1, , Now inverting the Laplace transform with respectdpone
§yi($) + F(2)ys(z) — ays(z) =0 (23)  finds that the distribution of the local time is Gaussian fior a

T andt,
with the boundary conditiong, (x — oo) — 0 andy_(z — )
—o0) — 0. The constantd ;. are determined by the matching Boo(Tt) = V2 [ ] _ (31)

conditions given in EqL{22), which can be rewritten as Neo 2t
1
Aty4(0) = A_y_(0) = u(0) — . (24a) B. Unstable potential
A4y (0) = Ay’ (0) = 2pu(0). (24b)

Now we consider the case of a Brownian particle moving in
Eliminating the constantd. from Eq. [Z%), we obtain the an unstable potentidl (z) such that/(z — +o00) — —cc.
Laplace transforma(0), defined by EqI{I3) wittP(T'|¢,0) =  The corresponding repulsive forde(z) drives the particle



eventually either terco or to —oo. The pdf of the local time

In this case the Laplace transfo@{«) of the pdf of the lo-

Poc(T|t) in the case of an unstable potential tends to a steadgal time Poc(7|t) is still given by Eq.[2B). However, unlike

distribution Poc(T") ast — oo, which can be computed ex-
plicitly. To see this consider the functi@®«) in Eq. (Z8). By
making a change of variabte= at, it follows from Eq. [Z8),

1 [ T
aA ar oo (T
AssumingPoc(T|t — o0) = Boc(T), we find form the above

equation thaté(«) — Poc(T)/a @asa — 0. Comparing this
behavior with Eq.[[(28) gives

Bloc(T) = A(0) exp [=A(0)T7,

Gla) (32)

(33)

provided\(0) is a finite positive number. Thus generically

for all repulsive forceF'(x), the local time distribution has a
universal Poisson distribution in the limit— oco. The only
dependence on the precise form of the foFte) is through
the rate constant(0).

The rate constank(0) can be expressed in terms of the

force F(z) in a more explicit manner. Putting = 0 in

Eqg. (Z3) and solving the resulting equation with the bound-

ary conditiongy (z — o0) — 0 andy_(z — —o0) — 0 we
get

B [0 (y) dy
y+($) - y+(0) fooo 1/12(9) dy, T > 07 (34)
Lo ?(y) dy
(x) =y ()= 2 <0, 35
@) =i OF= SO0 a0 (39

wherey(y) = exp[— foy F(x) dz]. Substituting these results
in Eq. [ZB) gives the rate constant as
1 1 1

MO=3 I° _w2(y) dy i Jo~ ¥ (y) dy

(36)

Let us now consider a simple example where the potentiai’
—p|z| with > 0, corresponding to the repulsive

Ulx) =
force F(x) = psign(z) from the origin. In this case(y) =

exp[—pu|y|] and hence from EqL{B6) we git0) = 2.

C. Stable potential

the unstable potential in the previous section, the distidin
Poc(T'|t) does not approach a steady state as oo. Instead
it has a rather different asymptotic behavior.

To deduce this asymptotic behavior, let us first consider the
average local timéT") = fg(&[z(t’)b dt’. For larget’, the av-
erage(d[x(t')]) approaches its stationary valggz(t')]) —
p(0), wherep(0) = 1/Z from Eq. [3T). Hence as— oo the
ratio 7'/t approaches the limit

@ 1

L~ (39)
where 7 is given by Eq.[(3B). Thus for large the average
local time scales linearly with timg which indicates that the
natural scaling limit in this case is when— oo, T — oo
but keeping the ratie = 7'/t fixed. We will see that in this
scaling limit the local time distributiofoc(7'|t) tends to the
following asymptotic form

o 18 ()]

whered®(r) is a large deviation function.

To compute the large deviation function we first substitute
this presumed asymptotic form &f,c(T'|t) given by Eq.[(4D)
in the Laplace transform(ar) = [ e=*" Poc(T'|t) dt and
then make a change of variable = 7'/t in the integra-
tion. The resulting integral can be evaluated in the lafge
limit by the method of steepest descent, which gités) ~
exp[—TW (a)] whereW (o) = min,[{a + ®(r)}/r]. Com-
paring this result with EqL{28) gives

(40)

a+ P(r)

min, [ } = Aa), (41)
here)(«) is given by Eq.[[26). Thua(a) is just the Leg-
ndre transform o®(r). Inversion of this transform gives the
exact large deviation function
O(r) = maxy[—a + rA(a)], (42)

with A(«) given by Eq.[[ZB). This is a general result valid for
any confining potentidl/ (z).

We will now explicitly compute the large deviatidr(r) for

We now turn our attention to the complementary situationthe particular potential given by Efl (5) with< 0 ando = 0.

when the potentidl/ (z) is stable, i.e.U(x — to00) — oo. In

Substituting the corresponding foré&x) = —|u|sign(z) in

this case the forc&'(z) is attractive towards the origin so that Eq. (Z3) and solving the resulting differential equatioriw
the system eventually reaches a well defined stationany.statthe boundary conditiong; (z — o) — 0 andy_(z —

The stationary probability distributigs(z) for the position of
the particle is given by the Gibbs measure

6—2U(z)
Z b

whereU (z) = — [ F(2') d2’ andZ is the partition function,

7 = /00 e 2V@) 4y,

(37)

p(z)

(38)

—o0) — 0 we get

y+(z) = y+(0) exp F (—|u| +V 2+ 2a) x} )

Substituting these results in EG126) we gét) = —|u| +

V112 + 2a. From Eq. [4R) one then gets the large deviation
function

(43)

1 2

5 (= lul)

a(r) =

(44)



It turns out that for this particular form of the forédgx) =  whereK, (x) is the modified Bessel function of order44]
—|u| sign(z), the Laplace transform in Eq{[28) can be in-andK_,(x) = K, (z). Averaging Eq.[[28) over disorder we
verted to get the local time distributiaBoc(7'|¢) exactly for  finally get the exact formula
all T andt. The calculations are presented in apperdix A. o
We find that in the largelimit, the distribution reduces to the / dt e~ Poc(T[t) = —
asymptotic form 0

1 d .,
_— 7). 49
e T However, it is not an easy task to invert the Laplace tramsfor

2
L exp l— (— — |M|) ] , (45)  to get the exact distributioRoc(T'|t) for all T andt. In the
V2t 2\t following subsections we will extract the asymptotic behav

; e . iors of Poc(T'|t), for the three cases, when the deterministic
near the meakil’) = |u|t, which verifies the result obtained loc(T'[t)

above by the large deviation function calculation. partof the potentialis: (i) flat correspondingjto= 0, (ii) un-

In fact, the limiting Gaussian form of the distribution okth ts(t)a;blg gorrespondmg Yo > 0 and (i) stable corresponding

local time near its mean value is quite generic for any stable
potentials (where the system eventually becomes ergadlic) a
is just the manifestation of the central limit theorem. Fritwe A. Flat potential (1 = 0) — Sinai model
definition, T — (T") = fot{é[x(t’)] — (&[=(t")])} dt’, it follows
that wherl” — (T'), the random variable§z(t')] — (6[z(¢')])
at diffe_rent time_st’ become only weakly correlat_ed. '_I'hen in potential, i.e.. = 0 in Eq. [8). Our aim is to find out how
the limit whenz IS much larger than the correlat|o_n time be- this random potential modifies the behavior of the local time
tween thes:e varlab_les, one expects the central I_|m|t tlmazoreIn this case substituting(T") and ¢(0) from Eq. [2B) with

to hold which predicts a Gaussian form fornear its mean 1 = 0in Eq. [@3) we get the Laplace transform of the disorder
value(T). averaged local time distribution as

P|0(;(T|t) ~

We first consider a particle diffusing in the continuous $ina

o0
IV. LOCAL TIME WITH DISORDER ( o > 0) / dt efa‘th,C(TH) =
0

So far we have considered the case where the random part _ 1 0 o 20(1+0T) (50)
of the potential was not present. In this section we will gtud ak? (\/ﬁ/g) or = ° '

the effect of the randomness by adding a random patrt to the

potential. In particular, we will consider the diffusive tiam ~ We will now consider the interesting limit where batandT

of the particle when the forc'(z) is given by Eq.[(B) with ~ are large, but the ratip = 7'/t is kept fixed. This corresponds

o> 0. to taking the limitae — 0 with o' = s keeping fixed. In this
Equation[[ZB) still remains valid for each realization od th limit

force F'(z), i.e., for each realization of¢(xz)}. Our aim is

to compute the average of the pdf of the local tifg (T'|t) K, (ﬁ) — 1 log o (51)

over the noise history¢(z)}. From Eq. [ZB), one needs to g 2

know the distribution of\(«) = [2_(0) — 24 (0)]/2, which is

now a random variable sindg(x) is random. The variables and

—z4(0) andz_(0) are independent of each other and there-

fore their joint probability distribution factorizes toetindi- K 20(1+0T)\ . V2s (52)

vidual distributions. The calculations of these distribos 0 o \NVT )

are presented in appendik B. Using the distributions,qi)

from Egs. [B®) and{B11) respectively with. = a, one gets  Therefore substituting= s/ay andT = s/« in Eq. [&D), in
the limit o — 0 we get

with .
q(T) = /000 w7t exp {% {w(l +0T) + %H dw - 1%%%[(3 <%) . (53)

47) The above equation suggests that, in the limit> oo and

T — oo, while their ratioT'/t is kept fixed,Poc(T'|t) should

= 2(20)"/27 (1 4+ oT)"M* K, ( 2a(1+0T) have the scaling form
- n/o )

o
— 1
(48) Poc(T'[t) = @fl (T/¢). (54)



Now substituting the above form in E§{53) and making the 1
change of variablg = 1/y, we obtain after straightforward
simplification

/OOO dje Y [%} = 4K} <%> . (55)

Note that the right hand side of the above equation is simply
the Laplace transform of the functigh(1/4)/4*. Therefore
by using the identity

o fily)

00 efa2/4w
/ — e “dw = 2K (a\/g) (56)
0

w

and the convolution property of Laplace transform, we can in
vert the Laplace transform in E§_{55) with respect.ttnvert-
ing the Laplace transform and after simplification we finally 0
get

V2 1 FIG. 3: The scalin i [ id line i
o B .3 g functiorfi(y) in Eq. [&4). The solid line is
h(/g) = 2y/0 (1l —x) exp [ 207z(1 — x)} - (57) plotted by using EqI{80), and the dash line is plotted by gsive
limiting form f1(y) ~ vV2roy~3/2e7%/ asy — oo.

Therefore the scaling functiofi (y) is simply given by

2 (Y2 dx y i.e., in the limitt — oo, the distributionP(Tt) tends to
hiy) = 5/0 z(1—x) xp { 20x(1 — x)} - (58) a steady state distributioR(7) for all T > 0. The dis-
order averaged local time distribution has a broad power law
By substitutinge(1 — ) = 1/z gives distribution even though for each sample the local time has
a narrow exponential distribution (see EqI(33) in $ecCJ)IIB
(59) This indicates wide sample to sample fluctuations and lack of
self-averaging.

fily) = 2/4 \/%GXP (*%Z) )

where the integral can be evaluated exactly [44], whichlinal
gives the scaling function in Eq.{b4) as C. Stable potential(u < 0)

2 —y/o
fily) = 5 ° Y7 Ko (y/o). (60) In this case substituting(7) and ¢(0) from Eq. [@B) in
Eqg. (49) and denoting = |u|/o we get
However the scaling given by Edq_{54) breaks down for very

smally (very smallT) wheny < o. The scaling function is o0 N 1
y (very ) Y g 0t e Fog(TTH) =

displayed in Fig[B. In the large limit, using the asymptotic K2 (Voo
the behaviot,, (z) ~ /7 /2x e~ from Eq. [6D) we find that ok (V2a/o) ,
fiy) ~ V2roy=3/2e2v/7, 0 V)2 20(1 + 0T)
X 57 (14+oT)"“K, T (63)
B. Unstable potential(y. > 0) We consider the scaling limit where batlandT" are large,

but their ratioy = T/t is kept fixed. This corresponds to
In this case the behavior in the lintit— oo can be obtained  taking the limitae — 0 with keepingaT = s fixed, which
by either settingy = 0 in the integral in Eq.[{47) or taking the gives the following limiting forms
a — 0limitin K,(.) in Eq. ([48), which gives

ags

1 T — 64
T) — D(p/o)(20)/7 (14 0T) 17, (61) el = ¢4

V2 T 2
whereI'(x) is the Gamma functior[45]. SubstitutingT) K, < a) — (21/) (J\/_> , (65)

andq(0) in Eq. (49) and inverting the Laplace transform with g va

respect tax gives
Ky< 2a(1+aT)> K, <\/2s>. (66)
PoolTT0) = 20(1 + o) 2171, (62) g Ve



Substituting the above limits on the right hand side of EJ) (6
and making change of variablés= s/ay andT = s/a on
the left hand side, it is straightforward to get

/OO dy e—s/y S S >
0
4 9]

a—y2 loc <_
T T N, T 9/ N A SV/2 174 )
(20)"T2(v) Os [ K < Vo )1 (67)

o |ay
in the limit « — 0. This suggests the limiting form for

Poc(Tt)

V2s

PeclTT) — 1 (T/9),

in the scaling limitt — oo andT — oo with a fixed ratioy =

(68)

T'/t. To compute the scaling function we substitute the above

scaling form in Eq.[{67), and make the change of varigbie
1/y. Then Eq.[(@7) simplifies to the Laplace transform

R [/K (%)] - 69

2
e—a /4w

which can be inverted with respect4pby using the identity
a

[ G

and the convolution property of the Laplace transform. Afte
simplification, the inverse Laplace transform gives

e~ dw = 25"/°K, (a\/g) (70)

wu+1

B 2y2v—1 1/2 dz
2(9) = Goyran) /0 21— z)r
Y
X exp [—m] . (71)

By making a change of variablg1 — ) = 1/z in the above
integral, it can be presented in the form

/O<> Zufl/Q(Z . 4)71/2
4
X exp (f%z) dz, (72)
g
which now can be expressed in more elegant foinis [45] as
2 2v—1
R = || (D) vz v o)

(73)

ol2(v)
whereU (a, b, z) is the Confluent Hypergeometric Function
of the Second Kind (also known as Kummer’s function of the
second kind)[[45], which has the following limiting behargo

2y21/71

fa(y) = 202 T2(n)

¥
(o)

U1/2,1+v,2) ~ F\;VE) x~ v forsmallzx, (74a)
1
Ul1/2,1+v,2) ~ — for largex. (74b)

o faly)

y/o

FIG. 4: The scaling functiory>(y) in Eq. [68), plotted by using
Eq. (3).v = |ul/o.

The scaling functiorf,(y) is displayed in FigJ4. Using the
limiting behaviors from Eq.[{d4), one finds that the scaling
function decays ag(y) ~ y**=3)/2¢=2¥/ for largey. For
smally, the scaling function behaves Agy) ~ y”~!, which
increases withy for v > 1, however, diverges when — 0
for v < 1, a behavior qualitatively similar to the Sinai case
(see Fig[B). For < 1, the disorder wins over the strength
of the stable potential. In that situation when the partigés
trapped in the wells of the random potential, the weak exiern
deterministic force often can not lift it out of the well and
send towards the origin. Therefore, the scaling funcfigiy)
carries very large weight negr= 0 (which corresponds to
very small local timel” for a given observation timg.

Note that, for the particular value= 1/2, the scaling func-

tion has a simple formfz(y) = \/2/moy exp(—2y/o).

V. INVERSE LOCAL TIME WITHOUT DISORDER ( ¢ = 0)

The inverse local time means how long one has to observe
the particle until the total time spent in the infinitesimalgh-
borhood of the origin i¥". The double Laplace transform of
the pdf of the inverse local time is obtained by simply putin
z = 0in Eq. (I9). Corresponding(0) in Eq. {I9), which is
nothing but the double Laplace transform of the pdf of local
time, has already been evaluated in $e¢. Il and is given by
Eqg. [28). Substituting.(0) and replacind (¢|T, 0) with the
pdf of the inverse local timd|c(¢|T"), after straightforward
simplification, forz = 0 Eq. {I9) reads

dte™ ,
/0 p+ Aa)

whereA(«) is given by Eq.[[2B), which depends on the force
F(z) through Eq.[[2ZB). Inverting the Laplace transform with

/ - dT e T Tioe(t|T) = (75)

0



STABLE POTENTIAL (4 < 0)

ﬁIlOC(HT)

AT POTENTIAL (12 = 0)

t)T

FIG. 5: The pdfs of the inverse local time for stable£ —1/2), flat
(x = 0) and unstabley( = 1/2) potentials, plotted using EJ_{[78)
andT = 2.

respect tg gives the general formula

/00 dt e”* Lo (t|T) = exp [\ (a)T], (76)

0

valid for arbitrary forceF'(x), a result known in the mathe-
matics literaturel [17, 46].
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it decays exponentiallyioc(t|T) ~ exp(—p?t/2). On the
other hand when the potential is unstahle;> 0, as we see
from Eq. [19), the distributiodioc(¢|7") is not normalized to
unity. In this case the particle escapestiso with probability
(1 —e~2+T) and Eq.[7B) gives the distribution only for those
events where the particle does not escapgdo. Therefore
for 4 > 0, it is appropriate to represent the full normalized
distribution as
T (T + pt)?

Tioc(t|T) = — -

|OC( | ) \/W eXp |: 2t
+(1—e ) §(t—o00). (80)
Note that the second term does not show up in the Laplace
transform offc(¢|T") with respect ta.

VI. INVERSE LOCAL TIME WITH DISORDER ( ¢ > 0)

In this section, we switch on the disorder by considering
o > 0in the force given by EqLI6). In the presence of disor-
der, taking the disorder average of Hgl(76) gives

/00 dt e Loe(t|T) = exp [-A()T], (81)

0
with A(a) = [2-(0)—24(0)]/2, where—z (0) andz_(0) are
independent random variables, whose distributions arengiv
by Egs. [B®) and{B11) respectively with- = «. The object
exp [—A(a)T] on the right hand side of E_(B1), has already
been evaluated in SeIV, which is given by Hgl(46). In

We first consider the pure case where the force given byhe following subsections we will determine the behavior of

Eq. (@) witho = 0. Substituting solutions of Eq[{P3)
for F(z) = psignz) in Eq. [ZB) we obtaim\(a) = p +

V12 + 2a. Now using thisA(a) in Eqg. [Z®) and making a
change of the parametar= 3 — 12 /2 we get

/ dt e Pt [e“zt/Qﬂoc(ﬂT)} = ef“Te*mT, (77)
0

where the right hand side is simply the Laplace transform O(Ni

e“zt/21|oc(t|T) with respect ta. The Laplace transform can
be inverted to obtain the exact pdf of the inverse local time

T (T + pt)?
Tioc(t|T) = —_ . 78
|0C( | ) \/ﬁ exp |: on ( )
with the normalization condition

o 1 for u<0

— o~ (pHlpeDT _ n=Y,

/0 Tioc(t[T') dt = e - { e=20T for >0,
(79)

which is simply obtained by putting = 0 in Eq. [Z8). As we
infer from Eq. [ZB), although in the limit — 0 the inverse
local time distributionlioc(t|T) ~ exp(—12/2t) is indepen-

dent of 4, for larget it depends on the nature of the poten-

Lioc(t|T) in the scaling limitt — oo, T — oo, while keeping
their ratiox = ¢/T fixed, for the three qualitatively different
cases: (i =0, (i) > 0 and (iii) p < 0.

A. Flat potential (1 = 0) — Sinai model

Following the analysis of SeE_TVIA, in the limi& — 0
th keepingaT" = s fixed,

log” « Vo
Therefore, substituting = s/« andT = s/« in the limit
a — 0, Eq. [B1) reads

exp [~ A@)T] (82)

e s ST |5 4 V2s
dre ™" | =l (= |= )| = —— K2 | —=
/0 X e [a Ioc(a a):| 1og204 0<\/E
(83)
This suggest the scaling form
—_— 1
Loc(t|T) = ——=— g1 (t/T), 84
toc(t|T) TlogQTgl(/) (84)

tial, as shown in Fig]5. While in the absence of any force,
i.e.,u = 0 the inverse local time distribution has a power-law in the limit¢ — oo, T — oo but keeping: = t/T fixed. Sub-
tail Tioc(t|T") ~ t=3/2, for the stable potential, i.ey, < 0,  stituting this scaling form in EqL{B3), after straightfcm
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0.7 Now in the limit of« — 0 with T = s keeping fixed, one
gets
0.6 v
K, ( v 20‘) RGP <U\/§> . (89
0.5 o 2 Vs
2a(1 4 0T) V2s
K|————| K, | —|.
® 0.4 ( > ) ( ﬁ) (89)
B
& 03 Therefore Eq[{37) becomes
2
0.2 S— 4T—2v V2s
— T — V/2KV v = .
PN = o) l ( NG )] o
0.1
In the corresponding limif" — oo, — oo, but keeping
their ratiox = ¢/T fixed, using the scaling form

0 5 10 15 20 25 30
ogx

1
Tioc(t|T) = Tar T 92(t/T) (91)
FIG. 6: The scaling functiom:(y) in Eq. [84). The solid line is

plotted by using Eq[{86), and the dash line is plotted by@isie  in Eq. [81) one finally arrives at the Laplace transform
limiting forms: g1 (z) ~ v2roz~/? exp(—2/0x) for smallz and

~ 21 for largex. 2
g1(x) og(ox)/x for largex /OO e A . @
o O PV TRy |1 (Ve
simplification one obtains (92)
The Laplace transform can be inverted with respesetttob-
> sz 5 [ V2s tain the scaling functio,(x) and in fact the inversion has
/0 dze™ gi(x) = 4K; NG (85) already been done in SEC_I¥ C. Comparing the above equa-

tion with Eq. [69) readily givegs(z) = o2 fo(1/x)/2?
Now direct comparison of the above equation with EEgl (55)Wherefz(x) is given by Eq.[ZB). Substituting(1/x) gives
givesg (x) = f1(1/z)/x?, wheref;(x) is given by Eq.[ED). .
Substitutingf1(1/x) one obtains the scaling functian (z) go(z) = { 20/ ] e U1/2,1 4 1v,2/0z), (93)

as 0-2u1"2(y) (0-1.)21/-{-1
gi(@) = 2 e VT (1/0x) (86) whereU (a, b, z) is the Confluent Hypergeometric Function
x ’ of the Second Kind, whose its small and largédehaviors

are given in Eq.[{44). The scaling functign(z) is dis-
played in Figl¥. The scaling function increasegjas:) ~
exp(—2/ox) for smallz and eventually decreases for large
asgs(z) ~ 1/2%. In particular, fory = 1/2 it has a very

simple formgs (z) = \/2/703x73/2 exp(—2/0x).

which is displayed in Fidll6. The scaling function increaaes
g1(x) = \2mox=1/? exp(—2/ox) for smallz and decays as
g1(x) ~ 2log(ox)/x at largex.

B. Unstable potential (x > 0)

In this case the right hand side of EGQ.81) is given by C.  Stable potential ¢+ < 0)

K2 ( Sa(l+ O’T)/O’) Following the analysis of SeE_TMC, in the limit — 0,

exp [—Ma)T] = (14+0T) ™" . (87) keepingaT' = s fixed one gets

K2 (V2a/o) )
_— 4 2
with v = u/o. Puttinga = 0 in the above equation gives  exp [-A(a)T] = 20)T2(0) [S”/QKV <%>] . (94)
the normalization conditionfy™ Zioc(¢|7) dt = (1 + oT) =%,

which implies that for the unstable potential, where thedor
is repulsive from the origin, the particle escapests with
probability 1 — (1 + ¢7)~%¥, and the disorder averaged
pdf Iic(¢|T") obtained by inverting the Laplace transform in
Eg. (81) represents only those events where the particle doe - 1

not escape tetoo. Joo(t|T) = 7 95(t/T), (95)

with v = |u|/o.
On the other hand, in the corresponding liffiit— oo, t —
oo, but keeping /T = x fixed, using the scaling form
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solve the differential equatioi{ll4) fer> 0 andz < 0 sep-
arately and then match the solutionsrat 0. The matching
condition for the slope of the solutions is obtained by inég
ing Eq. [13) across = 0. Thus the matching conditions are

u4(0) = u—(0) = u(0), andu/ (0) =u’(0), (99)
whereu (z) satisfy the following differential equations:

S (@) + Fla)uy (a) — (o +pus(x) = 1, (100)

forz > 0, and

%u’_/ () + F(z)u' (z) — au_(z) = —1, (101)

for z < 0. The boundary conditions af; (x) whenz — +co

are obtained from the fact that if the starting position goes
to +oo, the particle will never cross the origin in finite time:
P(T|t,x — o0) = 6(t —T) andP(T|t,x — —o0) = §(T),

FIG. 7: The scaling functiongz(z) in Eqg. {21) plotted by using

Eq. [@3).v = |u|/o. and hence from EqL{13)
u(00) = . and u-(—o00) = L (102)
a+p o
one gets

- - Writing u4 (z) = 1/(a + p) + Byy4(x) andu_(z) =
/ dt e~ Tioo(t]T) :/ dze *gs(z), (96) 1/a + B-y_(x), we obtain the homogeneous differential
0 0 equations foy (x) as

with s = «T. Therefore, in this scaling limit EqCB1) be- 1
comes 5311(33) + F(2)y) (x) — (a + p)y+(x) =0, (103)
2
° 4 2 forxz > 0, and
/ dre *"g3(r) = ——om5 s"?K, ﬁ . v
0 (20)T>(v) NG ' ,
(97) Fy=(@) + F2)y_(2) — ay-(2) = 0, (104)
Now comparing the above equation with Hg.](92) one gets ) N
for z < 0, with the boundary conditiong. (z — o) = 0 and
g3(x) = 0% go (), (98) y_(z — —o0) = 0. The constant®.. are determined by the

matching conditions given in EQ_{99), which can be rewnitte
where the scaling functiog () is given by Eq.[9B) and dis- 44 J J )

played in Figl¥. Whildio(¢|T") has the same scaling function
(up to a multiplicative factor of2¥) for both stable and unsta-
ble potential, the physical behaviors, however, are quiterel a+p
ent. For the stable potentialo.(t[T) is normalized to unity. By, (0) = B_y_(0). (105b)
Note that the scaling functiog () becomes narrower as one
increases, as expected since the particle becomes more lo-
calized near the origin. For the unstable potential, on thero d
hand, the weight ofi,c(¢|T) decreases d&7") 2, as one in-
creaseg, as expected since when the repulsive force from the - .
origin becomes stronger, the particle escapesdo with a u(0) = / dt efoct/ AT ™77 Poee(T'|t)
higher probability. 0 0

+Biyo(0) =~ + By (0)=u(0), (105a)

Eliminating the constants from EJ_{105), we obtain the
ouble Laplace transform of the pdf of the occupation time

1

_ el(aap) 62(aap) ( 06)

= + ,
VIl. OCCUPATION TIME WITHOUT DISORDER ( o = 0) @ atp

where
In this casel (z) = 6(x), corresponds t@" in Eq. (2) be- z_(0)

ing the occupation time in the regian> 0 and P(T'|t,0) in t(a,p) = [m} ) (107)
Eq. (I3) beingPocc(T'|t) — the pdf of the occupation time for - N
a given observation time window of sizeand the initial po- Uo(a,p) = [L@} 7 (108)
sition of the particlez(0) = 0. Again as before, we need to z-(0) — 24(0)



andzy(z) = v/ (x)/y+(x). Note that
l1(a, p) + La(a,p) = 1. (109)

Puttingp = 0, in Eq. [106) gives:(0) = 1/a, and hence in-
verting the Laplace transform with respectitoeadily verifies
the normalization
t
/ Poco(T|t) dT = 1. (110)
0

For any symmetric deterministic potential the distribatio
of the occupation time is symmetric aboutits mé&h = ¢/2,
i.e., Pocc(T'|t) = Pocc(t — T'|t). Then, it follows from this
symmetry that

li(a+p, —p) = La2(a, p). (111)

In other words, the double-integral in EG.{106) remains in-

variant under the following simultaneous replacemefist+
p) — a anda — (a + p). Thus under these replace-
ments one must have (0) — —z_(0) and vice versa, which
also implies that (0) = —z_(0) for p = 0. Equivalently,
l1(a,0) = £3(r,0) = 1/2, which also directly follows from
Eqgs. [10P) and{111).

Therefore if one splits the distribution function into two
parts: Poco(T'|t) = R (T'|t) + Rr(T|t) such that

[e%e} t
/ dt e / AT e TR, (Tl = 2P (119
0 0 o

[e%e} t
/ dt e~ / dTe‘pTRR(T|t):€2(a’p), (113)
0 0 a+p

then it follows from the above discussion thHat (t — T'|t) =
Rg(T|t). This symmetry of the distribution will come handy
later. Moreover, putting = 0 and inverting the Laplace trans-
forms with respect tex gives the normalization for each part
separately

t t 1
/0 Ru(Tt) dT:/O Re(Tidr =2 (114)

As an example, we first consider the pure case: 0 in the

force given by Eq.[16). FoF'(z) = psign(z), the solutions
of Egs. [10B) and(104) are obtained as

y+(0) exp [— (u + V2 +2(a +p)) l‘} , (115)

for x > 0, and,

y-(0) exp [(u +Vp?+ 2&) w} ;

for z < 0.
¥, (0)/y+(0) as

20(0) = = [+ ViE+2(a+ )]
z_(0) = {u—i— V2 +2a} .

In the following subsections we will consider the threeeliff
ent cases: (i} = 0, (i) x> 0 and (iii) u < 0.

Y4 (z)

(116)

y— ()

These give the expressions fer (0)

(117)
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A. Flat potential (x = 0)

Foru = 0, usingz, (0) = —/2(a + p) andz_(0) = V2«
from Eg. [106) we get

o t
/ dte " / dT e P Poeo(Tt) = (118)
0 0

1
Vala+p)

Inverting the double Laplace transform with respecp tand
then with respect tay finally reproduces the well known
Lévy’'s “arcsine” law [11] for the pdf of the occupation time
of an ordinary Brownian motion,

a/T(t—T)

The distributionP,c(T'|t) diverges on both ends = 0 and
T = t, which indicates that the Brownian particle “tends” to
stay on one side of the origin.

B. Unstable potential (x> 0)

Since forp > 0, the force is repulsive from the origin
x = 0, one would expect the occupation time distribution
to be convex (concave upward), with minimumZat= ¢/2.
Now in the limit of large window sizé¢ — oo, the part of
the distributionP,cc(7T'|t) to the left of the midpoinT” = ¢/2
approache®, (T'|t), as the midpoint itself goes ts.

By making a change of variable = «t, it follows from

Eq. (I12)

oo z/a
/ dze_z/ dT e PRy (T|z/a) = £1(a,p). (120)
0 0

Now the larget limit of Ry (7T'|t) can be obtained by taking
a — 0in the above equation, where one realizes glT'|t)
approaches a steadyifidependent) distribution?, (T'|t —
o0) — R (T), whose Laplace transform is given by

/ b dT e PTRy(T) = £,(0,p), (121)

0

where ¢, (0, p) is obtained from Eq.L(I07), by using. (0)
from Eq. [IIF), which gives

£1(0,p) = (122)

2p
3u+ 2 +2p

The above Laplace transform can be inverted with respect to
p, which gives

Ry(T) = /27772

\/jﬁ i}/%exp <9—2L2T> erfc(%ﬁ)} . (123)

with the normalization/;” R (T') dT = ¢,(0,0) = 1/2.



The limiting behavior of the distribution is given by

V2
RL(T) = —, 124
for small7T and decays exponentially for lar@é
—u?T/2
Ty~ Y2 E (125)

T ouym T32

C. Stable potential(z < 0)

As we discussed earlier in SEc_IlIC in the context of

the local time, for generic stable potentfd(z) the system
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VIIl. OCCUPATION TIME WITH DISORDER ( ¢ > 0)

Now we consider the occupation time when the disorder is
switched on:c > 0 in Eq. (8). Our aim is to calculate the

disorder averageff,.(T'|t). As one realizes from Eq$._{1106),
(I07) and [[IOB), to calculatBy(T'|t) one needs the distri-
bution of —z (0) and z_(0), which are given by Eqs[{B9)
and [BI1) witha, = a + p anda_ = « respectively. In
the following subsections, we will consider the three cases

(i) 1 =0, (ii) > 0 and (i) p < 0.

A. Flat potential (1 = 0) — Sinai model

We first consider the diffusive motion of a particle in a con-

eventually becomes ergodic at largand hence the average tinuous Sinai potential, where the potential itself is avgne

(0[x(t)]) approaches its stationary vali§{x(t)]) — Z./Z,
whereZ = [*_e~2V(®) 4z is the equilibrium partition func-
tion and Z. J; e V@) dz is the restricted partition
function. Therefore, for large the average occupation time
(T) = fg(e[x(t’)b dt’ scales linearly wittt

Zy
T — | — | t.
m - (%)
Note that when the potentidl(x) is symmetric about zero,
the average occupation tin{g¢’) = ¢/2 for all ¢.
From the definition, T — (T) fot{e[:z:(t’)] -
(Olz(t)])} dt’, it follows that whenT — (T'), the random

variable9[z(t')]— (0[z(t')]) at differenttimes’ become only
weekly correlated. Then in the limit whenis much larger

(126)

than the correlation time between these variables, onecéxpe

ian motion in space. In the limit of large window siz¢he
left half of the disorder averaged pdf of the occupation time
RL(T|t) for 0 < T < t/2 is obtained by taking the disor-
der average in Eq[{IIL2). The right half of the distribution
fort/2 < T < tis just the symmetric reflection of the left
part. The detailed calculations fét;, (T'|t) are presented in
appendiX®T.

We find thatR ., (T'|t) has a large behavior

L R(r),

RL(T|ﬁ) ~
where the functionR(T') is independent of. The limiting
behaviors ofR(T') are given by

— 131
logt (131)

the central limit theorem to hold, which predicts a Gaussian

form for the distribution of the occupation tiniE near the
mean valugT),
T —(T))?
Pocc(T|t) ~ exp [M} 5

5o (127)

where the variance? = (T?) — (T')? can be obtained from
the Laplace transform of the moments

e _ 0"u(0)
T e tdt = (—1)" , (128)
| S
with «(0) given by Eq.[106).
For the particular attractive fordé(z) = —|u| sign(z), us-

ing z+ (0) from Eq. [I1¥) in Eq.[[I06) and taking derivatives

with respect tg in we get

ou(0) 1
_ - 129
B |,y 202 (129)
9%u(0) 1 1 1
=t —— —). 1
op? ’p_o 2a° * dp*a? o (O‘) (139

Therefore inverting the Laplace transform in Hg._{128) with

respect toa immediately gives(T) = t/2 for all ¢, and
(T?) = t2 /4 + t/4p? for larget which giveso? = t /4>

V20
R(T) =~ \/T’ (132)
asT — 0 and
1
R(T) ~ 5 (133)
for largeT'.

B. Unstable potential (x > 0)

Forpu > 0, we find that disorder does not change the asymp-
totic behavior of the distribution for the pure case qualita
tively. The calculations are presented in appefdix D. We find
that in the limitt — oo the left half of the disorder averaged
occupation time distribution tends ta éandependent form

R (T|t) = R.(T). (134)

In fact the smalll’ limit of Ry, (") remains same as in the pure
case

Ri(T) ~ n2

VT

For largeT, the distributionR, (T') still decays exponentially

(135)

Rp(T) ~ e T, (136)



where the decay coefficientis, however, different from the
pure case (see Hq. D17).

C. Stable potential (© < 0)

This particular situation, where one finds the interplay be-
tween two competing processes, is a very interesting one. On
one hand, as we discussed in SeEc_YII C, the stable potential

)

~
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in the absence of the disordered potential makes the system =

ergodic in the large limit, and as a result the pdf of the oc-
cupation time is peaked at t/2 and decays fast away from

it. On the other hand, as we discussed in Eec_MIIl A, without

any underlying deterministic potential the disorder agerh

pdf of the occupation time is convex (concave upward) with a

minimum atl’ = ¢/2 and diverges at the both erffis— 0 and

T — t. Therefore, if both the stable potential and disordered

potential are included, as their relative strength: |u|/o is
varied, one expects a phase transition at some criticagévalu
where the system looses ergodicity.

In the scaling limit where bothh — oo and7T — oo, but
their ratioy = T'/t is kept fixed, we find that the disorder
averaged pdf of the occupation time has a scaling form

—_ 1

POCC(T|t) = ;fO(T/t). (137)
The calculation of the scaling functiofy(y) is presented in
appendidE, where we find the Beta law

1

JoW) = gy WA -7, 0<y<l (139

wherev = |u|/o andB(v, v) is the Beta function [44]. Now
if one tunes the parameteby varying eithey. or the disorder
strengtho, the distributionPocc(7'|t) exhibits a phase transi-
tion in the ergodicity of the particle positionat = 1 (Fig.[3).
Forv < v, the distributionf,(y) in Eq. (I3T) is convex with
a minimum aty = 1/2 and diverges at the two engs= 0, 1.

FIG. 8: The scaling functiong,(z) in Eq. [I3T) plotted by using
Eq. (I38).

IX. INVERSE OCCUPATION TIME WITHOUT
DISORDER (o = 0)

In this casel (¢|T°,0) in Eq. (I9) is replaced witliocc(¢]| 1),
which is the distribution of the timé needed to observe the
particle with a starting positiom = 0, until the total amount
of time spent on the positive side > 0 is 7. Correspond-
ing »(0) in Eq. {I9) withz = 0, which is the double Laplace
transform of the pdf of the occupation time, has already been
evaluated in Se€_MII, which is given by EG.{106). Substitut

ing «(0) in Eq. [I9) gives

» OO o0 g
/ dT e PT / dt e Toee(t|T) = M, (139)
0 T a+p

wherel;(«, p) is given by Eq.[108). Comparing the above

This means that particle tends to stay on one side of therorigiequation with Eq.[[I13), one can infer thaj.(¢|7") and

such thatl" is close to eithef or ¢. In other words the paths

Rr(T|t) have the same functional form, i.decc(t|T) =

with small number of zero crossings carry more weight thanRz(T'|t) and especially for symmetric deterministic potential

the ones that cross many times. kor> v, the scenario is
exactly opposite, wherg, (y) is maximum at the mean value

Ioeo(t|T) = Rp(T|t) = RL(t — T|t).
It is useful to present the above equation in the following

y = 1/2 indicating that particle tends to spend equal timesform,

on both sides of the origim = 0, such that paths with large

number of zero crossings, for whidhis closer tot/2 carry o Y o z |z
larger weight. Similar phase transition in the ergodicitgp dze o dr e loge | T+ 5l3) " 4B, = B),
erties of a stochastic process as one changes a parameter, wa (140)

first noted in the context of diffusion equatian[19], ancklat

which has been obtained by substitutipg= § — « in

found for a class of Gaussian Markov processes [20] and iEq. (I39) and subsequently making the change of variables

simple models of coarsening [47)48].

BT = zandr = t — T. On the right hand side, we have

A very interesting observation about ER.{I138) is that forsubstituted/s (v, 3 — o) = £1(8, o — 3), using Eq.[(TI11) and
v = 1/2, the result is same as Lévy’s result for the one-¢:(«, p) is given by Eq.[[T07). Now by taking the limit — 0
dimensional Brownian motion given by Eq._{119). It seemsin Eq. (T40), one obtains the lar@ebehavior oflocc(t|T).

as if the attractive force cancels the effect of disordectya

For the pure caseg = 0 in Eq. (@), we have already

atv = 1/2. However, this is no more true in the context of obtainedz, (0) in Sec.[\¥Il, which are given by Eq[{IIL7)

the local time.

and hence we can evaluate(«, p) and ¢>(«, p) by using



[OCC(t‘T)

|

0 T t

FIG. 9: The pdf of the inverse occupation time for simple Bngam
motion.
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limit. Therefore to keep the presentation simpler, we wihe
sider the largd” behavior ofl,c(¢|T) by analyzing Eq.[[140)
in the limit 3 — 0.

By usingz4(0) from Eq. [I1¥) in Eq.[{Z07), one gets

2p

3u+ 12+ 2a’

Therefore, Eq.[{140) suggest th&t.(t/T) should only de-
pend on the differencg — T') at largeT’

0(0,0) = (144)

Iocc(t|T) =1 (t - T)- (145)

Substituting this form in EqL{I20) in the limit — 0 gives

/Oo dre " I (1) = 41(0, ), (146)
0

Egs. [T0V) and{I08) respectively. In the following subsecWwhere puttingy = 0 gives the normalizatior™ I, (r) dr =

tions we will analyze the behavior df..(¢|T") for the cases
@) =0, (i) x> 0and (iii)) u < 0.

A. Flat potential (¢ = 0)

For 1 = 0, which is the case of a simple Brownian motion,
z4+(0) = —v/2(a+p) andz_(0) = v/2«. Therefore using
Eq. (I08), from Eq.[139) we get

/ dT e~ ?T / dt e Toeo(t|T)
0
B 1
Vatp(yVa+Jatp)

T
Now inverting the Laplace transform with respecptgives

(141)

/ Tt e Ioee(t|T) = erfe(vaT), (142)

T
and further inverting the Laplace transform with respect to
gives

VT
wtvt =T

with the normalization conditioyf;o Toce(t|T) dt = 1, which
is readily checked by putting = 0 in Eq. (IZ42). The in-
verse occupation time has non-zero support only ferT’, as
shown in Fig[®.

Note that, sinceRr(T|t) = Ioco(t|T) = VT /7t\/t —T
and R;(T|t) = Rgp(t — T|t) = Vt—T/=tV/T, adding
the two parts, Poce(T'|t) R(T|t) + Rr(T|t)
1/7+/T(t — T), one recovers Eq_{I119).

Iocc(ﬂT) = 9(t - T)- (143)

B. Unstable potential (. > 0)

For 1 > 0, although one can invert the Laplace transform

in Eq. [I39) with respect tp exactly, the other Laplace trans-
form with respect tax can be inverted only in the largg

¢1(0,0) = 1/2, indicating that the particle can escape-tco
with probability1/2 for the unstable potential (the force is re-
pulsive from the origin). Now inverting the Laplace transf
with respect tax gives

L(r) = pv/2e /2

1 31 9> 3
—_— - —_— fc| —= 147
<[y o () ee(5v7)] - a
The limiting behavior of this distribution is given by
V2
I A —— 148
1(T) ﬁ’ ( )

for smallm = (¢ — T) and decays exponentially for large
T=0-T),

\/5 67#27—/2

(149)

C. stable potential(x < 0)

It is reasonable to consider the difference variable T’
instead oft, ast > T'. Therefore, we write
Ioeo(t|T) = I (t = T,T). (150)

Substituting this form ang = 3 — « in Eq. [I39) one gets
/ dTe—BT/ dr e Ly(r,7) = 20 7 0)
0 0

/6 )
(151)
where we have substitutéd(a, 5 —a) = ¢1(8, «— () onthe
right hand side, using EJ_{I111). Usiag (0) from Eq. [I1T)
for u < 0, in Eq. [IOT) gives

V2426 — |yl

VI + 284 /i + 20— 2|

, (152)

El(ﬁaa _ﬁ) = [
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Therefore, taking the small limit in Eq. (I51) gives In the limit 5 — 0, since?; ~ — log 3, hence
dT e 5T/ dre T Iy(1,T) 01(B.c — B) ~ ma (0, 160
/ 0 ( oD~ e 169
= ! 153
o B+ |p|/1 + 20 — p2 . (153) which suggest the following scaling form at large
and inverting the Laplace transform with respecttgives —_— 1
gthe Lap Pect'g Toedi1T) = o Lot = 7). (161)
/ dre ™ "Iy(1,T) = exp (uQT — || T/ p? + 2a) ,
0 Therefore in the limit3 — 0, substituting the above scaling

(154)
where puttingee = 0 confirms the normalization condition
JoS L(r,T)dr = 1. Now by inverting the other Laplace

form in Eqg. [I5F) and using EJ_{1I60) one gets

; S P o m (0, )
transform with respect ta one gets the distribution / dre " I3(17) = ————. (162)
p . g ; ") = 3K (Vaa/o)
_ T o7y e,
L(rT) = WQ ’ (155) However, the above Laplace transform is the same one given
by Eqg. [CT1) in appendXIC, wheteis replaced by. There-
wherer =t —T. fore we can directly borrow the results obtained there. gsin
the results from EqITC19) gives
X. INVERSE OCCUPATION TIME WITH DISORDER N
(0> 0) I;(r) =~ — as Tt — 0, (163)
\/TTT
In the presence of disorder, i.e.;> 0 in Eq. [8), taking the ;
disorder average in EQ._{1I39) gives and results from EqL{C26) gives
[e’e) [e%e} D N 1
/ dT e—pT/ dt e—at IOCC(t|T) — EQ(O{,p), (156) I3 (T) ~ E as T — 00. (164)
0 T a+p
where/s(«, p) is obtained by taking the disorder average of .
Eq. (I08), using the distributions efz, (0) andz_(0) given B.  Unstable potential ¢« > 0)
by Egs. [B®) and[{B11) respectively with. = « + p and
a_ = a. For u > 0, Eq. [I&F) suggests that in the lar@elimit,

Itis useful to consider a different form of the above equa-7,.(¢/T") will only depend on the differencg — T'),
tion, which is obtained by taking the disorder average of

Eq. (140) Tocd(t|T) = I(t — T)). (165)
/ dz 6—2/ dr e~ Ioge (T+% %) =70,(B,a—B), Therefore in the limit3 — 0, using the above form in
0 0
(157) Eq. (IST) one gets
where by taking the limit3 — 0, one obtains the largé o0
behavior oflocc(¢|T). / dre™*TI4(1) = £1(0, @), (166)
0

However, the above Laplace transform is the same one given
by Eq. [D3) wherex is replaced by. Therefore borrowing

) _ - the results from appendX D readily gives
We will now study the largd” behavior of Ioc(¢|T'), for

A. Flat potential (1 = 0) — Sinai model

the Sinai potential/{ = 0), by analyzing Eq.[{I37) in the w2
limit 3 — 0. ILi(1) = —, (167)
It follows from Eq. [C2) that VT
_ for small+ and
LFa-p="20a"0 sy
A Iy(7) ~ e b, (168)

wherem; (o, p) is given by Eq.[CB), and
for larger, with the same constahtas in Eq.[DIB).
Q4 = 2K, (V 25) and Q_ = 2K, [ Y 2a . (159)  The normalization (_:onditio[foOc I4(7) dr = £,(0,0)=1/2,
o o indicates that the particle escapes-tso with probability1/2.
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FIG. 10: The scaling functiong,(x) in Eq. [IZ0) plotted by using
Eq. (I73).

C. Stable potential (x < 0)

We are interested in the behavior&f(¢|7") in the scaling
limit wheret — oo andT — oo, but the ratiox = ¢/T is
kept fixed. Substituting” = z/«, t = zz/a andp = as in
Eq. (I56), we get

Je's) d Je's) d 7(s+x)z E I Iz i _
/1 x/o e Lz Occ(a a) 1+s
(169)

where ms(a,s) = li(a,as) = 1 — £o(a.p), given by
Eqg. (E®). The above equation suggest the scaling form

1—ms(a,s)

3

Iocc(t|T) = %go(ﬁ/T), (170)

with the normalization/;” g,(z) dz = 1, which follows di-

rectly from the normaliza‘tiogﬁ}>o Ioeo(t|T) dt = 1. By substi-
tuting the above scaling form in E_{169) in the limit— 0,
after simplification one gets

| [“"‘1} gol) dz = ms(0,5),

r+s

(171)

wherems (0, s) is given by Eq.[[ET6). By making a change of

variabley = 1/z, Eq. [EL®) reads

w0 = i [ 2]

(CC _ 1)1/—1
IL'2V

dr. (172)

Therefore comparing EQ_{1I71) and Hg, {11 72) readily gives th

inverted Beta law

1 (@—1!

90(%) = B(v,v) x%

z>1,  (173)

which is displayed in Fid_10. The scaling functigs(z) has
a maximum att = 2v/(v + 1) for v > 1. However,g,(z)
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diverges near = 1 for v < 1. Note that forv = 1/2,
Eq. [I73B) gives identical results to that of a pure Brownian
motion (u = 0 ando = 0), given by Eq.[1413).

Xl. CONCLUDING REMARKS

In this paper we have considered the motion of a particle
in a one dimensional random potential. We have presented a
general formalism for computing statistical propertiefioic-
tionals and the inverse functionals of this process. We have
used a backward Fokker-Planck equation approach to calcu-
late the pdf of these functionals for each realization of the
guenched random potential. The most difficult part of the
problem is to carry out the disorder average on these pdfs.
Thus to demonstrate the formalism explicitly, we have chose
the external potential to be the combination of a deterriinis
part and a random part/(z) = —ulz| + /oB(z), where
B(z) is the trajectory of a Brownian motion in space. The
caseu = 0 in the potential corresponds to the Sinai model.
The deterministic part of the external potential is stalole f
© < 0 and unstable fopy > 0. The pdfs of the functional
and the inverse functional vary from one realizationif:)
to another, and in this paper we have shown how to carry out
the disorder average on them, for two particular functisnal
namely, the local time and the occupation time, and their in-
verse. Despite the simplicity of the model, we get very rich
and interesting behaviors by tuning the paramejer, which
we have summarized in TabB<£d, I and 111, far=0, u > 0
andu < 0 respectively. In many cases the disorder changes
the behavior of the pdf drastically from the pure case<0).

A very interesting phase transition in the ergodicity of the
particle position occurs at a critical value of the paramete
||/ = 1, when the deterministic part of the potential is sta-
ble (u < 0). For|u|/o < 1, when the particle gets trapped
in the wells of the random potential, the deterministic érc
— || sign(z) is not strong enough to lift it from the well and
push it towards the origin and hence there are small number of
zero crossings. On the other hand, fof/o > 1, the strong
deterministic force sends the particle frequently towahds
origin, and hence the system becomes ergodic. This change
in the ergodic properties shows up in the qualitative change
in the curvatures of the disorder averaged pdfs when the pa-
rametens = |u|/o passes through unity. While for< 1, the

disorder averaged pdf of the occupation tilg.(7'|t) is con-
cave upward with a minimum &t = ¢/2 and diverges at both
endsT = 0 andT = t¢; for v > 1 it is concave downward,
which goes to zero at the two en@ds= 0 and7 = ¢, and
has a maximum & = ¢/2 (see Fig[B). In the context of in-
verse occupation time, while for < 1, the disorder averaged
pdf Ioec(t|T") diverges near its lower end= T and decreases
monotonically ag increases, for > 1 it has a maximum at

t = [2v/(v + 1)]T and goes to zero at both ends- 7" and

t — oo (see Fig[ID). Similarly, the disorder averaged pdf of
the local timePc(7T'|t) diverges near the lower erfld = 0
and decreases monotonically@increases for < 1. On the
other hand for > 1, it has a maximum and goes to zero at
both ends" = 0 andT — oo (see Fig[Hh).
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For the stable potential, another very interesting observawherer = |u|. Substituting these results in EG.126) we get

tion is that afjy| /o = 1/2, inthe limitT — oo andt — oo A(a) = —v + V2 + 2a. Therefore the Laplace transform
while keeping the ratid’/t fixed, the exact asymptotic disor- G(«) in Eq. Z8) becomes

der averaged pdfs of the occupation tifig,(7'|t) and inverse

occupation time,cc(t|T) become exactly identical to the re- G(a) = —V+ V¥ + 20 exp {, (,V +/2 20) 7|
spective pdfdoc(T'|t) andlocc(t|T') for the simple Brownian «@

motion (x = 0 ando = 0). It looks as if at the particular (A2)
value|u|/o = 1/2, the effect of disorder is exactly canceled
by the deterministic stable potential. However, similanco oo
clusion is not true in the context of the local time and ineers / dt efﬁt[eft/Qploc(T“)] =2
local time. Therefore, a physical understanding of what ex- Jo

:ﬁ:%g@ﬁ’ﬁﬁg:fﬁ:_thls particular value of the parameterheil where the right hand side is the Laplace transform of

1/2 . .

There are several directions open for pursuing researeh faf t/Qch(g“)- _'”Vﬁ[_“”g the I_.apla;:e transfg_rm .Vk\)"th respf)er(]:t
ther in this area. In this paper we have considered only thf)ﬂ and after simplification gives the exact distribution of the
average of the pdfs over disorder. However, in many cases, %cal time for allT andt,
we have seen in this paper, the disorder broadens the distri- V2 ) y
butions considerably. For example, for the unstable piatent Poc(T'[t) = ——e~T7¥D7/2t _ 2 Terfc (—\/E +
(» > 0), even though for each realization of random poten- vt 2
tial the local time has a narrow exponential distributiog, b where erféz) is the complementary error function. Note that
taking the disorder average one gets a broad power law di%q [&2) reduces to EG(B1) for= 0 '
tribution, which is the indication of large sample to sample Iéor larqet. since '
fluctuations and lack of self-averaging. Therefore, in tiiis g€,
uations the knowledge about the disorder averaged pdf (first

Now making a shifty = 3 — v2/2, in Eq. [28) yields
vT eimjﬂ (A3)
VB+v/V2

7))
(A4)

—1
moment) is not enough, and one requires to compute the other g ( 2., /7 4 i) N [L\/g + i}
higher moments (over disorder). Thus extending our formal- V2 V2t VT V2 V2t
ism to compute the full distribution (over disorder) of pdflw y T 12
be very useful. X exp ( [—\/Z + —} ) ;. (AS)
The random part of the potential we have considered in this V2 Vot

paper is very particular, where the barrier heights grow/as E simplifies to
However, in realistic systems the random potential remafins a. (Ad) P

order one throughout the sample. Therefore, it will be very T NG )
interesting to extend this formalism for more realisticdam Poc(T|t) = {T - yt] \/—_te‘(T‘”t) /2t (AB)
potentials. g

Recently several asymptotically exact long time results fo Putting~ = 0 in the above equation one still recovers the
other quantities in Sinai model were obtained by using a realesult given by Eq[{31). For non-zerpnear the meatil’) =
space renormalization group methdd [39]. Using that methodyt, the pdf of the local time reduces to a Gaussian one
reproducing the exact results obtained in this paper resnain
as challenging open problem. Another interesting diredso SRR SR PP

. . Ploc(T|t) ~ € . (AT)
to study the properties of functionals of a more general non- V2t
Markovian stochastic process in random media, and to extend

our results to higher dimensions.
APPENDIX B: PDF OF THE SLOPE VARIABLES 2z (0),
THAT APPEAR IN THE DISORDER AVERAGE
COMPUTATIONS

XIl.  APPENDIXES

Both in the contexts of local and occupation time we have

APPENDIX A: PDF OF THE LOCAL TIME IN THE CASE a homogeneous differential equation of the type

OF THE STABLE POTENTIAL, < 0AND o =0INEQ. B )

5?/1(33) + F(2)yly (z) — axy+(z) = 0, (B1)
In this appendix we will derive the pdf of the local time

Poc(T|t), for the stable potential( < 0) in the absence of with the boundary conditiong; (x — c0) — 0 andy_(z —

disorder ¢ = 0). In this case by solving Eq{P3) with the —oo) — 0, and the force

boundary conditiong (x — c0) — 0 andy_(z — —o0) —

0 we get F(z) = psign(z) + Vo&(z), (B2)

with (£(x)) = 0 and{{(x)¢(2’)) = é(x — ). For each real-
y+(z) = y+(0) exp [jF (—V + V2 + QOé) 1’} » (A1) jzation gf{g(x Lin themforcgieF(z), tﬁe S(:)Clution of Eq.[(B1)
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TABLE I: Flat potential— Disorder averaged pdf’s of the local, inverse local, oedigm and inverse occupation times of a particle starting
at the origin, diffusing in the Sinai potenti&l(z) = /o B(z), whereB(z) represents the trajectory of a Brownian motion in space thi¢h
initial condition B(0) = 0.

PURE CASE ¢ = 0) DISORDERED CASE ¢ > O)
= t—oo, T—oo
5 - RoelTTD) ‘s o (T
Boc(T'|t) = N exp {*Q—t} 5
fHily) = ;e’y/”Ko (y/o)
——— t—o0,T—o0
; (tlT) T |: 2:| Iloc(t|T) ¢/ T fixed Tlog gl(t/T)
loc = €Xp | =57
Art3 2t
Ve a(@) = %e*/”m (1/0%)
—_— i oo 1
T|t) =2 — R(T
) RL(TT0) = 1o S R(T)
Pocc(T|t) = —————, 0<T<t
/Tt —T) NoT
R(T) =~ T for small T’
ﬂ'
1
R(T) ~ o7 for largeT
T—o0 1
Tocc(t|T) o =T Is(t—1T)
VT
Iocc(t|T) = 9(t — T) \/§O'
wivt —T Is(7) ~ \/—_, for small
T
1
Is(7) ~ 5 for larger

is different, and for the disorder averaged computatioms pe First we consider Eq[{B4) for > 0, i.e.,

formed in this paper we finally require the distributions of

the stochastic variableg (0)/y+(0) and in this appendix our 2 (z) = =25 (%) — 2[u + Vo&())24 (z) + 2a4.  (B5)
goal is to find these distributions.

By defining the variables Note thatz, (z) = v/ (2)/y+(z) is negative. We make
a change of variablee = —7 and substitutez; (—7) =
Y (z) B3 —expl¢(7)] in Eq. [BY) to find that the new variablg(r)
z(2) = ye(z) (B3)  satisfies a much simpler stochastic differential equation
. . . in d

we_fmd frqm Eq.[BL) that (x), satisfy the stochastic Ric do _ b(o) + 2V/E(7), (B6)

cati equation dr
2\ (z) = —23(x) — 2F ()24 + 2a+. (B4) where{(7) = ¢(—7) and thus({(r)) = 0 and({(7)é(7")) =

d(r —7'). The source term(¢) is given by

However, now the boundary conditions for in Eq. [Z3)
are not specified. Therefore for each realization$&gf:)}, b(¢) = —e? +2a1e”? + 2p. (B7)
the solutions ot (z) involve one unknown each that can not
be eliminated due to the lack of the boundary conditions. IfNow we can interpret EqL{B6) as a simple Langevin equa-
other words, to find the distributions @ﬁ:( ) we need the tion deSC”blng the evolution of a Brownian partlcle Smtl
respective distributions at some initial points, unfoetely ~attimer = —oo, in a classical stable potentiély(¢) =
which are not specified. — f¢ Ydp = €? + 2are”® — 2ué — (2a; + 1). Even

It turns out, however, that this difficulty can be bypassedthough we do not know the starting position of the particle
by a method|[37,_3€. 41] which lets us to compute the dis(—o0), it is completely irrelevant. No matter what the ini-
tributions ofz (0) andz_(0) without having the knowledge tial position is, eventually after a long time, i.e., whers far
of the boundary conditions an, (o0) andz_(—oc). We will  away from—oo, the system will reach equilibrium and hence
present the method below for the present context. the stationary probability distribution af is simply given by
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TABLE II: Unstable potential— Disorder averaged pdf’s of the local, inverse local, oetigm and inverse occupation times of a particle
starting at the origin, diffusing in the unstable randomeptial U (z) = —u|z| + /o B(x), wherep > 0 and B(x) represents the trajectory

of a Brownian motion in space with the initial conditi@(0) = 0. We denoter = /0.

PURE CASE ¢ = 0)

DISORDERED CASE{ > 0)

Poc(T[t) =25 Poo(T),  Poo(T) = 2ue™ "

t—oo

Poc(T|t) — Poc(T), Poc(T) =2u(1 + UT)_(QV-H)

Iloc(t|T) =

T (T + pt)?
Ao [
+ (1 — exp[—2uT]) 6(t — c0)

T t—oo, T—oo 1
I|OC(t|T) ¢/ T fixed T2V+1 g2(t/T)
+ (1= +0oT]7*)8(t — )
2\/m g2/
g2(x) = {02”—;/1"_2(1/)} (ox)2t1 U(1/2,1+v,2/ox)

Poce(T'|t) = Ri(T|t) + Ri(t — Tt)
R(T|t) =% RL(T)

w>T

RL(T) =puV/2 exp {—T}

[ B () on(7)

2
RL(T) ~ ——, for small T
vl
\/5 e—;l,ZT/Q
RL(T) for largeT’

T 9uy/m T2

PocdT[t) = Re(T|t) + Ro(t — T|t)

R (T|t) =25 R (T)

V2

RL(T)NW, for smallT
Ri(T) ~ e *",  forlargeT

b is given by the zero of<, (1/2p/o) closest to origin in the left part
of the complexs plane.

T—o0 1

L/(T) =puV/2 exp {—%}

2
[t o (7)o (247
Ii(1) =~ t}f, for small =
\/5 e*u27/2
Li(T) =~ Sur T for larger

T — 00 1
Tocc(t|T) Zt;—> L(t-T)+ 55(15 — 00)

Ii(7) =~ l\;@, for small ~
T
I(r) ~e "7, forlarger

b is the same constant as above.

the Gibbs measure where
° 1 2a
1 1 ¢ O, = pu/o—1 o _Jr}] d
Pet(§) = A exp | —2~Uqi(@)| = A exp —/ blp) deo| , * /0 v exp[ 20 {“’+ w J]
20 20 J, N (B10)
(BB) =220/ K/, (i) .
where A is a normalization constant such that g

ffooo Pst(¢) déb = 1
nal variablez, (z) we obtain the distribution ot (0) as

Pt (—2:(0) = w) = iw#/oflexp {% {w . Q%H |
(B9)

Now changing back to the origi-

Similarly for z < 0, by putting F(z) = —u + /o&(z) in
Eqg. (B3) and substituting_ () = exp[¢(x)] one finds that
¢(z) satisfies the same differential equationims Eq. [Bb)
with £(z) = —¢(z) anday is replaced with:_. Therefore
¢(z) has the same stationary distribution as Eql] (B8) and con-
sequently the distribution af_ (0) is same as that of z (0),
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TABLE lll: Stable potential— Disorder averaged pdf’s of the local, inverse local, oedigm and inverse occupation times of a particle
starting at the origin, diffusing in the stable random pt&/ (z) = —pl|z| + /o B(x), wherep < 0 and B(z) represents the trajectory of
a Brownian motion in space with the initial conditi@®(0) = 0. We denotes = |u|/o.

PURE CASE § = 0) DISORDERED CASE¢ > 0)
T t— 00, T — oo ————~ t—oo,T—oo 1
Pioc(T'[t) ~ exp {*t‘I’ (7)} ) {T/t fixed Pioc(T'[2) Trihed ¥f2(T/t)
_1 2 - AV A e
B(r)= 5 (), near =|u R = || (2)" v/ 4 v 2u0)
ToolT) =25 3 (4/T)
T (T — |plt)? loc t)T fixed T g3
Tioe(tT) = exp | —
vV 2mt3 2t 20_ﬁ 6—2/01’
(z) = |25 __U(1/2,1+v,2/0x)
9 I'2(v) | (oz)?v+1 ’ ’
T t— 00, T — 00
~ — — ’ ———— t—oo,T—oo 1
Poce(T|t) ~ exp { td ( ; )} , {T/t fixed Poce(Tt) L = f.(T/t)
T/t fixed t
o =2 (r—1), nearr—1 foly) = =A— (1 - )™, 0<y<1
e\t Tg) "7 B(v,v) oo
——— t—o00,T—oo 1
Iocc(t|T) = Ig (t — T’7 T) 0(t — T) Iocc(t|T) —>t/T fixed T go(t/T)
targe || T pi(r = 1) v—1
I(r, T) 2L, exp {—7 1 (@)
Nore= 2r 90 =gy o =]
namely APPENDIX C: LEFT HALF OF THE DISORDER

AVERAGED PDF OF THE OCCUPATION TIME FOR SINAI
POTENTIAL ( 1z = 0 AND o > 0)

P (2-(0) =w) = in“/"*l exp {QL {w + 2L} , By taking the disorder average of EG.{112) one gets
g

(B11) - ¢ )
with / dt e / dT e PT RL(T0) = — b (anp).  (C1)
0 0 (6]

Using the distributions of-z, (0) andz_(0) from Egs. [B®)

o1 1 2a_ and [B11) respectively with, = a + p anda_ = «, from
QO_ = /0 w eXp | 5o AW + o dw Eq. [IOT) one gets
(B12)
- V2a_
_ 2(2&7)#/2 K,/ <—U (1, p) = W, (C2)
Jr —
where,

Note that the distributions of-z,(0) and z_(0) given mi(a,p) = /Oo dwy exp [_i (wl + M)}
by Egs. [BY) and [BI1) have maxima & — o) + 0 20 wy
(@ —0)?+2ay respectively and in the limite — < dwy 20 c3
0 the distributions tend to delta functions around their X/O w1 +wy P { 0’< wQ)]’ (C3)
maxima. Therefore in the limito — 0 one re-

covers the pure case results by using the distribuand

tions P* (2(0) = &(24(0)+ [+ /47 +2a4]) and T .
P~ (Z—(O)) =0 (Z_(O) - [,U/ + M2 + 2a_]). Q+ =2Ko <7> , Q- =2K, <T> . (C4)
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Before we proceed further, let us take a detour to check thB8y making change of variables, = 202 andws = 20y in

normalization condition o, (T'|t). By puttingp = 0 in the
above equations we get

m) (CS)

Q+QQQK0<—
g

and
[ dw; d
mia,0) = [ [T | v
o Jo w1 w2 |[wi+ we

1 2c
X exp *% w1 —+ w—
1

con] Lo 2] (o

Note that the above integral must remain invariant under the
transformationu; < wy of the dummy variables. Therefore

we get

o 1 2 ?
2mq(a,0) = [/ dw eXp{—— [w + _a] H =02
0o w 20 w
(C7)
Therefore we havé, (a,0) = 1/2, and inverting the Laplace
transform in Eq.[[A1) with respect @ for p = 0 gives the
normalization conditiorfot Rp(T|t)dT =1/2.
Now we analyze the largebehavior of Ry (T'|t). By mak-
ing a change of variable = at, it follows from Eq. [C1)

0o z/a
/ dz efz/ dT e PP Ry(T, z/a) = €1(a,p). (C8)
0 0

Inthea — 0 limit, Q. = 2K, (v/2p/o) andQ_ ~ —loga.
Therefore from Eq[{32)

ml(Ovp)

—2Ko (v/2p/o) loga]’

which suggest the following form faR, (T'|¢) at larget

li(a— 0,p) = [ (C9)

R (T = —

R(T), (C10)

logt
whereR(T) is independent of.

Now using Egs.[[AQ9) and[ClL0), in the limit — 0,
Eq. (C8) gives

<o 0,p)
dr e T R(T) = — (0P (C11)
/0 2K, (\/Qp/a)
wherem, (0, p) is obtained from Eq{Q3),
< d 1 2
m1(0,p) = / ﬂeXP [— (wl + _pﬂ
0 w1 20 w1
o 67w2/20'
x / dw, (C12)
0 w1 + w2

the integrals in the above equation one gets

o= [ Lo (v g0

Tl (c13
X/o nyr—za ( )

where now the integral overcan be expressed in terms of the
incomplete Gamma function_[44]

e Y

/ dy =e"T(0,2).
0

y+x

(C14)

Therefore, after straightforward simplification, EQ.{§ be-
comes

m.p) = [ LT ropt).  (Cl9)
0 X
Now we will analyze the limiting behavior oR(T') for
small and largel’ by taking the limit of large and smaji
respectively.
Since for largep

202z

I'(0,p/20%x) ~ e~p/20%T, (C16)

from Eg. [CI5), one gets

7))

(C17)

202 [
m1(0,p) =~ L/ dx exp [— (ac +
P Jo

2V20 (\/279)
Ki|—.
VP o
Since the asymptotic behavior &f, () is independent of,
substitutingm (0, p) from above in EqCI1) gives

/ dT e PTR(T) ~ @,
0 VP

for smallp, and by inverting the Laplace transform with re-
spect tgp one obtains

L Y20
- VT’

To obtain the largd” behavior, we first consider the follow-
ing integral

(C18)

R(T) asT — 0. (C19)

D(z) = /0Oo d?x e **T(0, p/20%), (C20)

whereD(1) = m4(0,p), follows from Eq. [CIb). Now by
differentiatingD(z) with respect toz, one can express it in
terms of the modified Bessel function asi[44]

D'(z) = — /000 dx e "*T(0,p/20%x) = %Ko (*@’TZ> :
(C21)
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Now by integrating back again with respect4pwe obtain  with

ml(oap) as
V2p
o QL =202p)"* K <—
d 2 + nlo s
m0) =) =2 [~ Lo (V2 i ©5)
L o Q_ = (20)"/°T (/o).
®  dr
- 4/\/%/0 ?KO("E)’ (C22)  Nowthe integral ovet in Eq. [D4) can be expressed as|[44]
where we have made the change of varidhle/o? = 2. oo wg/067w2/20
Thep — 0 limit can be obtained from the limiting behavior / dws ot w,
of the integrall[45] 0 re w
— W/ ewi/20] (ﬁ n 1) r (fﬁ, —1) , (D6)
> K()(IL') dx 1 9 o o 20
S0P 2 (logy)?  asy — 0, (C23)
Y x 2 whereT'(«, z) is the incomplete Gamma function. Therefore
which gives Eq. (D4) becomes
1 2 01(0,p) = iz (p) (D7)
m1(0,p) ~ 3 (logp)”, asp—0. (C24) 1(0,p) (20)#/ 7+ (2p)r/27 K, 1, (v/2p)0)

SinceK (/2p/o) ~ —3logp, asp — 0, Eq. [CI1) gives where

e _ 1 _ >~ 2u/o—1_—p/ow H wy
/0 dT e PTR(T) ~ —5 logp, (C25) ma(p) = /0 dwy w} e P (—;7 %) . (D8)
asp — 0. Thus, inverting the Laplace transform with respectThe small and largd” behavior of R, (T') can be found by
to p one obtains analyzing Eq.[[DI) in the limiting casgs— oo andp — 0
1 respectively.
R(T) ~ —, asT — oc. (C26) Making a change of variable; = p/oz in Eq. [D8), and
2T then taking the — oo in the incomplete Gamma function,
APPENDIX D: LEFT HALF OF THE DISORDER r (fﬁ p ) ~ ( p )_“/"_1 exp (, p ) (DY)
AVERAGED PDF OF THE OCCUPATION TIME FOR 1 > 0 o’ 20%x 202x 202z /)’
. . gives
By taking the disorder average of E.{112) one gets
o0 ¢ 1 m ~ (20)%(2 “/”71/ dxx =7 ex [—(er P )},
/ dte’at/ dT e PT RL(T]t) = — t1(c,p). (DY) 2(p) ~ (20)"(2p) o P %071
0 0 o (D10)

where the integral above on the right hand side can further be

As in the pure caseo( = 0), one also expects the— oo expressed in terms of the modified Bessel function &s [44]

behavior of the disorder averaged distribution to tend to a
independent form

dmx_”/"exp — |z + P
1tlim R (T|t) = R(T). (D2) /0 { ( 20%)}

= 2(20)"/ 77 (2p) "MK, 0 (—\/%) . (D11)
g

Therefore Eq.[{1) becomes

/oo dT e PT Ry (T) = (1(0, p). (D3) Since the_larg_e_c behavior orK,(x) is independent of,
0 Eq. (1) simplifies to
Using the distributions of-z (0) andz_(0) from Egs. [BY) 2
and [BI1) respectively wittu, = p anda_ = 0, from 01(0,p) ~ —— asp — oc. (D12)
Eq. (IOT) one gets VP
1 00 o1 1 % Therefore by inverting the Laplace transform in Eq.J(D3)wit
£1(0,p) = dw; wy exp |—=— | w1 + — respect tg, one gets
Q+Q_ 0 w1
o) u/o —wa /20
x / e T — (D4) Ro(T) ~ “—‘/5, for small 7. (D13)
0 w1 + we VT



25

Now we will analyze the the largE behavior, by taking the in the scaling limitt — oo, T — oo, while their ratioT'/t
limit p — 0in Eq. (X1). It is straightforward to obtain from is kept fixed. In the limita — 0, by substituting the above

Eqg. [D8) that scaling form in Eq.ITER), it is straightforward to obtain
1
 (20)2/7H1T (/o) / fo(y) _ 1+ sm3(0, s) E4
mo(0) = 1 ) (D14) 0 dy 1+ sy 1+s) (E4)
which gives where puttings = 0, gives the normalization condition

fo fo(y) dy = 1. Using this normalization, the above equa-
tion can be simplified to the following elegant form

w/o
700, p) ~ ir (—) (‘%?) K.} (@) . (D15)

for small p. However if one takes the limjp — 0 now in
K,.;-(v/2p/c) in the above expression, it only gives the nor-  Now by using the distributions of,.(0) from Egs. [E9)

malization conditionf,” R (T') dT' = 1/2 and does not pro- and [Btn) witha_ = a anda; = o(1 + s), from Eq. [10F)
we ge

Ly
/0 m foly) dy = ms3(0, s). (E5)

vide any information about the largébehavior ofR, (T').

We make the following ansatz ma(a, s) = m

Ri(T) ~ ™', (D16) / duwy / dw,
QJr w1 + wa
for largeT'. Then the Laplace transform Y 2a(1 + s)
X wy exp ——qwi + —
1
1
dT e PT R (T) ~ —— D17 Y 1 201
/0 € L(T) ~ prb (D17) x wy "t exp [—2—{w2+—}], (E6)
g wa
for small p. Therefore substituting Eqd{015) arld(D17) \,here
in Eg. (D3), one can conclude thatis given by the zero
of K,,(v/2p/o) closest to origin in the left part of the 2a(1 + s
complex- plane. Qp =2(20) (1 +5)""?K, +) . (E7)
_ V)2 V2a
APPENDIX E: DISORDER AVERAGED PDF OF THE Q= 2( ) K, < o ) ’ (E8)

OCCUPATION TIMEFOR 1 <0

with v = |u|/o. Note that we simply can not take the limit
Taking the disorder average of EE.{106) gives a — 0 in the integrals in EqL{B6), as it diverges in that limit.
However, it is possible to extract the divergent contribati

oo t outside the integrals which finally cancels exactly with dite
/ dt e_at/ dT e PT Poco(T'|t) vergence of).. This is done by making the change of vari-
0 0 ables
- P TG, ED
a+p ala+p) P M:z, and —& —y, (E9)
owq agws2

where we have substitutéd(a, p) = 1 — ¢1(a, p).
We are interested in finding the behavior Bf..(T'|t), in

the scaling limitt — oo, 7 — oo, but keepingl'/t = y oo~ (1 4 5)~
fixed, which corresponds to the limit of conjugate variables mgs(«, s) = a0 / dx/ dy
a — 0,p — 0, keepingp/a = s fixed. Substituting: = o, +0=

in the integral to get

T = yz/a andp = as in Eq, [E1), we get y aryr !
x4+ (1 +8)y
(14sy)z Yyz ol 1+ sm3(a S) Oé(l + S)
/ dy/ dze” |: POCC( ‘ ):| 1+S) ) X exp |— ZC+W
(E2) .
wherems(a, s) = £1(«a, as). Equation[[ER) suggest the form, X exp [_{ 53 H . (E10)
a7y

-1 Now the limit « — 0 can be taken in the above equation,
PoeelTt) = 5 fo(T/), (E3)  as, in this limitQ, — ¢”a~"(1 + s)"*I'(v) andQ_ —



o¥a~"T'(v). Therefore from Eq[{E10) we get

1 o0 B B OO
ms(ovs)rg—(y)/o dyy" e y/o

Ve *

S
z+ (1+s)y
(E11)

Now the integration over. can be expressed in terms of the W

incomplete Gamma function_[44]

e tte ® pTPe™®
r = R 1
(0 \) mfp)/o —Cdr, [Rep<1,A>0]
(E12)
which gives
V(1+5)V/Oo 2w—1 s
m3(0,s) = ——— y e (=, (1 + s)y) dy.
©0.9="57 | (2, (1 + 5)y)

(E13)

The right hand side, however, is one of the

F(a, 8;7; ) [44], which gives

1
m3(0,s) = §F(1,I/; 22U+ 1;—s). (E14)

inte-
gral representation of the Gauss’'s hypergeometric functio
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Now by using another integral representatiori [44]

dy,
(E15)

: /.1 y Ay

Fl b= =55 |, — xsye

e get

ms3(0,s) = y)]" " dy, (E16)

1 S
1i
B(v, V)/O 1+ sy [y

where B(a, ) = T'(a)T'(8)/T(a + B) is the Beta func-
tion [44].

Now by comparing EqI{E16) with Eq.{E5), one immedi-
ately gets

0<y<l1. (E17)
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