
ar
X

iv
:0

90
2.

10
27

v1
  [

m
at

h-
ph

] 
 6

 F
eb

 2
00

9

Condensation of the roots of real random polynomialson the real axisGrégory Shehr1, Satya N. Majumdar2
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2 Laboratoire de Physique Théorique et Modèles Statistiques, Université Paris-Sud,Bât. 100, 91405 Orsay Cedex, FraneAbstrat. We introdue a family of real random polynomials of degree nwhose oe�ients ak are symmetri independent Gaussian variables with variane
〈a2

k〉 = e−kα , indexed by a real α ≥ 0. We ompute exatly the mean numberof real roots 〈Nn〉 for large n. As α is varied, one �nds three di�erent phases.First, for 0 ≤ α < 1, one �nds that 〈Nn〉 ∼ ( 2

π ) log n. For 1 < α < 2, there isan intermediate phase where 〈Nn〉 grows algebraially with a ontinuously varyingexponent, 〈Nn〉 ∼ 2

π

√

α−1

α nα/2. And �nally for α > 2, one �nds a third phase where
〈Nn〉 ∼ n. This family of real random polynomials thus exhibits a ondensation oftheir roots on the real line in the sense that, for large n, a �nite fration of their roots
〈Nn〉/n are real. This ondensation ours via a loalization of the real roots aroundthe values ± exp

[

α
2
(k + 1

2
)α−1

], 1 ≪ k ≤ n.
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Condensation of the roots of real random polynomials on the real axis 21. IntrodutionSine the early work of Bloh and Pólya [1℄ in the 30's, the study of random algebraiequations has now a long story [2, 3℄. In the last few years, it attrated a renewedinterest in the ontext of probability and number theory [4℄, as well as in the �eld ofquantum haos [5℄. Reently, we showed that there are also interesting onnetionsbetween random polynomials and persistene properties of physial systems [6, 7℄.Here we onsider real random polynomials, i.e. polynomials with real randomoe�ients, of degree n. While these polynomials have exatly n roots in the omplexplane, the number of roots on the real line Nn is a random variable. One would like toharaterize the statistis of this random variable and a natural question is thus : what isthe mean number 〈Nn〉 of real roots and how does it behave with n for large n [4℄? Thisquestion has been widely studied in the past for Ka's polynomials Kn(x) =
∑n

k=0 ak xkwhere ak are independent and identially distributed (i.i.d.) random variables of �nitevariane 〈a2
k〉 = σ2. In that ase it is well known that 〈Nn〉 ∼ 2

π
log n, independently of σ.This result was �rst obtained by Ka [8℄ for Gaussian random variables and it was latershown to hold also for a wider lass of distributions of the oe�ients ak [2, 3℄. Interestinggeneralizations of Ka's polynomials have been studied in the literature where ak areindependent Gaussian variables but non idential, suh that 〈a2
k〉 = kd−2, where d > 0 isa real number, leading to 〈Nn〉 ∼ π−1(1+

√

d/2) log n [7, 9℄. Given the robustness of thisasymptoti logarithmi behavior of 〈Nn〉, it is natural to searh for random polynomialsfor whih 〈Nn〉 inreases faster than log n, for instane algebraially.One suh instane is provided by the real Weyl polynomials Wn(x) de�ned by
Wn(x) =

n
∑

k=0

ǫk
xk

√
k!

, (1)where ǫk are i.i.d. random variables of zero mean and unit variane. Thus here,
ak = ǫk/

√
k! and the variane is 〈a2

k〉 = 1/k!, whih for large k behaves as 〈a2
k〉 ∝ e−k log k.For these real polynomials in Eq. (1), it is known that 〈Nn〉 ∝ n1/2. For instane,in the speial ase where ǫk are Gaussian random variables of unit variane, one has

〈Nn〉 ∼ 2
π

√
n [7, 10℄. Another interesting and intriguing instane of real randompolynomials was introdued a long time ago by Littlewood and O�ord [11℄ who studiedthe random polynomials Ln(x) given by
Ln(x) =

1

2
+

n
∑

k=1

ǫk
xk

(k!)k
, (2)where ǫk = ±1 with equal probability. Thus in this ase ak = ǫk/(k!)k and the varianeis 〈a2

k〉 = 1/(k!)2k, whih behaves for large k as 〈a2
k〉 ∝ e−2k2 log k. Using algebraimethods, they showed that suh polynomials Ln(x) have all their roots real and therefore

〈Nn〉 = n.We thus have here two examples of real random polynomials in Eq. (1) and Eq. (2)where, at variane with Ka's polynomials, 〈Nn〉 grows algebraially with n. In theseond example (2), the number of real roots is �marosopi� in the sense that, for
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0 1 2Weyl Littlewood-O�ordKa α

〈Nn〉 ∼ log n 〈Nn〉 ∼ n〈Nn〉 ∼ nα/2

Figure 1. Asymptoti behavior of the mean number of real roots 〈Nn〉 of Pn(x) inEq. (3) as a funtion of α. These polynomials exhibit a ondensation of their roots onthe real axis for α ≥ 2.large n, there is a �nite fration 〈Nn〉/n of the roots whih are on the real axis. For
Ln(x) in Eq. (2) this fration is exatly one. We thus say that there is a ondensationof the roots on the real line, similar to a Bose-Einstein ondensation where a �nitefration of the partiles of a quantum-mehanial system (Bosons) ondense into thelowest energy level. In the ase of random polynomials, the roots play the role of thepartiles and the equivalent of the ground state is the real line.The purpose of this paper is to understand what types of polynomials lead to thisondensation phenomenon. Of ourse, it is very di�ult to address this question forany random oe�ients ak. However, guided by the two examples above in Eq. (1)and Eq. (2), and in partiular by the large k behavior of 〈a2

k〉, we introdue a family ofrandom polynomials Pn(x) indexed by a real α ≥ 0 de�ned by
Pn(x) =

n
∑

k=0

ak xk , 〈a2
k〉 = e−kα

, (3)where ak are real independent Gaussian random variables of zero mean. While α = 0orresponds to Ka's polynomials, we reall that, for Wn(x) in Eq. (1), 〈a2
k〉 ∝ e−k log kand for Ln(x) in Eq. (2), 〈a2

k〉 ∝ e−2k2 log k. Therefore, due to the extra logarithmifator, these random polynomials are not exatly of the form introdued above (3).However, for α → 1+, one expets to reover the behavior of Wn(x) in Eq. (1) while for
α → 2+, one expets Pn(x) to behave similarly to Ln(x) in Eq. (2) : this is depitedshematially in Fig. 1.Our main results an be summarized as follows. As α ≥ 0 is varied one �ndsthree di�erent phases. The �rst phase orresponds to 0 ≤ α < 1, where one �ndsthat 〈Nn〉 ∼ (2/π) log n. In the seond one, orresponding to 1 < α < 2, one has
〈Nn〉 ∼ 2

π

√

α−1
α

nα/2. And in the third phase, for α > 2, one �nds 〈Nn〉 ∼ n. Theondensation of the roots on the real axis thus happens for α ≥ 2 and as one inreases
α, the ondensation transition sets in at the ritial value αc = 2. Furthermore, one�nds that these real roots ondense into a quasi-periodi struture suh that there is,on average, one root in the interval [−xm+1,−xm] ∪ [xm, xm+1], with xm = e

α

2
mα−1 ,with 1 ≪ m < n. These di�erent behaviors are summarized in Fig. 1. By analogywith phase transitions of statistial systems the ase 0 < α < 1 an be onsidered asa high-temperature phase whereas α > 2 orresponds to the low-temperature (ordered)phase. Roughly speaking, one an onsider our results as an interesting example wherethe transition from the high temperature where 〈Nn〉 ∝ log n (governed by a �α = 0



Condensation of the roots of real random polynomials on the real axis 4�xed point�) to the low temperature phase where 〈Nn〉 ∝ n (governed by �α = ∞� �xedpoint) happens through a marginal phase, for 1 < α < 2, where 〈Nn〉 ∼ nφ with anexponent φ = α/2 whih depends ontinuously on α.The paper is organized as follows. In setion 2, we desribe the general frameworkto ompute the loal density of real roots, whih diretly leads to 〈Nn〉. In setion 3to 6 we then analyse separately the ases 0 ≤ α < 1, α < 2, α > 2 and the �ritialase� α = 2. In setion 7, we give a qualitative argument to explain the ondensationtransition ourring at αc = 2 before we onlude in setion 8. The Appendix ontainssome useful tehnial details.2. General frameworkFirst we notie that given that Pn(x), as a funtion of x, is a Gaussian proess, it isompletely haraterized by its two-point orrelation funtion Cn(x, y)

Cn(x, y) = 〈Pn(x)Pn(y)〉 =
n
∑

k=0

e−kα

xk yk , (4)where we used the notation 〈...〉 to denote an average over the random variables ak.A entral objet involved in the alulation of 〈Nn〉 is ρn(x), the mean density of realroots at point x. If we denote λ1, λ2, ..., λp the p real roots (if any) of Pn(x), one has
δ(Pn(x)) =

∑p
i=1 δ(x − λi)/|P ′

n(λi)| suh that ρn(x) an be written as
ρn(x) =

p
∑

i=1

〈δ(x − λi)〉 = 〈|P ′
n(x)|δ(Pn(x))

=

∫ ∞

−∞

dy|y|〈δ(P ′
n(x) − y)δ(Pn(x))〉 . (5)Under this form (5), one observes that the omputation of the mean density involvesthe joint distribution of the polynomial Pn(x) and its derivative P ′

n(x) whih is simplya bivariate Gaussian distribution. After Gaussian integration over y, one obtains
ρn(x) =

√

cn(x)(c′n(x)/x + c′′n(x)) − [c′n(x)]2

2πcn(x)
, (6)

cn(x) = Cn(x, x) =

n
∑

k=0

e−kα

x2k .This formula (6) an be written in a very ompat way [4℄ :
ρn(x) =

1

π

√

∂u∂v log Cn(u, v)
∣

∣

∣

u=v=x
. (7)Given that the random oe�ients ak are drawn from a symmetri distribution, we anrestrit our study of ρn(x) on R

+ from whih one obtains the mean number of real roots
〈Nn〉 as

〈Nn〉 = 2

∫ ∞

0

ρn(x)dx . (8)



Condensation of the roots of real random polynomials on the real axis 5An important hange of variable. We will see below that it is useful to onsiderthese polynomials Pn(x) in terms of another variable Y de�ned as
Y =

(

2

α
log x

)
1

α−1

. (9)We denote ρ̂n(Y ) the mean density of the real roots in terms of this new variable suhthat one has also 〈Nn〉 =
∫∞

0
ρ̂n(Y )dY . For 0 < α < 1 we will see that, for large n,most of the real roots of Pn are loated lose to Y = n while for α > 1, the densityextends over the whole interval Y ∈ [1, n]. This hange of variable (9) is motivated bythe following analysis.First we notie that Cn(x, y) =

∑n
k=0 e−kα

xkyk in Eq. (4) is of the form Cn(x, y) =

cn(
√

xy). Antiipating a saddle point analysis, one writes cn(x) as
cn(x) =

n
∑

k=0

e−kα

x2k =
n
∑

k=0

exp (−φ(k, x)) , φ(k, x) = kα − 2k log x . (10)Although φ(k, x) is de�ned for integers k = 0, 1, 2, · · · , n, it is readily extended to thereal axis and denoted φ(u, x) = uα − 2u logx for u ∈ R
+. The behavior of cn(x) isessentially governed by the behavior of φ(u, x) as a funtion of u (and �xed x). Inpartiular, for α < 1, φ(u, x) has a single maximum while for α > 1, it has a singleminimum for u = u∗(x) given by

∂uφ(u∗(x), x) = 0 , ∂2
uφ(u∗(x), x) = α(α − 1)u∗(x)α−2 > 0 ,

u∗(x) =

(

2

α
log x

)
1

α−1

. (11)The new variable Y introdued above in Eq. (9) is thus preisely Y = u∗(x). As aonsequene, the density behaves quite di�erently in both ases α < 1 and α > 1.For α < 1, most of the real roots on R
+ are loated in [1,∞]. For �xed x > 1,

φ(u, x) as a funtion of u in the interval [0, n] has a global minimum for u = n. Therefore,the sum entering in the expression of cn(x) in Eq. (10) will be dominated by the termswith k ∼ n. The expansion of φ(k, x) in Taylor series around k = n yields
φ(k, x) = φ(n, x) + (k − n)(αnα−1 − 2 log x) + · · ·

= (1 − α)nα − k(αnα−1 − 2 log x) + · · · , (12)where the higher order terms an be negleted in the large n limit beause
∂jφ(n, x)/∂uj = O(nα−j) for j ≥ 2. Thus, for α < 1 one has

cn(x) ∼ e−(1−α)nα

n
∑

k=0

(xe−
α

2
nα−1

)2k , (13)whih, in terms of the resaled variable x̃ = x e−
α

2
nα−1, is the orrelator of Ka'spolynomials. From this observation (13), one an straightforwardly obtain the meannumber of real roots 〈Nn〉, this will be done in setion 3.For α > 1, the situation is quite di�erent and in that ase, φ(u, x) has a singleminimum for u = u∗(x) = ( 2

α
log x)

1
α−1 (11). Besides, we will see below that the



Condensation of the roots of real random polynomials on the real axis 6main ontribution to 〈Nn〉 on R
+ omes from the interval 1 < x < exp

(

α
2
nα−1

) where
1 < u∗(x) < n. In that ase the sum entering in the de�nition of cn(x) in Eq. (10) isindeed dominated by k ∼ u∗(x) and cn(x) an be evaluated by a saddle point alulation.For this purpose, one obtains after some algebra explained in the Appendix, a onvenientexpression of ρn(x) as

ρn(x) =
1

πx

(

∑n
k=0(k − u∗(x))2e−φ(k,x)

∑n
k=0 e−φ(k,x)

−
[∑n

k=0(k − u∗(x))e−φ(k,x)

∑n
k=0 e−φ(k,x)

]2
)

1
2

,(14)whih is the starting point of our analysis for α > 1. For 1 < x < exp
(

α
2
nα−1

), one has
u∗(x) < n so that the sums over k in Eq. (14) are dominated by k ∼ u∗(x). The Taylorexpansion of φ(k, x) around this minimum reads

φ(k, x) = φ(u∗(x), x)+
∞
∑

j=2

α(α − 1)...(α − j + 1)

j!
(k−u∗(x))j [u∗(x)]α−j .(15)For large x, u∗(x) ∝ (log x)1/(α−1) is also large so that, to leading order in x, one anretain only the term orresponding to j = 2 in the Taylor expansion in Eq. (15). Thisyields, for large x

n
∑

k=0

g(k − u∗(x)) exp (−φ(k, x)) (16)
∼ e−φ(u∗(x),x)

n
∑

k=0

g(k − u∗(x)) exp

[

−α(α − 1)

2
(k − u∗(x))[u∗(x)]α−2

]

,with g(z) = z or g(z) = z2 as in Eq. (14). For later purpose it is useful to write
u∗(x) = ⌊u∗(x)⌋ + b with 0 < b < 1, where ⌊u∗(x)⌋ is the largest integer smaller than
u∗(x) (i.e. the �oor funtion). Performing the hange of variable m = k − ⌊u∗(x)⌋ inthe disrete sum (16), suh that k − u∗(x) = m − b one obtains the useful expression

n
∑

k=0

g (k − u∗(x)) exp (−φ(k, x)) (17)
∼ e−φ(u∗(x),x)

n−⌊u∗(x)⌋
∑

m=−⌊u∗(x)⌋

g(m − b) exp

[

−α(α − 1)

2
(m − b)2[u∗(x)]α−2

]

.One learly sees in expression (18) that the behavior of this disrete sum, due to theterm [u∗(x)]α−2 ∝ (log x)(α−2)/(α−1), will depend on the sign of α− 2. We will thus treatthe three ases 1 < α < 2, α > 2 and α = 2 separately. This will be done in setion 4,5 and 6 respetively.3. The ase 0 < α < 1In that ase, from the expression for cn(x) in Eq. (13), we an use the results ofKa's polynomials to obtain that most of the real roots will be suh that, for large n,
xe−

α

2
nα−1 − 1 = O(n−1) [12℄. In other words, the real roots are distributed in a region



Condensation of the roots of real random polynomials on the real axis 7of width 1/n around e
α

2
nα−1

= 1 + α
2
nα−1 +O(nα−2) and this distribution is exatly thesame as the one for Ka's polynomials (orresponding to α = 0). The number of realroots is thus also the same and given by

〈Nn〉 ∼
2

π
log n , (18)independently of α < 1.4. The ase 1 < α < 2In that ase [u∗(x)]α−2 → 0 for large u∗(x) and one thus sees on the asymptotiexpression in Eq. (18) that the disrete sum an be replaed by an integral. Thisyields, for large n and large x with x < exp (α

2
nα−1)

n
∑

k=0

g (k − u∗(x)) exp (−φ(k, x)) ∼ e−φ(u∗(x),x)

∫ ∞

−∞

g(y)e−
α(α−1)

2
y2u∗(x)α−2

dy .(19)Note that the prefator e−φ(u∗(x),x) is unimportant for the omputation of ρn(x) beauseit disappears between the numerator and the denominator in Eq. (14) and it will beomitted below. In partiular, setting g(z) = 1 in Eq. (19) one has
n
∑

k=0

exp (−φ(k, x)) ∝
√

2π

[

u∗(x)2−α

α(α − 1)

]
1
2

, (20)and similarly, setting g(z) = z2 in Eq. (19) one has
n
∑

k=0

(k − u∗(x))2 exp (−φ(k, x)) ∝
√

2π

[

u∗(x)2−α

α(α − 1)

]
3
2

, (21)while∑n
k=0(k−u∗(x)) exp (−φ(k, x)) ∼ 0 to lowest order in n. Therefore using the exatexpression given in Eq. (14) together with the asymptoti behaviors given in Eq. (20,21), one obtains the large x behavior of ρn(x) as

ρn(x) ∼ 1

πx

1
√

α(α − 1)

(

2

α
log x

)
2−α

2(α−1)

. (22)For a lear omparison with the ase α > 2 (whih will be analysed in the next setion),it is onvenient to write the density ρ̂n(Y ), in terms of the variable Y =
(

2
α

log x
)

1
α−1 ,whih reads, for 1 ≪ Y < n

ρ̂n(Y ) ∼
√

α(α − 1)

2π
Y − 1

2
(2−α) , (23)and in Fig. 2 a), we show a sketh of this asymptoti behavior (23) of ρ̂n(Y ) for

1 ≪ Y < n.We an now ompute 〈Nn〉 =
∫∞

−∞
ρn(x) dx. First, one noties that for α > 1, theseries entering in the de�nition of cn(x) in Eq. (10) has an in�nite radius of onvergene



Condensation of the roots of real random polynomials on the real axis 8so that one readily obtains that ∫ +1

−1
ρn(x) dx is of order O(1) in the limit n → ∞.Besides, for large x ≫ e

α

2
nα−1, one has (see also Ref. [7℄)

ρn(x) ∼
√

〈a2
n−1〉
〈a2

n〉
1

πx2
∼ e

α

2
nα−1

πx2
, (24)whih implies that ∫∞

e
α

2 n
α−1 ρn(x) dx is also of order O(1) in the limit n → ∞. From theseproperties, it follows that the main ontributions to 〈Nn〉 on R

+ omes from the interval
[1, e

α

2
nα−1

] where the asymptoti behavior of ρn(x) is given in Eq. (22). Therefore onehas
〈Nn〉 ∼ 2

∫ e
α

2 n
α−1

1

ρn(x) dx ∼ 2

π

√

α − 1

α
nα/2 , (25)where the fator 2 omes from the additional ontribution oming from [−e

α

2
nα−1

,−1].We thus have here an algebrai growth 〈Nn〉 ∝ nα/2 with a ontinuously varyingexponent α/2. This exponent tends to 1/2 as α → 1+, whih is expeted from theanalysis of Weyl polynomials Wn(x) in Eq. (1) for whih 〈a2
k〉 ∝ e−k log k (although thevariane is not exatly of the form 〈a2

k〉 = e−kα). Besides, from Eq. (25), one alsoobtains that the amplitude of this term proportional to nα/2 vanishes when α → 1. Wereall that for α ≤ 1, one has instead 〈Nn〉 ∝ ( 2
π
) log n (18), harateristi for Ka'spolynomials. This suggests that this limit α → 1 is rather singular in the sense that theasymptoti behavior of 〈Nn〉 for large n hanges "disontinuously" from log n to √

n.5. The ase α > 2In that ase, the behavior of the disrete sum in Eq. (18), whih enters in theomputation of ρn(x) (14) is quite di�erent. Indeed, in that ase [u∗(x)]α−2 ∝
(log x)(α−2)/(α−1) → ∞ for large x and therefore the leading term for large x in Eq. (18)orresponds to m = 0 if b < 1/2 or m = 1 in b > 1/2. Keeping these leadingontributions, one has

n
∑

k=0

g (k − u∗(x)) exp (−φ(k, x)) ∝ g(−b) exp

[

−α(α − 1)

2
b2u∗(x)α−2

]

+ g(1 − b) exp

[

−α(α − 1)

2
(1 − b)2u∗(x)α−2

]

. (26)where, again, we have omitted the unimportant prefator e−φ(u∗(x),x). Using this large xexpansion (26), one obtains ρn(x) in Eq. (14) as
ρn(x) ∼ 2

(πx) cosh
[

α(α−1)
2

Y α−2(1 − 2b)
] , Y =

(

2

α
log x

)
1

α−1

. (27)In terms of the variable Y , the density ρ̂n(Y ) reads,
ρ̂n(Y = ⌊Y ⌋ + b) ∼ α(α − 1)Y α−2

2π cosh
[

α(α−1)
2

Y α−2(1 − 2b)
] . (28)



Condensation of the roots of real random polynomials on the real axis 9In Fig. 2 ), one shows a sketh of ρ̂n(Y ) for large Y < n given by Eq. (28) : it isqualitatively very di�erent from the ase α < 2 (see Fig. 2 a)). Indeed, ρ̂n(Y ) exhibitspeaks entered around k + 1
2
for large integers 1 ≪ k < n. The height of these peaks isgiven by α(α − 1)kα−2/(2π) whereas its width sales like k2−α.From ρn(x), one an now ompute the mean number of real roots. As in the ase

α < 2 (see Eq. (24) and above), one an show that the main ontribution to 〈Nn〉 omesfrom the intervals [−e
α

2
nα−1

,−1] and [1, e
α

2
nα−1

]. One thus has from Eq. (28)
〈Nn〉 = 2

∫ ∞

0

ρn(x) dx ∼ 2

∫ n

0

ρ̂n(Y ) dY (29)
∼

n
∑

k≫1

∫ 1

0

α(α − 1)kα−2

π cosh
[

α(α−1)
2

kα−2(1 − 2b)
] db ∼

n
∑

k≫1

∫
α(α−1)

2
kα−2

−
α(α−1)

2
kα−2

dz

π cosh z
,and �nally

〈Nn〉 ∼ n , (30)where we have used ∫∞

−∞
dz/ cosh z = π. This ondensation of the roots on the realaxis, haraterized by the fat that 〈Nn〉 ∼ n thus ours via the formation of thisquasi-periodi struture (see Fig. 2 )). More preisely, this omputation in Eq. (29)shows that for large k, 2
∫ k+1

k
ρ̂n(Y ) dY ∼ 1 whih means, going bak to the originalvariable x, that there is, on average, one root in the interval [−xk+1,−xk] ∪ [xk, xk+1],with xk = e

α

2
kα−1.6. The speial ase α = 2In view of the previous analysis, it is tempting to onsider the fration of real roots

Φ = limn→∞〈Nn〉/n as an �order paramater�. For α < 2, one has Φ = 0 whereas Φ = 1for α > 2. One an however interpolate smoothly between these two limiting ases byonsidering the ase α = 2 and introduing an additional real parameter µ suh that
〈a2

k〉 = e−µk2

. (31)Performing the same algebra as explained in the Appendix, one obtains the same formulaas given in Eq. (14) with u∗(x) = µ−1 log x. The new variable is thus here Y = µ−1 log xand, setting Y = ⌊Y ⌋+b it is easy to see that the density ρ̂n(Y ) is given by for 1 ≪ Y < n

ρ̂n(Y ) =
µ

π





∑∞
m=−∞(m − b)2e−µ(m−b)2

∑∞
m=−∞ e−µ(m−b)2

−
[

∑∞
m=−∞(m − b)e−µ(m−b)2

∑∞
m=−∞ e−µ(m−b)2

]2




1/2

, (32)whih is thus 1-periodi for all µ. In Fig. 2 ), one shows a sketh of ρ̂(Y ) for α = 2given by Eq. (32). For µ → 0, the density is almost onstant and ρ̂n(Y ) ∼ π−1
√

µ/2and the modulation of the density inreases with µ. For large µ, the sum in Eq. (32) isdominated by the terms orresponding to m = 0 and m = 1 and ρ̂n(Y ) is thus given bya formula similar to Eq. (28) setting α = 2 and replaing Y α−2 by µ. For the average
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Figure 2. a) : Sketh of ρ̂n(Y ) (in arbitrary units) given in Eq. (23) as a funtionof Y for 1 ≪ Y < n for α < 2. b) : Sketh of ρ̂n(Y ) (in arbitrary units) given in Eq.(32) as a funtion of Y for 1 ≪ Y < n for α = 2. ) : Sketh of ρ̂n(Y ) (in arbitraryunits) given in Eq. (28) as a funtion of Y for 1 ≪ Y < n for α > 2. Here k denotesan integer with 1 ≪ k < n.number of real roots one has
〈Nn〉 ∝







√
2µ

π
n , µ ≪ 1

n , µ ≫ 1 ,

(33)whih shows that this family of real random polynomials (31) interpolate smoothlybetween the ases α < 2 (25) and α > 2 (29).7. A qualitative argument for the transition at α = 2This ondensation of the roots on the real axis an be qualitatively understood if oneonsiders the random polynomials (for x > 0) P̂n(Y ) = Pn(x) of the variable Y , whihone writes as
P̂n(Y ) =

n
∑

k=0

âkw(k, Y ) , w(k, Y ) = exp

[

−1

2
(kα − αkY α−1)

]

, (34)and âk are i.i.d. Gaussian variables of unit variane. It is easy to see that the weights
w(k, Y ), as a funtion of k, have a single maximum for k = Y where the seond derivativeis proportional to kα−2. Thus for α > 2, the weights get more and more peaked around



Condensation of the roots of real random polynomials on the real axis 11this maximum for large k, whereas âk is typially of order O(1). Therefore, given alarge integer m, P̂n(m) is, for α > 2, dominated by a single term orresponding to
k = m. Consequently, the sign of P̂n(m) is essentially the sign of âm. This in turnimplies that, if âm and âm+1 have an opposite sign, Pn(x) has, with a probability loseto 1, a root in the interval [e

α

2
mα−1

, e
α

2
(m+1)α−1

]. In the ase where âm and âm+1 have thesame sign, the same argument shows that Pn(x) has, with a probability lose to 1, a rootin the interval [−e
α

2
(m+1)α−1

,−e
α

2
(m)α−1

]. One thus reovers qualitatively the result wehad found from the omputation of ρ̂n(Y ) in Eq. (29) where we have shown that Pn(x)has, on average, one root in the interval [−e
α

2
(m+1)α−1

,−e
α

2
(m)α−1

]∪ [e
α

2
mα−1

, e
α

2
(m+1)α−1

].This shows �nally that Pn(x) has, on average, 〈Nn〉 ∝ nreal roots.We also point out that our argument explains in a rather intuitive way the resultobtained by Littlewood and O�ord [11℄ for the random polynomials Ln(x) (2). Forthese spei� polynomials, de�ning x0 = 0, xm = mmm!, they rigorously proved, usingalgebrai (and rather umbersome) methods, that Ln(x) has a root either on [xm, xm+1]if ǫmǫm+1 = −1 or in [−xm+1,−xm] if ǫmǫm+1 = 1. Our argument gives some insight ontheir intriguing result and allows to understand it in a rather simple way.8. ConlusionTo onlude we have introdued a new family of random polynomials (3), indexed bya real α. For these random polynomials, we have omputed the mean density of realroots ρn(x) from whih we omputed the mean number of real roots 〈Nn〉 for large
n. We have shown that, while for 0 ≤ α < 1, 〈Nn〉 ∼ ( 2

π
) log n, the behavior of

〈Nn〉 for α > 1 deviates signi�antly from the logarithmi behavior harateristi forKa's polynomials. For 1 < α < 2, we have shown that 〈Nn〉 ∝ nα/2 whereas for
α > 2, 〈Nn〉 ∼ n. This family of real random polynomials thus displays an interestingondensation phenomenon of their roots on the real axis, whih is aompanied by anordering of the roots in a quasi periodi struture : this is depited in Fig. 2.Of ourse, the ourrene of this transition raises several interesting questions likethe behavior of the variane of the number of real roots for large n as α is varied. Itwould be also interesting to ompute the two-point orrelation funtion of the real roots,whih is a rather natural tool to haraterize this periodi struture we have found. Inview of this, we hope that this interesting phenomenon will stimulate further researhon random polynomials.Appendix A. A useful expression for the mean density ρn(x)In this appendix, we derive the expression for the mean density ρn(x) as given in Eq.(14) starting from Eq. (7). We �rst write cn(x) = 〈Pn(x)Pn(x)〉 as

cn(x) = e−φ(u∗(x),x)
n
∑

k=0

e−φ̃(k,x) , (A.1)
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u∗(x) =

(

2

α
log x

)
1

α−1

, (A.2)and
φ(u∗(x), x) = (1 − α)u∗(x)α (A.3)
φ̃(k, x) = φ(k, x) − φ(u∗(x), x) = kα − αk[u∗(x)]α−1 + (α − 1)[u∗(x)]α .The orrelator Cn(x, y) = cn(

√
xy) is given by Eq. (A.1) together with Eq. (A.3) where

x is replaed by √
xy. All the dependene of Cn(x, y) in x, y is thus ontained in u∗(

√
xy)only. From its de�nition in Eq. (A.2) one has immediately

∂xu
∗(
√

xy) =
1

α(α − 1)

1

x
[u∗(

√
xy)]2−α , (A.4)from whih we obtain a set of useful relations

∂2
x,yφ(u∗(

√
xy),

√
xy) = − 1

α(α − 1)

1

xy
[u∗(

√
xy)]2−α (A.5)

∂xφ̃(k,
√

xy) =
1

x
(u∗(

√
xy) − k)

∂2
x,yφ̃(k,

√
xy) =

1

α(α − 1)

1

xy
[u∗(

√
xy)]α−2 .For the omputation of ρn(x) from Eq. (7), it is useful to introdue the notation, forany funtion g(k)

〈g(k)〉Z =

∑n
k=0 g(k) exp (−φ̃(k,

√
xy))

∑n
k=0 exp (−φ̃(k,

√
xy))

. (A.6)From Cn(x, y) = cn(
√

xy) and cn(x) given in Eq.(A.1) one obtains
∂x∂y log Cn(

√
xy) = −∂2

x,yφ(u∗(
√

xy),
√

xy) − 〈∂xφ̃(k,
√

xy)∂yφ̃(k,
√

xy)〉Z
− 〈∂xφ̃(k,

√
xy)〉Z〈∂xφ̃(k,

√
xy)〉Z − 〈∂2

x,yφ̃(k,
√

xy)〉Z . (A.7)From the above relations in Eq. (A.5), it is readily seen that the �rst and the last termin Eq. (A.7) anel eah other. Using the relation in Eq. (7), one �nally obtains therelation given in the text in Eq. (14).Referenes[1℄ A. Bloh and G. Pólya, On the roots of ertain algebrai equations, Pro. London Math. So. (3)33, 102 (1932).[2℄ A. T. Bharuha-Reid and M. Sambandham, Random Polynomials, Aademi Press, New York,1986.[3℄ K. Farahmand, in Topis in random polynomials, Pitman researh notes in mathematis series393, (Longman, Harlow) (1998).[4℄ A. Edelman and E. Kostlan, How many zeros of random polynomials are real ?, Bull. Amer. Math.So. 32, 1 (1995).[5℄ E. Bogomolny, O. Bohigas and P. Leboeuf, Distribution of roots of random polynomials Phys. Rev.Lett. 68, 2726 (1992); Quantum haoti dynamis and random polynomials, J. Stat. Phys. 85,639. (1996).
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