
ar
X

iv
:c

on
d-

m
at

/0
41

04
79

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
9 

O
ct

 2
00

4

Construction of the factorized steady state

distribution in models of mass transport

R. K. P. Zia1, M. R. Evans2, and Satya N. Majumdar3

1Department of Physics and

Center for Stochastic Processes in Science and Engineering,

Virginia Tech, Blacksburg, VA 24061-0435, USA
2School of Physics, University of Edinburgh,

Mayfield Road, Edinburgh EH9 3JZ, UK
3 Laboratoire de Physique Theorique et Modeles Statistiques,

Universite Paris-Sud, Bat 100, 91405, Orsay-Cedex, France.

Abstract. For a class of one-dimensional mass transport models we present a simple

and direct test on the chipping functions, which define the probabilities for mass to

be transferred to neighbouring sites, to determine if the stationary distribution is

factorized. In cases where the answer is affirmative, we provide an explicit method

for constructing the single-site weight function. As an illustration of the power of this

approach, previously known results on the Zero-range process and Asymmetric random

average process are recovered in a few lines. We also construct new models, namely a

generalized Zero-range process and a binomial chipping model, which have factorized

steady states.
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In a recent publication [1], we investigated a class of mass transport models on a

ring (one-dimensional lattice with periodic boundary condition). The class encompasses

both discrete and continuous masses and discrete and continuous time dynamical rules

for the transfer of mass between neighbouring sites. The Zero-range process (ZRP)

[2, 3] and Asymmetric random average process (ARAP) [4, 5] correspond to special

cases of this class. We derived a necessary and sufficient condition for the steady state

to factorize which dictates an appealingly simple, yet general, form for the chipping

functions (ϕ(µ|m) in equation 1 below) which define the probabilities with which mass

is transferred from site to site. Though the form of this condition might be elegant, it

is an “implicit test” for the chipping functions.

In the present work we formulate a simple explicit test for the chipping functions,

as well as a straightforward method for constructing the single-site weight function

(products of which form the steady state distribution). In this sense, we provide a

complete solution to this class of mass transport models. This note may be considered

as a sequel to [1], where the reader will find the motivation for the model and details of

the previous analysis.

Following the notation of [1], our system consists of masses mi at site i = 1 . . . L on

a ring. At each time step, a mass µi (drawn from a distribution ϕ(µi|mi)) is ‘chipped off’

mi and moved to site i+1. After long times, the system settles into a time-independent

state, with distribution (unnormalized probabilities) F (m1, ..., mL). The central result

of [1] (equation 15) is a necessary and sufficient condition on ϕ(µ|m) for F to factorize:

F = f(m1)...f(mL), namely, if and only if ϕ(µ|m) can be expressed in the form

ϕ(µ|m) =
v (µ)w (m− µ)

[v ∗ w] (m)
, (1)

where v and w are two non-negative functions. Further, f(m), the single site weight is

given by the convolution in the denominator, i.e.,

f (m) = [v ∗ w] (m) ≡

∫ m

0

dµ v (µ)w (m− µ) . (2)

Typically, a mass transport model is motivated by a specific chipping function ϕ.

As a result, it is not particularly easy to see if it satisfies condition (1), the form of

which, though elegant, is “implicit” . We now take the next simple step and turn this

into an “explicit” test for ϕ. As in [1], it is clearer to regard the two variables in ϕ as

µ and σ ≡ m − µ. Note that the condition for factorization in Eq. (1) is equivalent to

asking if

∂

∂µ

∣

∣

∣

∣

σ

∂

∂σ

∣

∣

∣

∣

µ

lnϕ (µ|µ+ σ) (3)

is a function of µ+ σ alone (i.e., m, and no other dependence µ, say). Thus, if we have

factorization, the quantity in Eq. (3) is a function of m alone and let us call it h (m).

That this is a necessary and sufficient condition equivalent to (1) can then be seen by

integrating (3) with respect to µ and σ, which yields ϕ of the form (1). Moreover,
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integrating twice with respect to m and then exponentiating, we have explicitly

f (m) = exp

[

−

∫ m

dm′

∫ m′

dm′′h (m′′)

]

. (4)

Note that there are two arbitrary integration constants in this construction, leading to

an overall amplitude and exponential factor am. These are precisely the two “degrees

of freedom” we encountered while defining f(m) in [1].

This formalism thus provides a simple test (3) to see if any specific mass transport

model admits a factorized steady state and, if so, a recipe for the associated single-site

weight (4). As an example of the applicability of (3) and (4), we consider the case of

the ARAP [4, 5, 6, 7] which is a class of mass transport models defined by a chipping

function of the form ϕ(µ|m) = ψ(µ/m)/m i.e. a random fraction r = µ/m chips off at

each update. In this case (3) gives

−
r(1 − r)

m2

dK(r)

dr
−

1 − 2r

m2
K(r) +

1

m2
(5)

where

K(r) =
1

ψ(r)

dψ(r)

dr
. (6)

Thus, the condition that (3) depends on m alone implies h(m) ∝ 1/m2 and

d

dr
[r(1 − r)K(r)] = constant (7)

the solution of which is

ψ(r) = Crp(1 − r)q , (8)

where the constant C is fixed by the normalisation condition
∫

1

0

dr ψ(r) = 1 . (9)

This condition yields

ψ(r) =
rp(1 − r)q

B(p + 1, q + 1)
(10)

where B(p+1, q+1) is the usual Beta function and p,q > −1. The function h(m) given

by (3) is from (5)

h(m) =
1

m2

{

−
d

dr
[r(1 − r)K(r)] + 1

}

=
1 + p+ q

m2
(11)

and, integrating twice (4), we retrieve the result: f(m) ∝ m1+p+q . Thus (10) is the

most general chipping function of r that gives rise to a factorized steady state. This

proves in a direct way a result of [8].

For models with discrete masses such as the ZRP, the derivatives above become

differences. To be careful, let us write the chipping rates as

ϕ(µ|m) =
∞

∑

n=1

n
∑

ℓ=0

ϕℓ,nδ(µ− ℓ)δ(m− n) .
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The factorization condition for continuous masses in Eq. (1) has an equivalent discrete

analogue,

ϕl,n =
vlwn−l

fn

, (12)

where fn’s are single-site weights. The factorization test can now be rephrased in terms

of the cross ratio

R (ℓ, n) ≡
ϕℓ+1,n+2ϕℓ,n

ϕℓ+1,n+1ϕℓ,n+1

, (13)

defined when all of the ϕ’s are positive. If the factorization condition in Eq. (12)

holds then the cross ratio R is clearly independent of l and depends only on n. Thus,

a factorized steady state exists if and only if R(l, n) is independent of ℓ. In this case

R(n) will be given in terms of the single-site weights fn in

f(m) =

∞
∑

n=1

fnδ(m− n) (14)

as

R(n) =
f 2

n+1

fn fn+2

, (15)

which yields the recursion

fn+2

fn+1

=
1

R(n)

fn+1

fn

. (16)

Iterating (16) yields

fn+2

fn+1

=

[

n
∏

m=0

1

R(m)

]

f1

f0

, (17)

which one can iterate again to obtain

fn = (f0)

(

f1

f0

)n
[

n−2
∏

m=0

1

R(m)n−m−1

]

for n ≥ 2 . (18)

Of course, this is the discrete version of “integrating twice”. The two arbitrary constants

(overall amplitude f0 and exponential amplitude an = (f1/f0)
n) are again explicitly

displayed.

As an illustration consider the ZRP where only unit masses can chip off with

probability u(n) where n is the mass at the site [3]. In this case, we see that there

is only one cross ratio, namely for l = 0,

R (0, n) =
u (n+ 2) [1 − u (n)]

u (n + 1) [1 − u (n+ 1)]
. (19)

Since this R is automatically “independent of ℓ,” we immediately recover the conclusion:

the ZRP admits a factorized steady state. Further, it is straightforward to retrieve the

fn’s from (18) as

fn =

(

f0

1 − u(n)

) (

f1u(1)

f0

)n
[

n
∏

m=1

1 − u(m)

u(m)

]

, (20)
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which recovers the result of [1] originally derived by a more complicated approach in

[9]. Note that we have again displayed the two arbitrary constants with (...) brackets.

As a simple example of a new model with a factorized steady state we define the

binomial chipping model, in which the mass at each site is discrete, m = 0, 1, 2, . . .. The

chipping is specified by the following kernel,

ϕℓ,n =

(

n

ℓ

)

pℓ(1 − p)n−ℓ, (21)

where 0 ≤ p ≤ 1 is a parameter and ℓ = 0, 1, . . . n. One can understand the model by

interpreting n as the number of unit masses at a site, each of which move independently

with probability p at each time-step. One finds

R(ℓ, n) =
n+ 2

n+ 1
(22)

for all ℓ. Since manifestly this is independent of ℓ the steady state factorizes and (18)

yields

fn = f0

(

f1

f0

)n
1

n!
. (23)

Note that, apart from the “irrelevant” factors, the single site weight here is extremely

simple: 1/n!.

As a more involved example of constructing a new model with a factorized steady

state, we consider a generalized zero-range process where mass chunks of size one or two

can chip off at each time step with probabilities u1(n) and u2(n) respectively. In this

case we have two cross ratios

R (0, n) =
u1 (n + 2) [1 − u1 (n) − u2 (n)]

u1 (n + 1) [1 − u1 (n+ 1) − u2 (n + 1)]
for n ≥ 0 (24)

R (1, n) =
u2 (n+ 2)u1 (n)

u2 (n + 1)u1 (n + 1)
for n ≥ 1 . (25)

If we demand that the stationary state factorizes, then we must have R (0, n) = R (1, n)

which reduces to

u2(n+ 1)(1 − u1(n) − u2(n))

u1(n + 1)u1(n)
= A for n ≥ 1 (26)

where A is a positive constant independent of n. In terms of the ratio

ρn ≡
u2(n)

u1(n)
, (27)

(26) becomes

ρn+1

(

1 − u1(n)

u1(n)
− ρn

)

= A . (28)

Though this condition is in the form of a nonlinear recursion, we can linearize it by

changing variables to yn via

ρn = A
yn−1

yn

. (29)
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Then (28) becomes a linear second-order recursion for the y’s:

yn+1 =
1 − u1(n)

u1(n)
yn − Ayn−1 , (30)

with initial conditions y0 = 0 and y1 = 1. Thus we can find yn in terms of arbitrary

u1(n) and A. At the same time, these y’s also fix the “allowed” chipping rates for two

mass units, u2(n), in terms of u1(m), m ≤ n and one free parameter A, through the

relations (27) and (29):

u2(n) = Au1(n)
yn−1

yn

. (31)

Of course, the single-site weights can also be found using (18) and (24)

fn =

(

f0

1 − u1(n) − u2(n)

) (

f1u1(1)

f0

)n
[

n
∏

m=1

1 − u1(m) − u2(m)

u1(m)

]

(32)

which may also be written in terms of yn as

fn = f0

(

f1u1(1)

f0

)n
yn

u1(n)
. (33)

Finally, we remark that the constructive method presented here easily adapts to the

case of continuous time (or random sequential) dynamics specified by the rates per unit

time, γ(µ|m), at which mass µ chips off mass m. It is shown in [1] that the necessary

and sufficient condition for a factorized steady state becomes

γ(µ|m) =
x(µ)w(m− µ)

w(m)
(34)

in which case the single-site weights become f(m) = w(m). Thus the test for and

construction of the factorized steady states is identical to that of the discrete time case

with ϕ(µ|m) replaced by γ(µ|m).
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