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We compute analytically the probability of large fluctuations to the left of the mean of the largest
eigenvalue in the Wishart (Laguerre) ensemble of positive definite random matrices. We show that
the probability that all the eigenvalues of a (N × N) Wishart matrix W = XT X (where X is a
rectangular M×N matrix with independent Gaussian entries) are smaller than the mean value 〈λ〉 =

N/c decreases for large N as ∼ exp
h

−β
2
N2Φ−

“

2√
c

+ 1; c
”i

, where β = 1, 2 corresponds respectively

to real and complex Wishart matrices, c = N/M ≤ 1 and Φ−(x; c) is a rate (sometimes also called
large deviation) function that we compute explicitly. The result for the Anti-Wishart case (M < N)
simply follows by exchanging M and N . We also analytically determine the average spectral density
of an ensemble of Wishart matrices whose eigenvalues are constrained to be smaller than a fixed
barrier. Numerical simulations are in excellent agreement with the analytical predictions.

PACS numbers: 02.50.-r, 02.10.Yn, 24.60.-k
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I. INTRODUCTION

Consider a rectangular (M × N) matrix X whose el-
ements Xij represent some data. The N entries of
each of the M rows constitute the components of an N -
dimensional vector ~Xi (with i = 1, 2, . . . , M). The vector
~Xi (the i-th row of the array) represents the i-th sam-
ple of the data and the matrix element Xij represents

the j-th component of the vector ~Xi. For example, sup-
pose we are considering a population of M students in
a class, and for each student we have the data of their
heights, their marks in an examination, their weights etc.
forming a vector of N elements (or traits) for each of the
M students. Then the product W = XT X is a posi-
tive definite symmetric (N × N) matrix that represents
the covariance matrix of the data (unnormalized). This
matrix characterizes the correlations between different
traits. The spectral properties of this matrix, i.e., its
eigenvectors and eigenvalues, play a very important role
in the so called ‘principal components analysis’ (PCA)
of multivariate data, a technique that is used regularly
in detecting hidden patterns in data and also in image

∗pierpaolo.vivo@brunel.ac.uk

processing [1, 2, 3], amongst other applications. In PCA,
one diagonalizes the covariance matrix W and identifies
all the eigenvalues and eigenvectors. The data are usu-
ally maximally scattered in the direction of its princi-
pal eigenvector, corresponding to the largest eigenvalue
and are least scattered in the direction of the eigenvec-
tor corresponding to the minimum eigenvalue. One can
then prune the data by successively getting rid of the
components (setting them to zero) along the eigenvec-
tors corresponding to the smaller eigenvalues, but retain-
ing the components along the larger eigenvalues, in par-
ticular those corresponding to the maximal eigenvalue.
This method thus reduces the effective dimension of the
data. This technique is called ‘dimensional reduction’
and forms the basis of e.g, image compression in com-
puter vision [3].

When the underlying data are random, e.g. the ele-
ments of the matrix X are independent and identically
distributed (i.i.d) random variables, real or complex,
drawn from a Gaussian distribution, the product matri-
ces W = X†X constitute the so called Wishart ensemble,
named after Wishart who first introduced them [4]. In
literature one can also find the term ’Laguerre’ ensemble,
because the Laguerre polynomials arise in the analytical
treatment of its spectral properties.

These Wishart random matrices have been extremely

http://fr.arXiv.org/abs/cond-mat/0701371v2
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useful in multivariate statistical data analysis [1, 5] men-
tioned above (where W represents the covariance matrix)
with applications in various fields ranging from meteoro-
logical data [6] to finance [7, 8]. Such matrices are also
useful to analyze the capacity of channels with multiple
antennae and receivers [9]. They also appear in nuclear
physics [10], quantum chromodynamics [11] and also in
statistical physics such as in a class of (1+1)-dimensional
directed polymer problems [12]. Recently, Wishart ma-
trices have also been used in the context of knowledge
networks [13] and new mathematical results for the dis-
tribution of the matrix elements for the Anti-Wishart
matrices (when M < N) have been obtained [14, 15].

Given that the joint distribution of the elements of
the (M × N) matrix X (real or complex) is a Gaus-

sian, P [X ] ∝ exp
[

−β
2 tr(X†X)

]

where the Dyson index

β = 1, 2 corresponds respectively to real and complex
matrices [16], the spectral properties of the Wishart ma-
trix W = X†X have been studied extensively for many
decades. For the case when M ≥ N (the number of
samples is larger than the dimension) it is known that all
the eigenvalues are positive, a typical eigenvalue scales as
λ ∼ N for large N , and the average density of eigenvalues
in the large N limit has a scaling form ρN (λ) ≈ 1

N f
(

λ
N

)

,
where f(x) is the Marčenko-Pastur [17] function on the
compact support x ∈ [x−, x+]:

f(x) =
1

2πx

√

(x+ − x)(x − x−) (1)

with x± =
(

1√
c
± 1
)2

and c = N/M (with c ≤ 1).

(This result was also rederived by a different method by
Dyson [18] and the spectral fluctuations were numerically
investigated by Bohigas et al. [19]). Thus, for c ≤ 1, all
the eigenvalues lie within a compact Marčenko-Pastur sea
and the average eigenvalue,

〈λ〉 =

∫ ∞

0

ρN (λ)λdλ =
N

c
. (2)

For all c < 1, the distribution goes to zero at the edges
x− and x+. For the case c = 1 (x− = 0 and x+ = 4),
the distribution diverges as x−1/2 at the origin, f(x) =
1
2π

√

(4 − x)/x for 0 ≤ x ≤ 4 (shown schematically in Fig.
1). For the Anti-Wishart case (M < N , i.e., c > 1) where
one has M positive eigenvalues (the rest of the (N −
M) eigenvalues are identically zero), the corresponding
result can be obtained from the M ≥ N case simply by
exchanging M and N .

Another important issue in the context of PCA is the
distribution of the largest eigenvalue of a Wishart ran-
dom matrix and a lot of recent work has been devoted
to this question [5, 12, 20, 21, 22, 23]. From the exact
analytical form of the density of states, it follows that
the average of the maximum eigenvalue for large N is

〈λmax〉 ≈ x+(c)N where x+(c) =
(

1√
c

+ 1
)2

. However,

TRACY−WIDOM

N
1/3

0

MARCENKO−PASTUR FOR c=1

λ4Nλ

ρ(λ)
N

= N

FIG. 1: The dashed line shows schematically the Marčenko-
Pastur form of the average density of states for c = 1. The
average eigenvalue for c = 1 is 〈λ〉 = N . For c = 1, the
largest eigenvalue is centered around its mean 〈λmax〉 = 4N

and fluctuates over a scale of width N1/3. The probability
of fluctuations on this scale is described by the Tracy-Widom
distribution (shown schematically).

for finite but large N , the maximum eigenvalue fluctu-
ates, around its mean x+(c)N , from one sample to an-
other. A natural question is: what is the full probability
distribution of the largest eigenvalue λmax? Recently,
Johansson [12] and independently Johnstone [5] showed
that for large N these fluctuations typically occur over a
scale ∼ O(N1/3) around the mean, i.e. the upper edge
of the Marčenko-Pastur distribution, and the probability
of typical fluctuations χ = N−1/3[λmax − x+(c)N ], prop-
erly centered and scaled, is described by the well known
Tracy-Widom distribution (see Section II for details).

Note that the Tracy-Widom distribution describes the
probability of typical and small fluctuations of λmax over
a narrow region of width ∼ O(N1/3) around the mean
〈λmax〉 ≈ x+(c)N . A question that is particularly impor-
tant in the context of PCA is how to describe the prob-
ability of atypical and large fluctuations of λmax around
its mean, say over a wider region of width ∼ O(N)? For
example, what is the probability that all the eigenvalues
of a Wishart random matrix are less than the average
〈λ〉 ≈ N/c for large N? This is the same as the probability
that λmax ≤ N/c. Since 〈λmax〉 ≈ x+(c)N , this requires
the computation of the probability of an extremely rare
event characterizing a large deviation of ∼ O(N) to the
left of the mean (see e.g. a schematic picture for c = 1
in Fig. 1). Questions of this kind have been recently
addressed in ref. [24] on which we heavily rely, while for
the general large deviations theory in connection with
random matrices the reader is referred to [25].

In the context of PCA, this large deviation issue arises
quite naturally because one is there interested in getting
rid of redundant data by the ‘dimension reduction’ tech-
nique and keeping only the principal part of the data in
the direction of the eigenvector representing the maxi-
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mum eigenvalue, as mentioned before. The ‘dimension
reduction’ technique works efficiently only if the largest
eigenvalue is much larger than the other eigenvalues.
However, if the largest eigenvalue is comparable to the
average eigenvalue 〈λ〉, the PCA technique is not very
useful. Thus, the knowledge of large negative fluctua-
tions of λmax from its mean 〈λmax〉 ≈ x+(c)N provides
useful information about the efficiency of the PCA tech-
nique.

The main purpose of this paper is to provide exact
analytical results for these large negative fluctuations of
λmax from its mean value. Rigorous mathematical results
about the asymptotics of the Airy-kernel determinant
(i.e. the probability that the largest eigenvalue lies deep
inside the Marčenko-Pastur sea) for the case c = 1 and
β = 2 have been recently obtained [26]. Here we follow
the Coulomb gas approach [16][27], which interprets the
eigenvalues of a random matrix as a fluid of charged inter-
acting particles, and use standard functional integration
methods of statistical physics. This approach has been
exploited in the context of the Laguerre ensemble for the
first time by Chen and Manning [28], who performed a
detailed asymptotic analysis of the level spacing for gen-
eral β and α > −1 (where α is essentially the prefactor of
the external logarithmic potential, see e.g. (25)) and de-
termined the distribution of the two smallest eigenvalues
in a certain double-scaling limit. These techniques have
been also recently used to obtain analytically the large
negative fluctuations of the maximum eigenvalue for the
Gaussian ensembles [24]. Here we adopt this method for
the Wishart ensemble.

We show that for c ≤ 1, the probability of large fluctu-
ations to the left of the mean 〈λmax〉 ≈ x+(c)N behaves,
for large N , as

Prob [λmax ≤ t, N ] ∼

exp

[

−β

2
N2Φ−

(

x+(c)N − t

N
; c

)]

(3)

where t ∼ O(N) ≤ x+(c)N is located deep inside the
Marčenko-Pastur sea and Φ−(x; c) is a certain left rate
(sometimes also called large deviation) function with x
being the main argument of the function and c being a
parameter. In this paper, we compute the rate function
Φ−(x; c) explicitly. Knowing this function, it then follows
that for large N

Prob [λmax ≤ 〈λ〉 = N/c, N ] ∼ exp(−θ(c)N2), (4)

where the coefficient

θ(c) =
β

2
Φ−

(

2√
c

+ 1; c

)

. (5)

For example, for the case c = 1 (M = N), we show that

θ(1) = β

(

log 2 − 33

64

)

= 0.177522 . . . β. (6)

The corresponding result for the Anti-Wishart matrices
(M < N) simply follows by exchanging M and N . In
this paper, we focus only on the left large deviations of
λmax. The corresponding probability of large fluctuations
of λmax to the right of the mean 〈λmax〉 was previously
computed explicitly by Johansson [12] (see the next sec-
tion for details).

As a byproduct of our analysis, we provide the gen-
eral expression for the spectral density of a constrained
Wishart ensemble of matrices whose eigenvalues are re-
stricted to be smaller than a fixed barrier.

The paper is organized as follows. In section II, we
set up notations, we provide some mathematical prelim-
inaries and we recall some known results for the Wishart
random matrices as well as, for the sake of comparison,
of Gaussian random matrices. In section III we outline
the functional integration method followed by the steep-
est descent calculation. In subsection III A, we derive
the left rate function explicitly for the special case c = 1
and in subsection III B we extend the results to the case
c < 1. In section IV numerical simulations are compared
to the analytical predictions. Section V concludes the
paper with a summary and discussion, while the analyti-
cal computation of the rate function for c < 1 is reported
in the Appendix.

II. WISHART AND GAUSSIAN RANDOM
MATRICES: SOME PRELIMINARIES

We consider a rectangular (M ×N) matrix X with M
rows (representing M different samples) and N columns
(representing N components of each sample). We assume
that the entries of the matrix X are i.i.d random vari-
ables each drawn independently from a standard normal
distribution, such that the joint distribution of the ele-

ments is given by P [X ] ∝ exp
[

−β
2 tr(X†X)

]

where the

Dyson index β = 1, 2 corresponds respectively to real and
complex matrices [16]. One then constructs the Wishart
matrix W = X†X by taking the product. The first nat-
ural question is: Given the distribution of X , what is
the joint distribution of the elements of W? It turns out
that this is not quite easy to compute. For the case when
M ≥ N (when the number of samples is larger or equal
to the dimension of the vector), this was computed by
Wishart [4]. The corresponding calculation for the oppo-
site ‘Anti-Wishart’ case, when M < N , turns out to be
much more complicated. This was first obtained numer-
ically [13] and only recently an analytical expression has
been found [14, 15].

In contrast with the probability distribution of the
matrix elements of W itself, the joint probability dis-
tribution (jpd) of its eigenvalues was known since a long
time [29], and from it all the interesting spectral prop-
erties of the ensemble can be derived. We summarize
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them here together with the corresponding ones for the
Gaussian ensemble.

A. Wishart (Anti-Wishart) ensemble

For the case when M ≥ N , all the N eigenvalues are
positive and their jpd is given by

PN (λ1, . . . , λN ) = KNe−
β

2

P

N
i=1

λi

N
∏

i=1

λ
β

2
(1+M−N)−1

i ×

×
∏

j<k

|λj − λk|β (7)

where KN is a normalization constant and the parameter
β = 1, 2 corresponds respectively to the real and complex
X . On the other hand, for the Anti-Wishart case (M <
N), there are only M positive eigenvalues (the rest of the
N − M eigenvalues are exactly 0) and their jpd is given
exactly by the same formula as in (7) except that N and
M are interchanged [15].

For the Wishart matrices with M ≥ N , in the large
N limit, the average density of states has the scaling
form, ρN(λ) ≈ 1

N f
(

λ
N

)

where f(x) is the Marčenko-
Pastur [17] function defined in (1). The corresponding
result for the Anti-Wishart case (M < N) where one has
M eigenvalues, simply follows by exchanging M and N .

For large N the maximum eigenvalue fluctuates around
its average 〈λmax〉 ≈ x+(c)N and the typical fluctua-
tion occurs over a scale of width O(N1/3) around the
mean. Johansson [12] and independently Johnstone [5]
computed the limiting distribution of these typical fluc-
tuations around the mean. They showed that for large
N and for c ≤ 1 [5, 12]

λmax =

(

1√
c

+ 1

)2

N + c1/6

(

1√
c

+ 1

)4/3

N1/3χ (8)

where the random variable χ has an N -independent lim-
iting distribution Prob(χ ≤ x) = Fβ(x), which is the well
known Tracy-Widom distribution (see below).

B. Gaussian ensemble

In the case of a random (N ×N) Gaussian matrix [27,
30], the jpd of eigenvalues is given by:

PN (λ1, . . . , λN ) = BN e−
β

2

P

N
i=1

λ2

i

∏

j<k

|λj − λk|β (9)

where BN normalizes the jpd and β = 1, 2 and 4 cor-
respond respectively to the GOE (Gaussian orthogonal
ensemble), GUE (Gaussian unitary ensemble) and GSE
(Gaussian symplectic ensemble).

The average density of states in the large N limit

has the scaling form ρN(λ) ≈ 1√
N

fsc

(

λ√
N

)

where

fsc(x) is the famous Wigner semi-circular law: fsc(x) =
√

1
π [2 − x2] with compact support over x ∈ [−

√
2,
√

2].

Furthermore, the analogous asymptotic form of λmax

is known to be [31]

λmax =
√

2N +
N−1/6

√
2

χ (10)

where the random variable χ has again the limiting N -
independent distribution, Prob[χ ≤ x] = Fβ(x).

In this paper, the main interest is focused on the
largest eigenvalue. In summary, the scaled variables

λmax/N in the Wishart case and λmax/
√

N in the Gaus-
sian case, both typically fluctuate over a region of width
∼ O(N−2/3) around their mean and these typical fluctu-
ations are described by the Tracy-Widom law Fβ(x).

The function Fβ(x), computed as a solution of a non-
linear Painlevé differential equation [31], approaches to 1
as x → ∞ and decays rapidly to zero as x → −∞. For
example, for β = 2, F2(x) has the following tails [31],

F2(x) → 1 − O
(

exp[−4x3/2/3]
)

as x → ∞

→ exp[−|x|3/12] as x → −∞. (11)

The probability density function fβ(x) = dFβ/dx thus
has highly asymmetric tails.

It follows from (8) that in the Wishart case, the Tracy-
Widom distribution describes the probability of typical

and small fluctuations of λmax over a narrow region of
width ∼ O(N1/3) around the mean 〈λmax〉 ≈ x+(c)N

where x+(c) =
(

1√
c

+ 1
)2

.

As mentioned in the introduction, in this paper we
are concerned not with the typical small fluctuations of
O(N1/3) around the mean, but rather with atypical large

fluctuations of O(N). Thus, we are interested in comput-
ing the probability of extremely rare events. In fact, the
question about the large deviation of the largest eigen-
value was addressed before in [12] and it was proved by
rigorous methods that for c ≤ 1 the probability of large

fluctuations to the left of the mean 〈λmax〉 ≈ x+(c)N ,
behaves for large N as in (3), but an explicit expression
for the left rate function Φ−(x; c) was missing so far. On
the other hand, for large fluctuations to the right of the
mean 〈λmax〉 ≈ x+(c)N ,

1 − Prob [λmax ≤ t, N ] ∼

exp

[

−β

2
NΦ+

(

t − x+(c)N

N
; c

)]

(12)

for t ∼ O(N) ≥ x+(c)N located outside the Marčenko-
Pastur sea to its right and Φ+(x; c) is the right rate func-
tion that was obtained explicitly in [12].

The purpose of this paper is to provide an exact result
for Φ−(x; c) for all c ≤ 1. For c > 1 (Anti-Wishart) case,
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the result holds with M and N interchanged. Let us
summarize our main results. For the case c = 1, we give
an explicit expression for the left rate function Φ−(x; 1)
as stated in (36). Subsequently, the results in (5) and
(6) follow. For c < 1, the function Φ−(x; c) has a rather
long analytical expression which is derived in the Ap-
pendix. However, the function can be easily evaluated
using Mathematicar as illustrated in Fig. 5.

These results should be compared to the corresponding
ones for the Gaussian case. For the Gaussian ensemble,
the left large deviations follow a similar law, namely

Prob [λmax ≤ t, N ] ∼

exp

[

−βN2ΦGauss
−

(√
2N − t√

N

)]

(13)

where t ∼ O(N1/2) ≤
√

2N is located deep inside the
Wigner sea. For the Gaussian case, 〈λ〉 = 0. Thus,
the corresponding question about the probability that all
eigenvalues are less than their average is the same as the
probability that all eigenvalues are negative. This prob-
ability plays a very important role in determining the
average number of maxima of a random smooth poten-
tial, where a stationary point is a local maximum if all the
eigenvalues of the associated hessian matrix are negative.
The calculation of this probability has been a subject of
many theoretical and numerical studies with important
applications in disordered systems, supercooled liquids,
glassy models [32, 33] and more recently in anthropic
principle based string theory [34, 35, 36]. Very recently,
the left rate function ΦGauss

− (y) has been computed ex-
actly using functional integration methods [24]. Using
this result, it was shown in [24] that for Gaussian matri-
ces,

Prob [λmax ≤ 0; N ] ∼ exp(−βθN2), (14)

for large N where the coefficient

θ =
1

4
log 3 = 0.274653 . . . (15)

In this paper, we adapt the techniques used in [24] for
Gaussian matrices to the Wishart case. Similar tech-
niques have recently been used also in other problems
such as in the calculation of the average number of sta-
tionary points for a Gaussian random field with N com-
ponents in the large N limit [37, 38].

Incidentally, let us remark that our problem might be
tackled also from the completely different viewpoint of
zero-dimensional replica field theories thanks to their re-
cently discovered exact integrability [39]. This yet unex-
plored route may provide an independent derivation of
our results.

III. FUNCTIONAL INTEGRATION AND THE
METHOD OF STEEPEST DESCENT

Our starting point is the joint distribution of eigenval-
ues of the Wishart ensemble in (7). Let PN (t) be the
probability that the maximum eigenvalue λmax is less
than or equal to t. Clearly, this is also the probabil-
ity that all the eigenvalues are less than or equal to t and
can be expressed as a ratio of two multiple integrals

PN (t) = Prob[λmax ≤ t] =
Z1(t)

Z0
=

=

∫ t

0 . . .
∫ t

0 dλ1 . . . dλN exp(−β
2 F [~λ])

∫∞
0 . . .

∫∞
0 dλ1 . . . dλN exp(−β

2 F [~λ])
(16)

where:

F [~λ] =

N
∑

i=1

λi−(1+M−N− 2

β
)

N
∑

i=1

log λi−
∑

j 6=k

log |λj−λk|

(17)
Written in this form, F mimics the free energy of a 2-
d Coulomb gas of interacting particles confined to the
positive half-line (λ > 0) and subject to an external lin-
ear+logarithmic potential, as mentioned in the introduc-
tion. The denominator in (16), which is simply a nor-
malization constant, represents the partition function of
a free or ‘unconstrained’ Coulomb gas over λ ∈ [0,∞).
The numerator, on the other hand, represents the par-
tition function of the same Coulomb gas, but with the
additional constraint that the gas is confined inside the
box λ ∈ [0, t], i.e., there is an additional wall or infinite
barrier at the position λ = t. We will refer to the numer-
ator as the partition function of a ‘constrained’ Coulomb
gas. The constraint should not be effective when t < x−
or t > x+.

Note that in the Gaussian case, the external potential
is harmonic over the whole real line (V (λ) = λ2/2), while
in the Wishart case, V (λ) = ∞ for λ < 0 (infinite barrier
at λ = 0) and V (λ) = λ − (1 + M − N − 2/β) log λ
for λ > 0 representing a linear+logarithmic potential.
By comparing the external potential and the logarithmic
interaction term, it is easy to see that while for Gaussian
ensembles a typical eigenvalue scales as λ ∼

√
N for large

N , for the Wishart case it scales as λ ∼ N .

After defining the constrained charge density:

ˆ̺N (λ) := ̺N (λ; t) =
1

N

N
∑

i=1

δ(λ − λi)θ(t − λ) (18)

and taking into account the following trivial identity for
a generic function h(x):

N
∑

i=1

h(λi) = N

∫

dλ ˆ̺N (λ)h(λ) (19)
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we may express, for large N , the partition function Z1(t)
in (16) as a functional integral [24]:

Z1(t) ∝
∫

D[ ˆ̺N ] exp

{

−β

2

[

N

∫ t

0

ˆ̺N (λ)λdλ

− N(M − N + 1 − 2/β)

∫ t

0

ˆ̺N (λ) log λdλ

− N2

∫ t

0

∫ t

0

ˆ̺N (λ)ˆ̺N (λ′) log |λ − λ′|dλdλ′

− N

∫ t

0

ˆ̺N (λ) log[ ˆ̺N (λ)]dλ ] } (20)

where the last entropic term is of order O(N) and arises
from the change of variables in going from an ordi-
nary multiple integral to a functional integral, [{λi}] →
[ ˆ̺N (λ)]. The constrained charge density ˆ̺N (λ) satis-
fies the obvious constraints ˆ̺N(λ) = 0 for λ > t and
∫ t

0 ˆ̺N (λ)dλ = 1.
Since we are interested in fluctuations of ∼ O(N), it is

convenient to work with the rescaled variables λ = xN
and ζ = t/N . It is also reasonable to assume that for
large N , the charge density scales accordingly as ˆ̺N (λ) =

N−1f̂(λ/N), so that f̂(x) = 0 for x > ζ and
∫ ζ

0
f̂(x)dx =

1.
In terms of the rescaled variables, the energy term in

(20) becomes proportional to N2 while the entropy term
(∼ O(N)) is subdominant in the large N limit. Eventu-
ally we can write:

Z1(ζ) ∝
∫

D[f̂ ] exp

(

−β

2
N2S[f̂(x); ζ] + O(N)

)

(21)

where:

S[f̂(x); ζ] =

∫ ζ

0

xf̂(x)dx − α

∫ ζ

0

f̂(x) log(x)dx+

−
∫ ζ

0

∫ ζ

0

f̂(x)f̂ (x′) log |x − x′|dxdx′+

+ C1

[

∫ ζ

0

f̂(x)dx − 1

]

(22)

where we have introduced the parameter α = 1−c
c for

later convenience. In (22), C1 is a Lagrange multiplier

enforcing the normalization of f̂ .
For large N we can evaluate the leading contribution to

the action (22) by the method of steepest descent. This
gives:

Z1(ζ) ∝ exp

[

−β

2
N2S[f̂⋆(x); ζ] + O(N)

]

(23)

where f̂⋆ is the solution of the stationarity condition:

δS[f̂(x); ζ]

δf̂(x)
= 0 (24)

This gives for 0 ≤ x ≤ ζ:

x − α log x + C1 = 2

∫ ζ

0

f̂(x′) log |x − x′|dx′ (25)

Differentiating (25) once with respect to x gives:

1

2
− α

2x
= P

∫ ζ

0

f̂(x′)

x − x′ dx′ 0 ≤ x ≤ ζ (26)

where P denotes the Cauchy principal part.
Finding a solution to the integral equation (26) is the

main technical task. The next two subsections are de-
voted to the solution of (26), first for the special case
c = 1 and then for 0 < c < 1. We remark that the so-
lution of (26) gives the average density of eigenvalues in
the limit of large N for an ensemble of Wishart matrices
whose rescaled eigenvalues are restricted to be smaller
than the barrier ζ. We will refer to f̂(x) as the con-

strained spectral density.
Before proceeding to the technical points, it may be

informative to first summarize the results for the con-
strained spectral density f̂(x) in the general 0 < c ≤ 1
case. The most general form is:

f̂(x) =
1

2π

√

x − L1(c, ζ)√
ζ − x

[

A(c, ζ) − x

x

]

(27)

where L1 is the lower edge of the spectrum and A is re-
lated to the mutual position of the barrier with respect
to the lower edge. In the following table, we schemati-
cally anticipate the values for L1 and A in the different
regions of the (c, ζ) plane:

c = 1 0 < c < 1

0 < ζ < x+ L1 = 0 (32) L1: see (50)

(barrier effective) A = ζ+4

2
(32) A = α

q

ζ
L1

> ζ (44)

ζ ≥ x+ L1 = 0 L1 = x−

(barrier ineffective) A = ζ = 4 A = ζ = x+

TABLE I: Values of L1 and A in the different regions of the
(c, ζ) plane.

The support of f̂ is:

L1(c, ζ) ≤ x ≤ min[ζ, A(c, ζ)] (28)

At the lower edge of the support L1(c, ζ), the density
vanishes unless c = 1, in which case it diverges as ∼
1/

√
x.

At the upper edge of the support, according to the
value of the minimum (ζ or A(c, ζ)) in (28) the density
can respectively diverge as ∼ 1/

√
ζ − x or vanish.

Note that the unconstrained Marčenko-Pastur law (1)
is recovered from (27) when the barrier is ineffective, i.e.
ζ ≥ x+.
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A. The c = 1 case

In this case, the support of the unconstrained spectral
density is (0, 4] and the Marčenko-Pastur law prescribes
an inverse square root divergence at x = 0 . Furthermore,
the density vanishes at x = 4 (see Fig. (1)).

In the constrained case, the barrier at ζ is only effective
when 0 ≤ ζ ≤ 4. When the barrier crosses the point
ζ = 4 from below, the density shifts back again to the
unconstrained case.

The integral equation for f̂(x) (26) becomes:

1

2
= P

∫ ζ

0

f̂(x′)

x − x′ dx′ 0 ≤ x ≤ ζ (29)

The general solution of equations of the type:

P
∫ ζ

0

f̂(x′)

x − x′ dx′ = g(x) (30)

is given by Tricomi’s theorem [40]:

f̂(x) =
1

π2
√

x(ζ − x)

[

P
∫ ζ

0

√

ω(ζ − ω)
g(ω)

ω − x
dω + B

]

(31)
where B is an arbitrary constant. After putting g(ω) =
1/2 in (31) and determining B by the normalization con-

dition
∫ ζ

0 f̂(x)dx = 1 we finally get:

f̂(x) =
1

2π
√

x(ζ − x)

[

ζ

2
+ 2 − x

]

0 ≤ x ≤ ζ (32)

A plot of this charge density for two values of the barrier
ζ is given in Fig. 2. In summary, the average density of

0.5 1 1.5 2
x

0.2

0.4

0.6

0.8

1

1.2

1.4

f
`
HxL

FIG. 2: Constrained spectral density f̂(x) for the barrier at
ζ = 1 and ζ = 2.

states with a barrier at ζ is given by:

f̂(x) =







1

2π
√

x(ζ−x)

[

ζ
2 + 2 − x

]

0 ≤ ζ ≤ 4

1
2π

√

4−x
x ζ ≥ 4

(33)

Thus, for all ζ > 4, the solution sticks to the ζ = 4 case.
Note that both cases in (33) can be obtained from the
general formula (27).

Now we can substitute (33) back into (25) to find the
value of the multiplier C1 and eventually evaluate the
action S[f⋆(x); ζ] (22) explicitly for 0 ≤ ζ ≤ 4:

S(ζ) := S[f̂⋆(x); ζ] = 2 log 2 − log ζ +
ζ

2
− ζ2

32
(34)

From (23), we get Z1(ζ) ≈ exp(−βN2S(ζ)/2). For
the denominator, Z0 = Z1(ζ = ∞) = Z1(ζ = 4) ≈
exp(−βN2S(4)/2), where we have used the fact that the
solution for any ζ > 4 (e.g., when ζ = ∞) is the same as
the solution for ζ = 4. Thus, eventually the probability
PN (t) (16) decays for large N as:

PN (t) =
Z1(t)

Z0
≈ exp

{

−β

2
N2[S(ζ) − S(4)]

}

≈ exp

{

−β

2
N2Φ−

(

4N − t

N
; 1

)}

(35)

where the rate function is given by

Φ−(x; 1) =

{

2 log 2 − log(4 − x) − x
4 − x2

32 x ≥ 0

0 x ≤ 0
(36)

and is plotted in fig.3

1 2 3 4
x

1

2

3

4

5
F-Hx;1L

FIG. 3: Rate function Φ−(x; 1) (see (36)).

We now turn to the original problem of determining
the probability of the following extremely rare event, i.e.
that all the eigenvalues happen to lie below the mean

value 〈λ〉 =
∫ 4N

0 λρN (λ)dλ = N . Starting from (35), this
is easily computed by putting the barrier at the mean
value t = N , i.e., ζ = 1. We then get for large N

Prob [λmax ≤ 〈λ〉 = N, N ] ∼ exp[−θ(1)N2] (37)

where

θ(1) =
β

2
Φ− (3; 1)

= β

(

log 2 − 33

64

)

. (38)
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Since we are calculating here the probability of neg-
ative fluctuations of λmax of O(N) to the left of the
mean 〈λmax〉 = x+(c)N , when the argument of the left
rate function Φ−(x; 1) is very small (i.e., for fluctua-
tions ≪ O(N)), (35) should smoothly match the left
tail of the Tracy-Widom distribution that describes fluc-
tuations of order ∼ O(N1/3) to the left of the mean
〈λmax〉 = x+(c)N . Indeed, from (36) as x → 0

Φ−(x; 1) ≈ x3

192
(39)

and substituting (39) in (35) we get, for fluctuations ≪
O(N) to the left of the mean,

PN (t) ∼ exp

[

− β

384
N2 (4 − t/N)3

]

= exp
[

−|χ|3/12
]

(40)

where χ = (t − 4N)/(24/3N1/3). This coincides with
Johansson’s result for the Tracy-Widom fluctuations in
(8) for c = 1 and comparing (40) and (11), we see that
we recover the left tail of the Tracy-Widom distribution.

B. The c < 1 case

Our approach is very similar to the previous case.
However, some additional technical subtleties, which we
emphasize, arise in this case.

As in the unconstrained case, we expect a lower bound
L1 ≡ L1(c, ζ) to the support of the constrained f̂(x).
The parameter L1 will be determined later through the
normalization condition for f̂(x).

It is convenient to reformulate (26) in terms of the new
variable y = x−L1, measuring the distance with respect
to the lower edge of the support, where f̂(x) is assumed
to vanish.

Equation (26) then reads:

1

2
− α

2(y + L1)
= P

∫ L

0

f̃(y′)

y − y′ dx′ 0 ≤ y ≤ L (41)

where we have denoted L = ζ−L1 and f̃(y) ≡ f̂(y+L1).
The general solution of (41) in this case is:

f̃(y) =
1

π
√

y(L − y)

[

−y

2
− α

2

√

L1(L + L1)

y + L1
+ B′

]

(42)
and the constant B′ is determined by the condition f̃(y =
0) = 0. Thus we get:

f̃(y) =

√
y

2π
√

L − y

[

A − L1 − y

y + L1

]

(43)

where:

A ≡ A(c, ζ) = α
√

ζ/L1 (44)

Note that everything is expressed in terms of the only
still unknown parameter L1.

From (43) we can infer two kinds of possible behaviors
for f̃(y) due to the competing effects of the singularity
for y → L (where the denominator vanishes) and the sup-
pression for y → A−L1 (where the numerator vanishes).

Thus, depending on which of the following two condi-
tions applies once we have put the barrier at ζ:

A(c, ζ) − L1(c, ζ) > L(c, ζ) →
√

L1(c, ζ)ζ < α (I)

A(c, ζ) − L1(c, ζ) < L(c, ζ) →
√

L1(c, ζ)ζ > α (II)
(45)

f̃ can diverge at y = L or vanish at A − L1 respectively.
In (45) we have restored the functional dependence for
clarity.

This is a subtle point because, given the barrier at
ζ, we cannot determine a priori which of the previous
conditions holds. In fact, L1(c, ζ) should be determined a

posteriori separately for each case from the normalization
condition:

∫ L

0

f̃(y)dy = 1 (46)

Once this is done, it turns out that the conditions (45)
can be reformulated in terms of the position of the barrier
ζ in the following much simpler way:

0 < ζ < x+ (I)

ζ ≥ x+ (II) (47)

We summarize here the final results in the two cases.

Case I. 0 < ζ < x+

The normalization condition (46) leads to the following
cubic equation for w ≡ w(c, ζ) =

√

L1(c, ζ):

w3 − [2(2 + α) + ζ]w + 2α
√

ζ = 0 (48)

which has always three real solutions, one negative (w0)
and two positive:

wk(c, ζ) =
2p

3̺1/3
cos

(

θ + 2kπ

3

)

k = 0, 1, 2 (49)

where:


































p = −[2(2 + α) + ζ]

q = 2α
√

ζ

B = −
(

q2

4 + p3

27

)

̺ =
√

−p3/27

θ = arctan
(

2
√

B
q

)
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Note that w2 < w1. With simple considerations, we con-
clude that the right root to be chosen is w2(c, ζ). Thus:

L1(c, ζ) = w2
2(c, ζ) (50)

Finally, we can write down the full constrained un-
shifted spectral density as:

f̂(x) =
1

2π

√

x − L1(c, ζ)√
ζ − x

[

A(c, ζ) − x

x

]

(51)

valid for L1(c, ζ) ≤ x ≤ ζ where L1(c, ζ) is given by (50)
and A(c, ζ) by (44).

A plot of f̂(x) for c = 0.1 and ζ = 14 is given in fig. 4.
In this case, L1(c, ζ) ≈ 4.60084 and A(c, ζ) ≈ 15.6996.

2 L1 8 10 12 14
x

0.05

0.1

0.15

0.2

0.25
f
`
HxL

FIG. 4: Constrained spectral density f̂(x) for c = 0.1 and
ζ = 14.

Case II. ζ ≥ x+

In this case, the barrier is immaterial and we should
recover the unconstrained Marčenko-Pastur distribution.
The support of f̃(y) is [0, A − L1] and this implies that
we can safely put L = A − L1 in (46).

The integration can be performed and coming back to
the unshifted spectral density f̂(x) we get:

f̂(x) =
1

2π

√
x − L1

√
L2 − x

x
(52)

valid for L1 ≤ x ≤ L2 where:
{

L1 = x−

L2 = L1 + L = x+

(53)

which is the unconstrained Marčenko-Pastur distribu-
tion, as it should.

It is interesting to evaluate the limit c → 1− in
(51) and (52) in order to recover the result (33) in

subsection III A. The case of equation (52) is obvious.
For the other, it is a matter of simple algebra to show
that:

lim
c→1−

L1(c, ζ) = 0 (54)

lim
c→1−

A(c, ζ) = (ζ + 4)/2 (55)

so that (51) matches (33).
Furthermore, Cases I and II should match smoothly

as ζ hits precisely the limiting value x+. This corre-
sponds to A(c, ζ) ≡ ζ → A(c, x+) ≡ x+. It is again
straightforward to check that this last condition implies
L1(c, x+) ≡ x− so that (51) recovers (52).

The interesting case for computing large fluctuations
is Case I. One can insert (51) into (22) in order to eval-
uate (23). It turns out that the integrals involved can
be analytically solved in terms of derivatives of hyperge-
ometric functions, but a more explicit formula is derived
in the Appendix. We give here a plot of the rate function
Φ−(x; c) that describes the large fluctuations of O(N) to
the left of the mean 〈λmax〉 = x+(c)N :

PN (t) =
Z1(t)

Z0
≈ exp

{

−β

2
N2[S(ζ) − S(x+)]

}

= exp

{

−β

2
N2Φ−

(

x+ − t

N
; c

)}

(56)

The plot is given in Fig. 5 for several values of c ap-
proaching 1. The limiting case Φ−(x; 1) (36) is also plot-
ted.

2 4 6 8 10
x

1

2

3

4

5
F-Hx;cL

FIG. 5: Rate function Φ−(x; c) for the following values (from
left to right) of c = 1, 0.8, 0.6, 0.4, 0.2. See also Figure 3.

We can now compute to leading order the probability
that all the eigenvalues are less than the mean value 〈λ〉 =
N/c. This amounts to putting the barrier at t = N/c

in (56), which gives Φ−

(

2√
c

+ 1; c
)

. Several numerical

values are given in the following table.
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c Φ−

“

2√
c

+ 1; c
”

0.1 0.475802

0.2 0.449162

0.4 0.414592

0.6 0.390245

0.8 0.37104

0.95 0.358805

1 0.355044

TABLE II: Some values of the rate function (see text for fur-
ther explanation).

IV. NUMERICAL RESULTS

The formulas (33),(35), (51) and (56) have been nu-
merically checked on samples of hermitian matrices (β =
2) up to N = 30, M = 300 and the agreement with the
analytical results is already excellent. We describe in this
section the numerical methods and results.

A direct sampling of Wishart matrices up to those sizes
is computationally very demanding. We applied the fol-
lowing much faster technique, suggested in [22].

Let Lβ = BβBT
β be the tridiagonal matrix correspond-

ing to:

Bβ ∼













χ2a

χβ(N−1) χ2a−β

. . .
. . .

χβ χ2a−β(N−1)













(57)

Bβ is a square N × N matrix with nonzero entries on
the diagonal and subdiagonal and a = (β/2)M . The
nonzero entries χk are independent random variables ob-
tained from the square root of a χ2-distributed variable
with k degrees of freedom. It has been proved in [22] that
Lβ has the same joint probability distribution of eigen-
values as (7). Thus, as far as we are interested in eigen-
value properties, we can use the Lβ ensemble instead of
the original Wishart one. This makes the diagonaliza-
tion process much faster due to the tridiagonal structure
of the matrices Lβ .

We report the following four plots: the first two (fig.
6 and 7) are for the case c = 1 and the last two (fig. 8
and 9) for the case c = 0.1.

In fig. 6, we plot the histogram of normalized eigen-
values λ/2N for an initial sample of 3 × 105 hermitian
matrices (β = 2, N = M = 30), such that matrices with
λmax/2N > ζ are discarded. The barrier is located at
ζ = 3. On top of it we plot the theoretical distribution
(33).

In fig. 8, we do the same but in the case N = 10, M =
100. The barrier is located at ζ = 14. The theoretical
distribution is now taken from (51).

To obtain the plots in fig. 7 and 9, we generate ≈

5 × 105 L2 matrices for different values of N = 7 → 30
(or 15). The parameters (c, ζ) are kept fixed to the value
(1, 3) for fig. 7 (x+ = 4) and (0.1, 14) for fig. 9 (x+ ≈
17.32). The constraining capability of those barriers can
be estimated by the ratio κ(c, ζ) = (x+ − ζ)/(x+ − x−),
corresponding to the window of forbidden values for the
largest eigenvalue. We get κ(1, 3) = 0.25 and κ(0.1, 14) ≈
0.26, to be compared with the values of κ(c, ζ) = (2 +√

c)/4 for the barrier at the mean value ζ = 1/c, which
would give respectively κ = 0.75 and κ ≈ 0.58. This
relative mildness of the constraint allows us to get a much
more reliable and faster statistics in the simulations.

For each value of N , we determine the empirical fre-
quency r(N) of constrained matrices as the ratio between
the number of matrices whose largest rescaled eigenvalue
is less than ζ and the total number of samples (5× 105).
The logarithm of r(N) vs. the size N is then naturally
fitted by a parabola aN2 + bN + ĉ to test the prediction
for a in formulas (35) and (56).

The best values for the coefficient a of the leading
term are estimated as −0.006153 (c = 1) and −0.0357
(c = 0.1), to be compared respectively with the theo-
retical prediction Φ−(1; 1) ≈ −0.006432 and Φ−(x+ −
14; 0.1) ≈ −0.03666. Despite the relatively small sizes
and the O(N) corrections, the agreement is already good.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

λ/2N

ρ N
(λ

)

FIG. 6: Constrained spectral density ˆ̺N(λ) for N = M = 30.
The barrier is at ζ = 3. In dotted green the histogram of
rescaled eigenvalues over an initial sample of 3×105 matrices
(β = 2). In triangled red the theoretical distribution.

V. CONCLUSIONS

In this paper we have studied the probability of atyp-
ically large negative fluctuations (with respect to the
mean) of the largest eigenvalue λmax of a random Wishart
matrix. The standard Coulomb gas analogy for the joint
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FIG. 7: Natural logarithm of the probability that all the
rescaled eigenvalues are less than ζ = 3 vs. N for the case
c = 1 (x+ = 4). The data points are fitted with a parabola
(solid line).
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)

FIG. 8: Constrained spectral density ˆ̺N (λ) for N = 10, M =
100 (c = 0.1). The barrier is at ζ = 14. In dash-dotted green
the histogram of rescaled eigenvalues over an initial sample
of 5 × 105 matrices (β = 2). In triangled red the theoretical
distribution.

probability distribution of eigenvalues allowed us to use
the tools of statistical physics, such as the functional in-
tegral method evaluated for large N by the method of
steepest descent. Using these tools, we have analytically
computed the probability of large deviations of λmax to
the left of its mean. In particular, our main motivation
was to compute the probability of a rare event: all eigen-
values are less than the average 〈λ〉 = N/c. This implies
that the largest eigenvalue itself is less than 〈λ〉 = N/c.
This question is relevant in estimating the efficiency of
the ‘principal components analysis’ method used in mul-

7 8 9 10 11 12 13 14 15
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Lo
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r(
N

))

FIG. 9: Natural logarithm of the probability that all the
rescaled eigenvalues are less than ζ = 14 vs. N for the case
c = 0.1 (x+ ≈ 17.32). The data points are fitted with a
parabola (solid line).

tivariate statistical analysis of data. Our main result is
to show that, to leading order in N , this probability de-
cays as ∼ exp[−β

2 N2Φ−( 2√
c

+ 1; c)], where Φ−(x; c) is

a rate function that we have explicitly computed. The
quadratic, instead of linear, N -dependence of the expo-
nential reflects the eigenvalue correlations.

Furthermore, our method allows us to determine ex-
actly the functional form of the constrained spectral den-
sity, i.e., the average charge density of a Coulomb gas
constrained to be within a finite box λ ∈ [0, t].

All the analytical results are in excellent agreement
with the numerical simulations on samples of hermitian
matrices up to N = 30, and the estimates of the large
deviation prefactor are already good even for N ∼ 15.
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Early Stage Training Fellowship (NET-ACE project).
We are grateful to Gernot Akemann, Igor Krasovsky
and Yang Chen for helpful comments and for pointing
to us relevant references. The support by Sergio Consoli
(Brunel) for the numerical simulations is also gratefully
acknowledged.

APPENDIX: RATE FUNCTION FOR c < 1

We evaluate in closed form the action S(ζ) :=

S[f̂⋆(x); ζ] (see (22)) for the case c < 1, where f̂⋆(x)
is given by (51). The result is in eq. (A.3).

The rate function Φ−(x; c) for c < 1, given by:

Φ−(x; c) = S (x+ − x) − S (x+) (A.1)

can be evaluated immediately.
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After inserting (51) into (22) and determining C1 from
(25), we find that S(ζ) is given by:

S(ζ) =
1

2

∫ ζ

L1

f̂(x)xdx − α

2

∫ ζ

L1

f̂(x) log(x)dx+

−
∫ ζ

L1

f̂(x) log(x − L1)dx +
L1

2
− α

2
log(L1) (A.2)

After the substitution x = (ζ −L1)t+L1 in the integrals
in (A.2) and some simple algebra, S(ζ) can be expressed
as:

S(ζ) = −α

2
Θ1 −Θ2 +

ζ − L1

2
Ξ +

L1

2
− α

2
log(L1) (A.3)

where Θk and Ξ are the following functions of c and ζ:

Θk =
ζ − L1

2π

{

log(ζ − L1)

[

A

ζ − L1
I0

(

L1

ζ − L1

)

− π

2

]

+

+
A

ζ − L1
Ik

(

L1

ζ − L1

)

}

Ξ =
A

4
− 3

16
ζ − L1

16
+

α

2π
I3

(

L1

ζ − L1

)

+
1

2
− log(2)

(A.4)

The functions Ik(x) are given by the following integrals:

I0(x) =
d

dx
I3(x) (A.5)

I1(x) =

∫ 1

0

dt
log(t + x)

t + x

√

t

1 − t
(A.6)

I2(x) =

∫ 1

0

dt
log t

t + x

√

t

1 − t
(A.7)

I3(x) =

∫ 1

0

dt log(t + x)

√

t

1 − t
(A.8)

which, following very closely ref. [28] paper I, appendix
B, can be computed explicitly in closed form.

The integral I3(x) (and thus also I0(x)) can be com-
puted by Mathematicar:

I3(x) =
π

2

[

1 + 2x − 2
√

x(1 + x) + 2 log

[

1 +

√

1 +
1

x

]

+

+ log
(x

4

)

] (A.9)

while I1(x) and I2(x) are given in terms of derivatives of
hypergeometric functions. More explicit expressions can
be given as follows, starting with I1(x). Exploiting the
identity hλ log h = ∂λhλ, we can rewrite the integral as:

I1(x) =

[

∂λ

∫ 1

0

dt(t + x)λ

√

t

1 − t

]

∣

∣

∣

λ=−1
(A.10)

and the integral in (A.10) can be evaluated in terms of
Kummer’s hypergeometric function:

I1(x) =
π

2

{

∂λ

[

xλ
2F1

(

−λ,
3

2
; 2;− 1

x

)]}

∣

∣

∣

λ=−1

(A.11)

Now, applying the transformation formulas [41] [15.3.7
pag. 559] and evaluating the derivatives of Gamma func-
tions that arise, we finally get:

I1(x) =
π

2

[

−2 log 4 + 2 î1(x) − 2

√

x

1 + x
log

(

4x

e2

)

+

− 2
√

x î2(x) ] (A.12)

where:

î1(x) = [∂µ 2F1(1 − µ,−µ;−µ + 1/2;−x)]
∣

∣

∣

µ=0
(A.13)

î2(x) =
[

∂µ (1 + x)µ−1/2
2F1(µ, µ + 1; µ + 3/2;−x)

] ∣

∣

∣

µ=0

(A.14)

To evaluate î1(x) and î2(x), we use the series expansion
for hypergeometric functions [41] [15.1.1 pag. 556] and
upon differentiation we get:

î1(x) = −
∞
∑

n=1

B

(

1

2
, n

)

(−x)n (A.15)

where B(v, w) = Γ(v)Γ(w)
Γ(v+w) is Euler’s Beta function. Intro-

ducing the integral representation of the Beta function:

B(x, y) =

∫ 1

0

dt tx−1(1 − t)y−1 (A.16)

into (A.15) and upon exchanging summation and inte-
gral, we arrive with the help of

∑∞
n=0(−xt)n = (1+xt)−1

to:

î1(x) = x

∫ 1

0

dt√
1 − t(1 + xt)

= 2

√

x

1 + x
arcsinh(

√
x)

(A.17)
Following the same procedure, we get for î2(x):

î2(x) =
1√

1 + x
[log(1 + x) − i1(x)] (A.18)

where i1(x) is defined in ref. [28] as:

i1(x) = −2 + 2

√

1 + x

x
arctanh

(√

x

1 + x

)

(A.19)

From (A.12) we get the final result for I1(x):

I1(x) = π

{

− log 4 +

√

x

1 + x

[

2arcsinh(
√

x)+

+ 2

√

1 +
1

x
arctanh

(√

x

1 + x

)

− log[4x(1 + x)] ]}

(A.20)

Following the very same procedure as in the previous
case, we find for I2(x):

I2(x) = π

[

− log 4 +

√

x

x + 1

(

2arcsinh(
√

x) − log(x)
)

]

(A.21)
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Now we compute the limit c → 1− in (A.3) to recover
(34). Given that, for c → 1−, L1 → 0, α → 0 and
A → (ζ + 4)/2, we have to evaluate the integrals Ik(x)
for x → 0. This gives:

I0(0) ∼ π (A.22)

I1(0) ∼ −π log 4 (A.23)

I2(0) ∼ −π log 4 (A.24)

I3(0) ∼ −π

2
(log 4 − 1) (A.25)

Then, S[f̂⋆(x); ζ]
∣

∣

∣

c→1−

∼
[

−Θ2 + ζ
2Ξ
] ∣

∣

∣

c→1−

= 2 log 2 −

log ζ + ζ
2 − ζ2

32 as it should (see (34)).
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