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Using path integral techniques, we compute exactly the distribution of the maximal height Hp of
p nonintersecting Brownian walkers over a unit time interval in one dimension, both for excursions
(p-watermelons with a wall) and bridges (p-watermelons without a wall), for all integer p ≥ 1. For
large p, we show that 〈Hp〉 ∼ √

2p (excursions) whereas 〈Hp〉 ∼ √
p (bridges). Our exact results

prove that previous numerical experiments only measured the pre-asymptotic behaviors and not the
correct asymptotic ones. In addition, our method establishes a physical connection between vicious
walkers and random matrix theory.

PACS numbers: 05.40.-a, 02.50.-r, 05.70.Np

Introduction. Since the pioneering work of de
Gennes [1], followed up by Fisher [2], the subject of vi-
cious (non-intersecting) random walkers has attracted a
lot of interest among physicists. It has been studied in
the context of wetting and melting [2], networks of poly-
mers [3] and fibrous structures [1], persistence proper-
ties in nonequilibrium systems [4] and stochastic growth
models [5, 6]. There also exist connections between the
vicious walker problem and the random matrix theory
(RMT) [7, 8, 9], including for instance Dyson’s Brown-
ian motion [10]. These connections to RMT have rekin-
dled recent interest in the vicious walker problem and
have led to new interesting questions. However, despite
extensive recent mathematical literature on the subject,
the connections to RMT have so far been established us-
ing mostly combinatorial approaches. Given the non-
intersection constraint in the vicious walker problem, it
is natural to expect a free Fermion approach to make its
connection to RMT physically more explicit. The aim of
this Letter is to present such an approach which, in ad-
dition, allows us to derive a variety of new exact results
in the vicious walker problem.

Physically, one dimensional vicious walkers play an
important role in describing the elementary topological
excitations in the p × 1 commensurate adsorbed phases
close to the commensurate-incommensurate (C-IC) tran-
sition [11]. In the commensurate phase the elementary
excitations are pairs of dislocations at a given distance
with p nonintersecting domain walls emerging from one
and terminating at the other. This is just a ‘watermelon’
configuration of p nonintersecting Brownian bridges (see
Fig. 1b). The sizes of such defects and their fluctu-
ations become important near the phase transition. An
important quantity that characterises the transverse fluc-
tuations of the defect is the maximal height of the p vi-
cious walkers in a fixed time (here time signifies the fixed
longitudinal distance between the pair). Such extreme
value questions have recently been studied extensively
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FIG. 1: a) : 4-watermelons with a wall. b) : 4-watermelons
without wall. c) : illustration of the method to compute
F4(M) using path integral techniques where appropriate cut-
offs ǫi’s have been introduced.

for a single Brownian bridge or an excursion (with cer-
tain constraints) in the context of the maximal height
of a fluctuating interface [12, 13]. In this Letter, we ob-
tain exactly the distribution of the maximal height for p
nonintersecting Brownian bridges and excursions.

Motivated by the geometry of elementary excitations
discussed above, we thus focus on “watermelons” config-
urations (see Fig. 1 a) and b)) where p non-intersecting
Brownian walkers x1(τ) < · · · < xp(τ), starting at 0 at
time τ = 0, arrive at the same position at τ = 1. We
consider both “p-watermelons with a wall” (Fig. 1 a)),
where the walkers stay positive in the time interval [0, 1]
and “p-watermelons without wall” (Fig. 1 b)) where the
walkers are free to cross the origin in between. Our main
focus is on Hp, the maximal height of the top walker in
[0, 1], Hp = Maxτ [xp(τ), 0 ≤ τ ≤ 1].

In particular, we are interested in the cumulative dis-
tribution Fp(M) = Proba. [Hp ≤M ] and in the moments
〈Hs

p〉. For p = 1, there exist well known results[14], e.g.

〈H1〉 =
√

π/2 for an excursion, or 〈H1〉 =
√

π/8 for a
bridge. Recently, Bonichon and Mosbah (BM) [15], us-
ing an algorithm based on exact enumerative formulas
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[16], conjectured, from numerical simulations, that for
p > 1, 〈Hp〉num ≃ √

1.67p− 0.06 for watermelons with a
wall and 〈Hp〉num ≃ √

0.82p− 0.46 for watermelons with-
out wall. These results stimulated several recent works
[17, 18, 19, 20, 21] aiming at an analytical derivation of
these estimates.

On the other hand, exploiting the recent connection
between watermelons and the Airy processes [9, 22], set-
ting x̃p(τ) = xp(τ)/

√

τ(1 − τ), one expects that, in the
limit p→ ∞, x̃p(τ) = A

√
p+p−1/6ξ where A = 23/2 (ex-

cursions) and A = 2 (bridges), where ξ is the Airy2 pro-
cess [9, 22] of a suitably rescaled time parameter. Thus in
the large p limit, the top curve approaches a limit shape,
xp(τ) → A

√
p
√

τ(1 − τ). Since the maximum of the top
curve occurs at the midpoint τ = 1/2, one expects that
for p ≫ 1, 〈 Hp 〉 ∼ 〈 xp(τ = 1

2 )〉 ∼ √
2p for ex-

cursions and, similarly, 〈Hp〉 ∼ √
p for bridges. These

exact asymptotic estimates differ considerably from the
numerical estimates of BM suggesting that the latter only
describe the preasymptotic behavior of 〈Hp〉. However, it
calls for an explanation why this preasymptotic behavior
as measured by BM should be about

√
1.67p and

√
0.82p.

In this Letter, we present a method based on path inte-
grals associated to corresponding free Fermions models to
compute exactly Fp(M). Our exact formula is useful for a
number of reasons. It provides the exact asymptotic tails
of the distribution of Hp which were not known before.
For the average height, our formula explains the afore-
mentioned discrepancy between the estimates of BM and
the exact asymptotic behaviors of 〈Hp〉. We show that for
moderate values of p (preasymptotic behavior), one ob-
tains 〈Hp〉 ∝ π

√

p/6 =
√

1.64493 · · ·p for excursions and

〈Hp〉 ∝ π
√

p/12 =
√

0.822467 · · ·p for bridges, in nice
agreement with BM’s estimates. Finally, we show how
our method allows for a physical derivation of the con-
nection between p-watermelons configurations and RMT.

Method. To calculate the cumulative distribution
Fp(M), we use a path integral method which needs to
be suitably adapted to this problem. Indeed one notices
that the p-watermelons configurations described above
(see e.g. Fig. 1 a) and b)) are ill defined for systems in
continuous space and time. For such Brownian walks, it
is well known that if two walkers cross each other once,
they will re-cross each other infinitely many times imme-
diately after the first crossing. Therefore, it is impossible
to enforce the constraint xi(0) = xi+1(0) = 0 and si-
multaneously forcing xi(τ) < xi+1(τ) immediately after.
The cleanest way to circumvent this problem is to con-
sider discrete time random walks moving on a discrete
one-dimensional lattice (so called Dyck path) : this is
the method used in Ref. [16, 17, 19, 20]. By taking
the diffusion continuum limit, one would then arrive at
non intersecting Brownian motions [23]. This method is
however mathematically cumbersome. Alternatively, fol-
lowing Ref. [12, 24], we can go around this problem by
assuming that the starting and finishing positions of the

p walkers are 0 < ǫ1 < ... < ǫp (see Fig. 1 c)). Only at
the end we take the limit ǫi → 0 and show that it is well
defined. In addition, in order to compute Fp(M), we put
an absorbing hard wall at M such that

Fp(M) = lim
ǫi→0

[

N(ǫ,M)

N(ǫ,M → ∞)

]

, (1)

where ǫ ≡ ǫ1, · · · , ǫp and N(ǫ,M) is the probability that
the p Brownian paths starting at 0 < ǫ1 < ... < ǫp at
τ = 0 come back to the same points at τ = 1 without
crossing each other and staying within the interval [µ,M ],
with µ = 0 for excursions and µ→ −∞ for bridges. This
procedure is depicted in Fig. 1 c).

The probability measure associated to p unconstrained
Brownian paths x1(τ), .., xp(τ) over the time interval

[0, 1] is proportional to exp [− 1
2

∑p
i=1

∫ 1

0

(

dxi

dτ

)2
dτ ]. Here,

we have to incorporate the constraint that they stay in
the interval [µ,M ]. Therefore one can use path-integral
techniques to write N(ǫ,M) in Eq. (1) as the propagator

N(ǫ,M) = 〈ǫ|e−ĤM |ǫ〉 , (2)

with ĤM =
∑p

i=1[
−1
2

∂2

∂x2
i

+V (xi)], where V (x) is a confin-

ing potential with V (x) = 0 if x ∈ [µ,M ] and V (x) = ∞
outside this interval. Denoting by E the eigenvalues of
ĤM and |E〉 the corresponding eigenvectors one has

N(ǫ,M) =
∑

E

|ΨE(ǫ)|2e−E , (3)

where we introduced the notation 〈x|E〉 = ΨE(x). Im-
portantly, to take into account the fact that we are con-
sidering here non-intersecting Brownian paths, the many
body wave function ΨE(x) ≡ ΨE(x1, .., xp) must be
Fermionic, i.e. it vanishes if any of the two coordinates
are equal. This many-body antisymmetric wave function
is thus constructed from the one-body eigenfunctions of
ĤM by forming the associated Slater determinant.

Watermelons with a wall. In that case µ = 0
and the one-body eigenfunctions are given by φn(x) =
√

2
M sin nπx

M with discrete eigenvalues n2π2

2M2 , n ∈ N
∗.

Therefore one has

ΨE(ǫ) =
1√
p!

det
1≤i,j≤p

φni
(ǫj) , E =

π2

2M2
n2 (4)

where we use the notation n2 =
∑p

i=1 n
2
i , ni ∈ N

∗.
From this expression (4), one checks that, in the limit
ǫ1 → 0, · · · , ǫp → 0, powers of ǫi’s cancel between the
numerator and the denominator in Eq. (1), yielding

Fp(M) =
Ap

M2p2+p

∑

n1,··· ,np

[Ξ(n)]2e−
π2

2M2 n2

, (5)

Ξ(n) =
∏

1≤j<k≤p

(n2
j − n2

k)

p
∏

i=1

ni ,
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where Ap, a constant independent of M , is determined
by requiring that limM→∞ F (M) = 1. It can be eval-
uated using a Selberg’s integral [25] yielding Ap =

π2p2+p/[2p2−p/2
∏p−1

j=0 Γ(2 + j)Γ(3
2 + j)]. For p = 1, our

expression gives back the well known result for a Brow-
nian excursion [26]. For p = 2, we have checked, using
the Poisson summation formula that our expressions in
Eq. (5) yield back the result of Ref. [18]. For generic p,
the probability distribution function (pdf) F ′

p(M) is bell-
shaped, exhibiting a single mode. At variance with previ-
ous studies [18, 19], our expression (5) is easily amenable
to an asymptotic analysis for small M . Indeed, when
M → 0, the leading contribution to the sum in (5) comes
from ni = i and its p! permutations, yielding for M → 0

Fp(M) ∼ αp

M2p2+p
e−

π2

12M2 p(p+1)(2p+1) , (6)

where αp can be explicitly computed, yielding for in-
stance α2 = 12π9. For large M , one can use the Poisson
summation formula to obtain 1 − Fp(M) ∝ exp(−2M2).

From the distribution in Eq. (5), one can compute the
moments of the distribution 〈Hs

p〉. For p ≥ 2, one obtains
that 〈Hp〉 can be expressed in terms of integrals involving

the Jacobi theta function ϑ(u) =
∑∞

n=−∞ e−πn2u and its
derivatives, thus recovering, by a simpler physical deriva-
tion, the results of Ref. [17, 18, 19, 20]. In particular,
one has 〈H2〉 = 1.82262... [17]. For moderate values of
p, one observes that the main contribution to the aver-
age 〈Hp〉 =

∫ ∞
0 MF ′

p(M)dM comes from relatively small
M where F ′

p(M) is dominated, as before in Eq. (6), by
the terms where ni = i and its p! permutations. It is
easy to see that the pdf, restricted to this first term (6)
exhibits a maximum for M∗ ∼ π

√

p/6. Therefore, one
expects that 〈Hp〉 ∼M∗ =

√
1.64493 · · ·p, in good agree-

ment with the estimates of BM [15]. For larger values of
p the average 〈Hp〉 picks up contributions from larger
values of M where F ′

p(M) can not be approximated by
a single term as in Eq. (6) and therefore the estimate
of BM ceases to be correct. Instead, one has the exact
asymptotic behavior 〈Hp〉 ∼ √

2p for p ≫ 1, which can
be obtained directly from our formula in Eq. (5) [29].

Watermelons without wall. In the case of Brownian
bridges, one can apply the same formalism as above

(1) - (3) with µ → − ∞, i.e. ĤM =
∑p

i=1
−1
2

∂2

∂x2
i

.

In that case, the one-body eigenfunctions are given by

ψk(x) =
√

2
π sin [k(M − x)] with a continuous spectrum

Ek = k2/2, k ∈ R
+. Therefore, ΨE(ǫ) entering the ex-

pression ofN(ǫ,M) in Eq. (3) is formally given by Eq. (4)

where φni
is replaced by ψki

and E = k2

2 . One obtains

Fp(M) =
Bp

Mp2

∫ ∞

0

dy1 · · ·
∫ ∞

0

dyp e
− y

2

2M2 Θp(y)2 ,

Θp(y) = det
1≤i,j≤p

yj−1
i cos(yi + j π

2 ) , (7)

where Bp = 22p/[(2π)p/2
∏p

j=1 Γ(j + 1)]. This yields, for

instance, F2(M) = 1 − 4M2e−2M2 − e−4M2

. From Eq.
(7), one obtains the asymptotic behavior for M → 0 as

Fp(M) ∝Mp2+p , (8)

whereas for large M one has 1 − Fp(M) ∝ exp (−2M2).
As in the case of watermelons with a wall, the pdf F ′

p(M)
is also bell-shaped with a single mode. Notice however
that the presence of the wall has drastic effects on the
small M behavior of Fp(M) (see Eq. (6) and Eq. (8))
whereas, as expected, it has less influence for large M .
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FIG. 2: a) : Contour plot of Θ2(y1, y2) = y2 sin y1 cos y2 −
y1 cos y1 sin y2 given in (7). It exhibits saddles for (y1, y2) =
(±π/2,±π) and symmetric points obtained by permutations.
b) Plot of 〈Hp〉2 as a function of p. The dotted line is the
estimate from BM [15]. The quality of this estimate for p <∼ 10
has its origin in the saddles of Θp(y) shown, for p = 2, on the
left panel. For larger values of p one has instead 〈Hp〉2 ∝ p.

From Fp(M) in (7), one computes the moments 〈Hs
p〉,

yielding 〈H2〉 = 1+
√

2
4

√
π or 〈H3〉 = 45+36

√
2−8

√
6

96

√
π,

recovering (to leading order) recent results obtained by
rather involved combinatorial techniques [20].

To make contact with BM’s estimates, one first focuses
on p = 2 and notices that Θ2(y1, y2) in Eq. (7) exhibits
saddles for y1 = ±π/2, y2 = ±π and for symmetric points
obtained by permutations: this is shown in Fig. 2 a). In
fact this property can be generalized to higher values of
p and one can show that Θp(y) has saddles which are lo-
cated around y1 = ±π/2, y2 = ±π, · · · , yp = ±pπ/2 and
the points obtained by permutations. Of course Θp(y)
develops saddles for higher values of y2 but their weights
are exponentially suppressed in Eq. (7). For moder-
ate values of p, one expects that 〈Hp〉 is dominated by
these saddles y1 = ±π/2, y2 = ±π, · · · , yp = ±pπ/2.
Therefore performing a saddle point calculation, one has

Fp(M) ∝ e
−p2χ

“

M
√

p

”

, with χ(y) = log y + π2/(24y2),
which has a minimum for y∗ = π/

√
12. This yields

〈Hp〉 ∼ π
√

p/12 =
√

0.822467 · · ·p, in good agreement
with the estimates of BM [15]. For larger values of p one
expects that 〈Hp〉 picks up contributions from larger val-
ues of M where Fp(M) can not be reduced to these first
saddles. In Fig. 2 b), one shows a comparison between
the exact value of 〈Hp〉2 computed from Eq. (7) and the
estimate of BM. This clearly shows that the estimate of
BM correspond to the pre-asymptotic behavior. Instead,
for large p, one expects here 〈Hp〉 ∝

√
p.
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Extension of the method. The method presented here
can be used to derive many other results. As an interest-
ing example, showing explicitly the connection between
watermelons and RMT, we compute the joint probability
distribution Pjoint(x1, · · · , xp, τ), first for p bridges. Fol-
lowing the same steps as above, Eq. (1)-(3), and using
the Markov property of Brownian paths, one has

Pjoint(x, τ) = lim
ǫi→0

〈ǫ|e−τĤ0 |x〉〈x|e−(1−τ)Ĥ0 |ǫ〉
〈ǫ|e−Ĥ0 |ǫ〉

(9)

with Ĥ0 =
∑p

i=1
−1
2

∂2

∂x2
i

. One can show that powers of

ǫi’s cancel between the numerator and the denominator
in (9), yielding Pjoint(x, τ) ∝ Q(x, τ)Q(x, 1 − τ) with

Q(x, τ) =

∫

dk
∏

i<j

(ki − kj)e
−τk2

2 det
1≤m,n≤p

e(ixmkn),(10)

where
∫

dk ≡
∫ ∞
−∞ dk1 · · ·

∫ ∞
−∞ dkp. After some algebra

to evaluate the integrals in Eq. (10) one finally obtains,
for p-watermelons without wall

Pjoint(x, τ) = Z−1
p σ(τ)−p2 ∏

i<j

(xi − xj)
2e

− x
2

2σ2(τ) , (11)

with σ(τ) =
√

τ(1 − τ) and Zp a normalization constant.
This expression in Eq. (11) shows that this joint proba-
bility is exactly the one of the eigenvalues of the Gaussian
Unitary Ensemble of random matrices (GUE) [7, 8, 10].
In particular, for p ≫ 1, defining the rescaled variable

η =
√

2p1/6(
xp(τ)√
2σ(τ)

−√
2p), one obtains that the cumula-

tive distribution of η is given by Proba[η ≤ x] = F2(x),
the Tracy-Widom distribution for β = 2 [27].

For excursions, a similar calculation shows that

Pjoint(x, τ) = Z ′−1
p σ(τ)−p(2p+1)[Ξ(x)]2e

− x
2

2σ2(τ) , (12)

where Ξ(x) is defined in (5) and Z ′
p a normalization con-

stant. Hence the joint distribution of yi = x2
i /2σ

2(τ)
is formally identical to the distribution of the eigenval-
ues of Wishart matrices [25] with M − N = 1

2 , and
N = p. In that case, from the results for the largest
eigenvalue of Wishart matrices we conclude that for p≫
1, the cumulative distribution of the rescaled variable

ζ = 22/3p1/6(
xp(τ)√
2σ(τ)

− 2
√
p) is again given by F2(x) [28].

Conclusion. To conclude, using methods of many-body
physics, where appropriate cut-offs ǫi’s have been intro-
duced (see Fig. 1 c)), we have obtained exact results for
the distribution of the maximal height for p-watermelons
with a wall (5) and without wall (7), which is physically
relevant to describe the geometrical properties of disloca-
tions arising in p×1 commensurate adsorbed phases close
to the C-IC transition. Our expressions explain the dis-
crepancy between the estimates of BM [15] and the true

asymptotic behaviors for the average 〈Hp〉. Besides, we
obtained a quantitative description of the pre-asymptotic
regime actually measured in the numerical experiments
of BM. We hope that the path integral method presented
here, which is rather general, and the precise connection
to RMT will allow further future studies.

We thank P. Ferrari for useful discussions.
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