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Abstract. We introduce a family of real random polynomials of degree n
whose coefficients a; are symmetric independent Gaussian variables with variance
(a?) = e ¥ indexed by a real @ > 0. We compute exactly the mean number
of real roots (N,) for large n. As « is varied, one finds three different phases.
First, for 0 < a < 1, one finds that (N,) ~ (2)logn. For 1 < a < 2, there is
an intermediate phase where (N,) grows algebraically with a continuously varying

exponent, (N,) ~ 2, /a=Lpa/2

. And finally for @ > 2, one finds a third phase where
(N,) ~ n. This family of real random polynomials thus exhibits a condensation of
their roots on the real line in the sense that, for large n, a finite fraction of their roots
(Ny)/n are real. This condensation occurs via a localization of the real roots around

the values +exp [$(k+ 1)*71], 1<k <n.
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1. Introduction

Since the early work of Bloch and Pdlya [I] in the 30’s, the study of random algebraic
equations has now a long story [2, B]. In the last few years, it attracted a renewed
interest in the context of probability and number theory [4], as well as in the field of
quantum chaos [5]. Recently, we showed that there are also interesting connections
between random polynomials and persistence properties of physical systems [6), [7].

Here we consider real random polynomials, i.e. polynomials with real random
coefficients, of degree n. While these polynomials have exactly n roots in the complex
plane, the number of roots on the real line N,, is a random variable. One would like to
characterize the statistics of this random variable and a natural question is thus : what is
the mean number (N,,) of real roots and how does it behave with n for large n [4]? This
question has been widely studied in the past for Kac’s polynomials K, () = > ;_, a; 2"
where a;, are independent and identically distributed (i.i.d.) random variables of finite
variance (af) = o2. In that case it is well known that (N,,) ~ 2 log n, independently of o.
This result was first obtained by Kac [8] for Gaussian random variables and it was later
shown to hold also for a wider class of distributions of the coefficients ay, [2,3]. Interesting
generalizations of Kac’s polynomials have been studied in the literature where a; are
independent Gaussian variables but non identical, such that (a?) = k%2, where d > 0 is
a real number, leading to (N,,) ~ 7~ (14+/d/2)logn [7,9]. Given the robustness of this
asymptotic logarithmic behavior of (N, ), it is natural to search for random polynomials
for which (V,,) increases faster than logn, for instance algebraically.

One such instance is provided by the real Weyl polynomials W, (z) defined by

n k

W(z) = gek% , (1)

where €, are i.i.d. random variables of zero mean and unit variance. Thus here,
ar, = ex/V'k! and the variance is (a2) = 1/k!, which for large k behaves as (a2) oc e *log¥,

/2 For instance,

For these real polynomials in Eq. (), it is known that (N,) x n
in the special case where ¢, are Gaussian random variables of unit variance, one has
(Nn) ~ 2y/n [7, 10]. Another interesting and intriguing instance of real random
polynomials was introduced a long time ago by Littlewood and Offord [11] who studied

the random polynomials L, (x) given by

Lo =Y alts ®)

2 = (kD ’
where ¢, = +1 with equal probability. Thus in this case a; = €;/(k!)* and the variance
is (a2) = 1/(kD?*, which behaves for large k as (a?) oc e 2¥*1°8%  Using algebraic
methods, they showed that such polynomials L,,(z) have all their roots real and therefore

(N,) = n.

We thus have here two examples of real random polynomials in Eq. (Il) and Eq. (2)
where, at variance with Kac’s polynomials, (N,) grows algebraically with n. In the
second example (2), the number of real roots is “macroscopic” in the sense that, for
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(Ny) ~ logn () ~ n/? (Np) ~n
| e . a
0 1\ 2\
Kac Weyl Littlewood-Offord

Figure 1. Asymptotic behavior of the mean number of real roots (IV,) of P,(x) in
Eq. (@) as a function of a. These polynomials exhibit a condensation of their roots on
the real axis for o > 2.

large n, there is a finite fraction (N,)/n of the roots which are on the real axis. For
L,(x) in Eq. (2) this fraction is exactly one. We thus say that there is a condensation
of the roots on the real line, similar to a Bose-Einstein condensation where a finite
fraction of the particles of a quantum-mechanical system (Bosons) condense into the
lowest, energy level. In the case of random polynomials, the roots play the role of the
particles and the equivalent of the ground state is the real line.

The purpose of this paper is to understand what types of polynomials lead to this
condensation phenomenon. Of course, it is very difficult to address this question for
any random coefficients a,. However, guided by the two examples above in Eq. (1)
and Eq. (2)), and in particular by the large & behavior of (a?), we introduce a family of
random polynomials P, (z) indexed by a real aw > 0 defined by

Pu(a) =Y apat, (@) =", (3)

where a; are real independent Gaussian random variables of zero mean. While oo = 0
corresponds to Kac’s polynomials, we recall that, for W, (z) in Eq. (@), (a2) x e *losk
and for L,(z) in Eq. @), (a2) o e 2’18k Therefore, due to the extra logarithmic
factor, these random polynomials are not exactly of the form introduced above (3.
However, for o — 11, one expects to recover the behavior of W,,(z) in Eq. (1) while for
a — 27, one expects P,(z) to behave similarly to L,(z) in Eq. (2) : this is depicted
schematically in Fig. [

Our main results can be summarized as follows. As o > 0 is varied one finds
three different phases. The first phase corresponds to 0 < «a < 1, where one finds
that (N,) ~ (2/m)logn. In the second one, corresponding to 1 < a < 2, one has
(Np) ~ %\/%na/z. And in the third phase, for « > 2, one finds (N,) ~ n. The
condensation of the roots on the real axis thus happens for o > 2 and as one increases
a, the condensation transition sets in at the critical value o, = 2. Furthermore, one
finds that these real roots condense into a quasi-periodic structure such that there is,

gma—l

on average, one root in the interval [—x,, 11, =] U [T, Tme1], with x, = ez
with 1 < m < n. These different behaviors are summarized in Fig. [l By analogy
with phase transitions of statistical systems the case 0 < o < 1 can be considered as
a high-temperature phase whereas a > 2 corresponds to the low-temperature (ordered)
phase. Roughly speaking, one can consider our results as an interesting example where
the transition from the high temperature where (N,) « logn (governed by a “a = 0
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fixed point”) to the low temperature phase where (IV,,) o< n (governed by “a = 00" fixed
point) happens through a marginal phase, for 1 < a < 2, where (N,) ~ n® with an
exponent ¢ = a/2 which depends continuously on «.

The paper is organized as follows. In section 2, we describe the general framework
to compute the local density of real roots, which directly leads to (NN,). In section 3
to 6 we then analyse separately the cases 0 < a < 1, a < 2, a > 2 and the “critical
case” a = 2. In section 7, we give a qualitative argument to explain the condensation
transition occurring at a. = 2 before we conclude in section 8. The Appendix contains
some useful technical details.

2. General framework

First we notice that given that P,(z), as a function of z, is a Gaussian process, it is
completely characterized by its two-point correlation function C,(z,y)

Colw,y) = (Pal@) Paly)) = Y e at gt (4)

where we used the notation (...) to denote an average over the random variables ay.
A central object involved in the calculation of (V,,) is p,(x), the mean density of real
roots at point z. If we denote Ay, Ao, ..., A\, the p real roots (if any) of P,(x), one has
§(Py(x)) = >0 d(x — N)/|PL(Ni)| such that p, () can be written as

P

pu(@) = > (6(x = X)) = (| Pp(2)[(Pa(2))

i=1

= [ 6P~ )5 5)
Under this form (Bl), one observes that the computation of the mean density involves
the joint distribution of the polynomial P,(z) and its derivative P/(z) which is simply
a bivariate Gaussian distribution. After Gaussian integration over y, one obtains

_ V@) (e, (@)/z + (@) — e, (2)]?

pr(2) 2men(x) ’ (©)
cn(x) = Ch(z, ) = Ze_kax% .
k=0

This formula (@) can be written in a very compact way [4] :

pn(x) = %\/&ﬁv log C,,(u, v) (7)

Given that the random coefficients a; are drawn from a symmetric distribution, we can

U=V=T

restrict our study of p,(z) on RY from which one obtains the mean number of real roots
(N,,) as

) =2 [ pu(oe. 8)
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An important change of variable. We will see below that it is useful to consider
these polynomials P,(x) in terms of another variable Y defined as

y = (%ng)“ll | (9)

We denote p,,(Y) the mean density of the real roots in terms of this new variable such
that one has also (N,) = [;7 pn(Y)dY. For 0 < a < 1 we will see that, for large n,
most of the real roots of P, are located close to Y = n while for o > 1, the density
extends over the whole interval Y € [1,n]. This change of variable () is motivated by
the following analysis.

First we notice that C,(z,y) = > 1_,e " 2*y* in Eq. (@) is of the form C,(z,y) =
cn(y/Ty). Anticipating a saddle point analysis, one writes c,(z) as

cn(x) = Z e F = Zexp (—o(k,z)), o(k,x) =k —2klogz . (10)
k=0 k=0

Although ¢(k, x) is defined for integers k = 0,1,2,---,n, it is readily extended to the
real axis and denoted ¢(u,z) = u® — 2ulogx for u € RT. The behavior of ¢,(x) is
essentially governed by the behavior of ¢(u,x) as a function of u (and fixed z). In
particular, for « < 1, ¢(u,x) has a single maximum while for v > 1, it has a single
minimum for u = u*(z) given by

Oup(u'(2),2) =0, Fyd(u"(2), 2) = ala — Du'(z)*7* >0,

w(z) = (%logm)m | (11)

The new variable Y introduced above in Eq. () is thus precisely Y = u*(z). As a
consequence, the density behaves quite differently in both cases @ < 1 and o > 1.

For o < 1, most of the real roots on R* are located in [1,00]. For fixed z > 1,
&(u, x) as a function of u in the interval [0, n] has a global minimum for u = n. Therefore,
the sum entering in the expression of ¢,(z) in Eq. (I0) will be dominated by the terms
with & ~ n. The expansion of ¢(k, z) in Taylor series around k = n yields

QZS(/{J,I‘) = ¢(n7 l‘) + (k - n)(ana—l — 210g :L‘) + ..
o (1 — oz)no‘ — k‘(ano‘_l _ QIOgZE) o (12)

where the higher order terms can be neglected in the large n limit because
Ho(n,z)/O0u? = O(n®~7) for j > 2. Thus, for a < 1 one has
nl) v e 07Ty (e BT (13)
k=0
which, in terms of the rescaled variable z = xe_%"a_l, is the correlator of Kac’s
polynomials. From this observation (I3]), one can straightforwardly obtain the mean
number of real roots (V,,), this will be done in section 3.
For o > 1, the situation is quite different and in that case, ¢(u,z) has a single
1
minimum for v = w*(z) = (2logz)=7 (II). Besides, we will see below that the
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main contribution to (N,) on R* comes from the interval 1 < z < exp ($n®"!) where
1 < u*(z) < n. In that case the sum entering in the definition of ¢,(z) in Eq. (I0) is
indeed dominated by k ~ u*(x) and ¢, (x) can be evaluated by a saddle point calculation.
For this purpose, one obtains after some algebra explained in the Appendix, a convenient
expression of p,(z) as

Sk — (@)% @00 TS (k= (x))e R0
pn(T) = — == —¢(k,x) N sy —¢(k,x) ,(14)
T Do € D k=o€ 7"

which is the starting point of our analysis for « > 1. For 1 < z < exp (
u*(z) < mn so that the sums over k in Eq. (4] are dominated by k ~ u

expansion of ¢(k, z) around this minimum reads

. L afa—1)..(a

6k, ) = ofu (), 1)1 Y L

1l
j=2 J:

) one has

P
*(z). The Taylor

I (i () ()] (1)

For large z, u*(x) o« (logz)Y/(®~1 is also large so that, to leading order in x, one can
retain only the term corresponding to j = 2 in the Taylor expansion in Eq. (IZ]). This
yields, for large x

Zg —u*(x)) exp (=6 (k, ) (16)

-1
ﬁ@}jg @) e |- O k]
with g(2) = 2 or g(z) = 2* as in Eq. (I4). For later purpose it is useful to write
u*(z) = |u*(z)] +b with 0 < b < 1, where |u*(z)] is the largest integer smaller than
u*(z) (i.e. the floor function). Performing the change of variable m = k — |u*(z)] in
the discrete sum ([I6]), such that & — «*(2) = m — b one obtains the useful expression

Y gk —u(x)) exp (=o(k, ) (17)
k=0

) n—|u*(z)] ala — 1 o
@03 g = byesp |- 2O by ()
m=—|u*(z)]
One clearly sees in expression (I8) that the behavior of this discrete sum, due to the
term [u*(z)]*% oc (logx)@~2/(@=1 will depend on the sign of a — 2. We will thus treat
the three cases 1 < a < 2, a > 2 and o = 2 separately. This will be done in section 4,
5 and 6 respectively.

3. Thecase 0 < a <1

In that case, from the expression for c¢,(z) in Eq. (3], we can use the results of
Kac’s polynomials to obtain that most of the real roots will be such that, for large n,
e~ 3" —1 = O(n~ ') [12]. In other words, the real roots are distributed in a region
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of width 1/n around ez =1+ 2n®~ 1+ O(n*"?) and this distribution is exactly the
same as the one for Kac’s polynomials (corresponding to av = 0). The number of real
roots is thus also the same and given by

2

independently of o < 1.

4. The case 1l < a < 2

In that case [u*(z)]*? — 0 for large u*(xz) and one thus sees on the asymptotic
expression in Eq. (I8)) that the discrete sum can be replaced by an integral. This
yields, for large n and large = with z < exp ($n*")

[e o]

Zg ) exp (o)) ~ 0 [ gy by 19
Note that the prefactor e=¢(*"(#)2) is unimportant for the computation of p,(z) because
it disappears between the numerator and the denominator in Eq. (I4)) and it will be
omitted below. In particular, setting g(z) = 1 in Eq. (I9) one has

n

> exp (~olk.a)) ox var | S (20
and similarly, setting g(z) = 2% in Eq. (I9) one has

n

3
2—a 2
Sk — (@) exp (—ok, ) o v | SN 21)
k=0 (a -1

while >} (k—u*(x)) exp (—¢(k, z)) ~ 0 to lowest order in n. Therefore using the exact
expression given in Eq. (I4) together with the asymptotic behaviors given in Eq. (20,
21)), one obtains the large x behavior of p,(x) as

pu() ~ i;) (2 10gx)2”—f” _ (22)

T\ /oo —1

For a clear comparison with the case o > 2 (which will be analysed in the next section),
1
it is convenient to write the density p,(Y), in terms of the variable Y = (% log ZL’) ot

which reads, for 1 <K Y <n

ala—1)_ 1
(V) ~ ey 27 23
and in Fig. a), we show a sketch of this asymptotic behavior (23) of p,(Y) for
1KY <n.

We can now compute (N,,) f pn(x) dz. First, one notices that for a > 1, the
series entering in the definition of ¢, (z ) in Eq. (I0) has an infinite radius of convergence



Condensation of the roots of real random polynomials on the real azis 8

so that one readily obtains that fjll pn(z)dx is of order O(1) in the limit n — oo.

Besides, for large 2 > €2™" ', one has (see also Ref. [7])

(an_y) 1 esn"”

n(T) ~ ~ , 24
pn() W) 2~ i (24)
which implies that [5,«-1 p,(z) dz is also of order O(1) in the limit n — oo. From these
properties, it follows that the main contributions to (N, ) on Rt comes from the interval
[1,e3"""] where the asymptotic behavior of p,(z) is given in Eq. (22). Therefore one

has
a, a—1

ez 2 [a—1
(Np) ~ 2/ pn() dax ~ — n®/? | (25)
1

™ (0%

where the factor 2 comes from the additional contribution coming from [—e3"" ™" —1].

We thus have here an algebraic growth (N,) oc n®/?

with a continuously varying
exponent «/2. This exponent tends to 1/2 as o — 17, which is expected from the
analysis of Weyl polynomials W, (x) in Eq. (D) for which (a2) oc e *1°¢* (although the
variance is not exactly of the form (a}) = ¢ *"). Besides, from Eq. (Z3)), one also
obtains that the amplitude of this term proportional to n®/? vanishes when a — 1. We
recall that for @ < 1, one has instead (N,) x (2)logn (I8), characteristic for Kac’s
polynomials. This suggests that this limit o« — 1 is rather singular in the sense that the

asymptotic behavior of (IV,,) for large n changes "discontinuously" from logn to \/n.

5. The case o > 2

In that case, the behavior of the discrete sum in Eq. (I8]), which enters in the
computation of p,(x) ([4) is quite different. Indeed, in that case [u*(z)]*? o
(log z)(@=2/(e=1) _ o0 for large x and therefore the leading term for large x in Eq. (IS)
corresponds to m = 0 if b < 1/2 or m = 1 in b > 1/2. Keeping these leading
contributions, one has

>0 k= u(a)) exp (—o(k 2)) x g0y exp | -2y

Ma - b)Qu*(x)o‘_z] . (26)

where, again, we have omitted the unimportant prefactor e~ (*):#)_ Using this large

Fall=esp |-

expansion (26]), one obtains p,(z) in Eq. (I4) as

2 2 =
pn(x) ~ VY = (— log x) : (27)
(mx) cosh [@Y“”(l — 26)} a
In terms of the variable Y, the density p,(Y") reads,

a(a—1)ye?
27 cosh [MY“—Q(l — 26)}

pn(Y = [Y]+0) ~ (28)

2
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In Fig. 2 c), one shows a sketch of p,(Y) for large Y < n given by Eq. (28] : it is
qualitatively very different from the case a < 2 (see Fig. @ a)). Indeed, p,(Y") exhibits
peaks centered around k + % for large integers 1 < k < n. The height of these peaks is
given by a(a — 1)k®~2/(27) whereas its width scales like k2.

From p,(z), one can now compute the mean number of real roots. As in the case
a < 2 (see Eq. (24) and above), one can show that the main contribution to (N, ) comes
from the intervals [—e2"*", —1] and [1,e2™"']. One thus has from Eq. 28)

(N,) =2 /OOO pu(@) da ~ 2 /On pu(Y)dY (29)

n ala— 1)k.a 2

1 2
ala — 1)k~ dz
~ Z/ ala—1) 7.0 de Z/a(a D ez mcosh z
0 7 cosh [Tk‘a 2(1 - ka2

k>1 k>1

and finally
(Ny) ~n, (30)

where we have used ffooo dz/coshz = w. This condensation of the roots on the real
axis, characterized by the fact that (V) ~ n thus occurs via the formation of this
quasi-periodic structure (see Fig. 2l ¢)). More precisely, this computation in Eq. (29)
shows that for large k, 2fk+1 pn(Y)dY ~ 1 which means, going back to the original
variable x, that there is, on average, one root in the interval [—xzy 1, —x| U [2k, Tp11],

1
with 2, = e2%7.

6. The special case a = 2

In view of the previous analysis, it is tempting to consider the fraction of real roots
® = lim,, . (N,,)/n as an “order paramater”. For a < 2, one has ® = 0 whereas ¢ =1
for @ > 2. One can however interpolate smoothly between these two limiting cases by
considering the case &« = 2 and introducing an additional real parameter p such that

(ap) = e (31)

Performing the same algebra as explained in the Appendix, one obtains the same formula
as given in Eq. (I4) with u*(z) = u~!logz. The new variable is thus here Y = p~!logx
and, setting Y = | Y |+b it is easy to see that the density p,,(Y) is given by for 1 K Y < n

1/2
o [T e TS (e .
e > B v -

which is thus 1-periodic for all u. In Fig. 2l c¢), one shows a sketch of p(Y) for a = 2

given by Eq. (2). For u — 0, the density is almost constant and p,(Y) ~ 7= 1/u/2
and the modulation of the density increases with p. For large p, the sum in Eq. (32) is
dominated by the terms corresponding to m = 0 and m = 1 and p,(Y) is thus given by
a formula similar to Eq. (28] setting o = 2 and replacing Y*~2 by u. For the average
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Figure 2. a) : Sketch of 5,,(Y) (in arbitrary units) given in Eq. (23) as a function
of Y for 1 Y < nfor @ < 2. b) : Sketch of p,(Y) (in arbitrary units) given in Eq.
B2) as a function of Y for 1 <« Y < n for o = 2. ¢) : Sketch of p,,(Y) (in arbitrary
units) given in Eq. (28) as a function of Y for 1 < Y < n for a > 2. Here k denotes
an integer with 1 < k < n.

number of real roots one has
V21

(N,) T
n, p>1,

1
S (33)

which shows that this family of real random polynomials (BI]) interpolate smoothly
between the cases a < 2 (20) and o > 2 (29).

7. A qualitative argument for the transition at o = 2

This condensation of the roots on the real axis can be qualitatively understood if one

considers the random polynomials (for z > 0) P,(Y) = P,(x) of the variable Y, which
one writes as

. " 1
B(Y) =) apw(k,Y), w(k,Y) = exp —5 (k" — akY* Y (34)
k=0

and ay are i.i.d. Gaussian variables of unit variance. It is easy to see that the weights
w(k,Y), as a function of k, have a single maximum for £ = Y where the second derivative
is proportional to k*~2. Thus for o > 2, the weights get more and more peaked around
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this maximum for large k, whereas a; is typically of order O(1). Therefore, given a
large integer m, Pn(m) is, for a > 2, dominated by a single term corresponding to
k = m. Consequently, the sign of pn(m) is essentially the sign of a,,. This in turn
implies that, if a,, and a,,,1 have an opposite sign, P,(z) has, with a probability close
to 1, a root in the interval [e%ma_l, e%(mﬂ)a_l]. In the case where a,, and a,,,; have the
same sign, the same argument shows that P,(z) has, with a probability close to 1, a root
in the interval [—e3 (D™ _e50m*™") " One thus recovers qualitatively the result we
had found from the computation of p,,(Y) in Eq. (29) where we have shown that P, (z)
has, on average, one root in the interval [—eZ("+D* ™" _eg(m)* Y [egm T o5 0mt) T
This shows finally that P,(z) has, on average, (NNV,,) o< nreal roots.

We also point out that our argument explains in a rather intuitive way the result
obtained by Littlewood and Offord [II] for the random polynomials L, (z) (2]). For
these specific polynomials, defining o = 0, z,, = m™m/!, they rigorously proved, using
algebraic (and rather cumbersome) methods, that L, (x) has a root either on [x,,, Z,,11]
if €p€m11 = —1orin [—zp 11, =Ty if €n€,401 = 1. Our argument gives some insight on
their intriguing result and allows to understand it in a rather simple way.

8. Conclusion

To conclude we have introduced a new family of random polynomials (), indexed by
a real a. For these random polynomials, we have computed the mean density of real
roots p,(z) from which we computed the mean number of real roots (N,) for large
n. We have shown that, while for 0 < a < 1, (N,) ~ (2)logn, the behavior of
(N,,) for @ > 1 deviates significantly from the logarithmic behavior characteristic for

a/2 whereas for

Kac’s polynomials. For 1 < a < 2, we have shown that (N,) x n
a > 2, (N,) ~ n. This family of real random polynomials thus displays an interesting
condensation phenomenon of their roots on the real axis, which is accompanied by an
ordering of the roots in a quasi periodic structure : this is depicted in Fig. 2L

Of course, the occurrence of this transition raises several interesting questions like
the behavior of the variance of the number of real roots for large n as « is varied. It
would be also interesting to compute the two-point correlation function of the real roots,
which is a rather natural tool to characterize this periodic structure we have found. In
view of this, we hope that this interesting phenomenon will stimulate further research

on random polynomials.

Appendix A. A useful expression for the mean density p,(z)

In this appendix, we derive the expression for the mean density p,(x) as given in Eq.
(M) starting from Eq. (@). We first write ¢, (z) = (P,(z)P,(x)) as

Cn<x‘> = efd)(“*(x)vz) Z e*(;;(k,:r) , (Al)
k=0
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where u*(x) is the location of the minimum of ¢(u, z) given in Eq. (I

u*(z) = (%logaz)m ) (A.2)
and

o(u(z),2) = (1 — aju”(2)* (A-3)

ok, x) = p(k,x) — ¢(u’(2), 2) = k* — ak[u(2)]* 7" + (o — D" ()] .
The correlator Cy, (2, y) = cn(\/y) is given by Eq. (A.I) together with Eq. (A.3)) where

x is replaced by /zy. All the dependence of C,(z,y) in z, y is thus contained in u*(,/zy)
only. From its definition in Eq. (A.2) one has immediately

Dot (V) = ————[u* (/7)1 | (A1)

ala—1)z
from which we obtain a set of useful relations

02 (" (v/TG), A/TG) = ——— [ (JEP)P (A5)

ala—1)zy
0.0(k, /75) = ~(u (y7T) ~ 1
ol Va

0% ok =
2y Ok, /TY) ola
For the computation of p,(z) from Eq. (), it is useful to introduce the notation, for

~1)ay
any function g(k)
"o 9(k) exp (—o(k
iy — Shzo 0K ex0 (300 y77)
2 k=0 &P (—0(k, \/7y))
From C,(z,y) = ¢,(y/Zy) and ¢,(x) given in Eq.(A.I) one obtains
0,0, 108 Coy/75) = ~02 00 (V). /TT) — (0u5(k, /T2, 00k /7)) 7
—(0:0(k, VTY)) 2{0:0(k, /7Y)) 2 — (07 , 0k, \/7Y)) 2 - (A7)
From the above relations in Eq. (A.D), it is readily seen that the first and the last term

in Eq. (A7) cancel each other. Using the relation in Eq. (), one finally obtains the
relation given in the text in Eq. (I4).

(A.6)
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