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Abstract. The problem of the flux to a spherical trap in one and three dimensions,

for diffusing particles undergoing discrete-time jumps with a given radial probability

distribution, is solved in general, verifying the Smoluchowski-like solution in which the

effective trap radius is reduced by an amount proportional to the jump length. This

reduction in the effective trap radius corresponds to the Milne extrapolation length.
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1. Introduction

A classical problem in diffusion and reaction theory is the flux of particles, initially

uniform in space, to a trap. When the particles are moving by simple diffusion, this

flux can be found by solving the diffusion equation with an adsorbing boundary at the

surface of the trap. For example, for a system with a spherical trap of radius R, the

time-dependent density ρ(~r, t) evolves via the diffusion equation, ∂tρ = D∇2ρ (D being

the diffusion coefficient), starting from the initial condition ρ(~r, 0) = ρ0 for r > R and

ρ(~r, 0) = 0 for r ≤ R. The diffusion equation is subject to the boundary conditions,

ρ(~r, t) = 0 for r = R and ρ(~r, t) → ρ0 as r → ∞, for all time t. For spatial dimensions

d > 2, the density profile outside the sphere approaches a steady state as t → ∞,

reflecting the fact that Brownian motion is transient for d > 2 [1]. For example, in three

dimensions, the full time-dependent density profile (which is spherically symmetric) can

be explicitly obtained for all t,

ρ(r, t) =
ρ0

r

[

r −R erfc

(

r − R√
4Dt

)]

for r ≥ R , (1)

where erfc(z) = (2/
√
π)
∫∞
z e−u2

du. In particular, as t → ∞, the density approaches a

stationary profile outside the sphere,

ρ(r,∞) =
ρ0

r
(r − R) . (2)

The flux Φ(t) = 4πR2D(∂ρ/∂r)|r=R, defined as the number of particles falling into the

trap per unit time, can be easily obtained from ρ(r, t) in Eq. (1) and one gets the classical

result [2, 3],

Φ(t) = 4πRDρ0

[

1 +
R√
πDt

]

. (3)

On the other hand, when the particles are moving by discrete jumps at every time

step τ (as opposed to undergoing continuous-time Brownian motion), the above results

for the stationary density profile in Eq. (2) as well as that for the flux in Eq. (3) become

modified. In Ref. [4] this discrete-jump problem was studied by an iterative numerical

scheme, for particles undergoing fixed-length jumps of length ℓ and random angles (the

so-called Rayleigh flights). It was found that in d = 3, while the density profile ρn(r)

after n time steps approaches a stationary limit as n→ ∞, the stationary profile ρ∞(r)

is different from its continuous-time counterpart in Eq. (2). Very far from the surface

of the sphere, the stationary profile behaves as

ρ∞(r) ≈ ρ0

r
[r − (R− ǫ)] for r ≫ R , (4)

where ǫ = c ℓ and the dimensionless constant c = 0.29795219 . . . was determined

numerically [4]. On the other hand, on the surface of the sphere, the stationary density

profile approaches a positive value

ρ∞(R) ≈ 0.408245
ρ0ℓ

R
, (5)
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where the constant 0.408245 was evaluated numerically in Ref. [4]. This is in marked

contrast to the continuous-time Brownian case where the stationary density profile

vanishes on the surface of the sphere. The distance ǫ = c ℓ is the ‘Milne extrapolation

length’ [5, 6, 7] that represents the distance inside the surface where the far steady-state

solution in Eq. (4) extrapolates to zero. The same length ǫ also appears in the expression

for flux [4]

Φ(t) ≈ 4πDρ0(R− ǫ)

[

1 +
R− ǫ√
πDt

+ O(t−3/2)

]

, (6)

for large t. This result was obtained numerically in Ref. [4].

Recently we have rigorously proven the result in Eq. (4) for the large-distance

stationary profile and found an analytical expression for c [8]:

c = −1

π

∫ ∞

0

dk

k2
ln

[

6

k2

(

1 − sin k

k

)]

= 0.29795219028 . . . . (7)

Remarkably, the same constant also appeared in the leading finite-size correction to

the expected maximum of a discrete-time random walker moving on a continuous line

where at each time step the walker jumps by a distance ξ that is chosen from a uniform

distribution [9, 10]. In Ref. [9], the constant was evaluated numerically by summing a

rather complicated double infinite series. Later an exact expression as in Eq. (7) was

derived in Ref. [10]. In Ref. [8], we showed why the same constant also appeared in

the three-dimensional discrete flux problem. For the 3-d flux problem, it was further

proven [8] that the density on the surface of the sphere approaches a constant as in Eq.

(5):

ρ∞(r) =
1√
6

ρ0ℓ

R
. (8)

Thus the constant 0.408245 in Eq. (5), found numerically in Ref. [4], was proven to be

simply 1/
√

6. Indeed, in Ref. [8], an analytical expression for the full stationary density

profile for all r ≥ R (or rather its Laplace transform) was obtained.

Having obtained the stationary density profile, the next objective is to prove

the expression for the time-dependent flux in Eq. (6) that was found numerically in

Ref. [4]. If one uses the form in Eq. (4) of the steady-state solution far from the

sphere in the expression for the flux in the continuous-time diffusion problem, one

gets [8] Φ = 4πr2D (dρ∞(r)/dr) = 4πDρ0(R − ǫ), which is precisely the leading time-

independent term in the expression for flux in Eq. (6). Even though this reproduces

correctly the leading term in the flux in Eq. (6), it is not entirely satisfactory since

we are using a definition of flux which is valid only for the continuous-time diffusion

equation and not for the discrete-time jump process. Moreover, just the knowledge of the

stationary density profile is not enough to prove the leading time-dependent behaviour,

namely the 1/
√
t decay to the stationary flux in Eq. (6). Thus, to rigorously prove the

two leading terms in Eq. (6), we need to obtain the time-dependent solution ρn(r) of the

discrete-time process for large n and then use this solution in an appropriate expression

for the discrete flux (see below). This is precisely what is achieved in this paper.
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The main achievements of this paper are: (i) to prove rigorously the result for

the discrete flux in Eq. (6) for the two leading terms and then (ii) to generalize the

results in Eqs. (4), (5) and (6) to the case where the jump length |~r − ~r′| from ~r′ to

~r is not of a fixed length (as in Rayleigh flights) but is a random variable drawn from

a distribution W (|~r − ~r′|) that is bounded above (with an upper cut-off < 2R), but

is otherwise arbitrary. The stationary density profile for the general case was already

calculated in detail in Ref. [8] and it was shown that Eq. (4) is valid for the general case

where ǫ has an explicit expression [8]

ǫ = −1

π

∫ ∞

0

dk

k2
ln

[

1 − f̂(k)

σ2k2/2

]

, (9)

where f̂(k) =
∫∞
−∞ f(x)eikxdx is the Fourier transform of the function

f(x) = 2π
∫ ∞

|x|
W (u) u du , (10)

and σ2 =
∫∞
−∞ f(x) x2 dx is the second moment of f(x) which is assumed to be finite.

In terms of W (u), we have σ2 = (2π/3)
∫∞
−∞W (u) u4 du. For the case of the Rayleigh

flight, the jump probability W (u) = 1
4π ℓ2

δ(u− ℓ) in three-dimensional space translates

to a uniform jump distribution for f(x) [11],

f(x) =

{

1
2ℓ
, |x| < ℓ

0, otherwise .
(11)

Then f̂(k) = sin kℓ/(kℓ), and Eq. (9) reduces to Eq. (7) with ǫ = cℓ.

In addition, for the general jump distribution W (z), another remarkable universal

result was proven [8]. It was shown that the stationary density on the surface of the

sphere, properly rescaled by R and σ, is a universal dimensionless constant [8]

ρ∞(R)

ρ0

R

σ
=

1√
2
, (12)

which generalizes Eq. (8). In this paper, we will prove that the asymptotic expression

for the discrete flux in Eq. (6) is also valid for a general jump distribution W (z) with

the length ǫ given by the exact formula in Eq. (9).

Apart from the three-dimensional results mentioned above, in this paper we also

study the one-dimensional discrete flux problem where the origin is a trap and initially

random walkers are distributed uniformly with density ρ0 on the positive semi-infinite

line. At every discrete time step, each walker jumps independently by a distance x

that is chosen from a normalized probability density function f(x) with a finite second

moment σ2 =
∫∞
−∞ f(x) x2 dx. Due to the recurrent nature of random walk in one

dimension, the density approaches zero everywhere on the positive line at late times

and the instantaneous flux to the origin also decays to zero with time. Our exact

calculation shows that while the instantaneous flux decays algebraically as 1/
√
n for

large time n, the cumulative flux Φcum
n (i.e., the total number of particles absorbed by

the origin up to n steps) behaves asymptotically as

Φcum
n = ρ0



σ

√

2n

π
− ǫ+

µ4 + 3σ4

12σ3

√

1

2πn
+ O(n−1)



 , (13)
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where µ4 =
∫∞
−∞ f(x) x4 dx (assuming it is finite) and ǫ is the same quantity that

appeared in the 3-d flux problem in Eq. (9). The quantity ǫ however does not appear

in the expression for the 1-d instantaneous flux as it does in three dimensions (at least

up to O(n−3/2)).

The paper is organized as follows. In section II, we set up the basic integral equation

satisfied by the time-dependent density profile for an arbitrary jump distribution in three

dimensions and show how one can reduce it to a one-dimensional integral equation. We

then briefly describe the exact solution to this integral equation first obtained in Ref.

[8]. In section III, we use this solution to calculate Φcum
n and from that derive the main

result in Eq. (6). In the process, we also prove analytically some other conjectures made

in Ref. [4] on the basis of numerics. Section IV deals with the expressions for the flux

in one dimension. Finally we conclude in section V with a summary and outlook. Some

of the details of the calculations are relegated to the Appendix.

2. The Integral Equation for the density profile and its exact solution

Let ρn(~r) denote the density of particles at position ~r outside the sphere of radius R at

time step n. Initially we have ρ0(~r) = ρ0 for all r > R. The density stays zero inside the

sphere since it is a trap. A particle at position ~r′ (with r′ > R) jumps in one time step

to a new position ~r and the jump distance (~r− ~r′) is drawn at each step independently

from an isotropic distribution W (|~r − ~r′|) that depends only on the magnitude of the

jump length, but not on its direction. The function W (u) is normalized in the three-

dimensional space, i.e.,

4π
∫ ∞

0
W (u)u2du = 1 . (14)

The time evolution of the density field ρn(~r) is clearly Markovian and is governed by

the integral equation

ρn(~r) =
∫

r′≥R
ρn−1(~r

′)W (|~r− ~r′|) d~r′ . (15)

The initial condition is spherically symmetric and the evolution equation preserves this

symmetry, hence ρn(~r) = ρn(r) at all steps n. We then have

ρn(r) =
∫

r′≥R
ρn−1(r

′)W (|~r− ~r′|) d~r′ . (16)

Using |~r − ~r′| =
√
r2 + r′2 − 2r r′ cos θ where θ is the angle between ~r and ~r′ and

d~r′ = 2πr′2 sin θdr′ dθ in three dimensions we get

ρn(r) = 2π
∫ ∞

R
dr′ρn−1(r

′)r′2
∫ π

0
W
(√

r2 + r′2 − 2rr′ cos θ
)

sin θ dθ

=
2π

r

∫ ∞

R
dr′ r′ ρn−1(r

′)
∫ r+r′

|r−r′|
W (u) u du . (17)

Let us define a new variable Fn(r) = rρn(r)/ρ0. Then Fn(r) for r ≥ R evolves via the

one-dimensional integral equation

Fn(r) = 2π
∫ ∞

R
dr′ Fn−1(r

′)
∫ r+r′

|r−r′|
W (u) u du with F0(r) = r . (18)
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A further simplification can be achieved by introducing a shift, i.e., defining z = r − R

(distance from the surface of the sphere) and writing Fn(r) = Fn(R+ z) = Hn(z) where

we have suppressed the R dependence in Hn(z) for convenience. Then Hn(z) for z ≥ 0

evolves via

Hn(z) = 2π
∫ ∞

0
dz′Hn−1(z

′)
∫ z+z′+2R

|z−z′|
W (u) u du , (19)

with H0(z) = R + z.

Eq. (19) is very general and is valid for arbitrary isotropic jump distribution

W (|~r − ~r′|). However, the reduced effective kernel in the one-dimensional integral

equation (19) — namely f(z, z′) = 2π
∫ z+z′+2R
|z−z′| W (u) u du — is non-stationary since

it depends on both r and r′ and not just on its difference |r − r′|. It is difficult to

solve this integral equation with a non-stationary kernel. To simplify further, we will

henceforth assume that the jump distribution W (z = |~r − ~r′|) is bounded above, i.e.,

it has a finite support with an upper cut-off zmax. This means W (z) = 0 for z > zmax.

If we further assume that zmax < 2R, it follows that one can replace the upper limit of

integration in f(z, z′) by ∞ and Eq. (19) simplifies to one with a stationary kernel,

Hn(z) =
∫ ∞

0
dz′Hn−1(z

′) f(z − z′) dz′ with H0(z) = R + z , (20)

where f(x) is a symmetric non-negative function

f(x) = 2π
∫ ∞

|x|
W (u) u du . (21)

Moreover, it is easy to show from Eq. (21), via integration by parts and then using Eq.

(14), that f(x) is normalized to unity:
∫∞
−∞ f(x)dx = 1. Thus f(x) can be regarded

as a probability density function. For later purposes, it would further be convenient to

break the solution of Eq. (20) into two R-independent parts: Hn(z) = Qn(z) + Rqn(z)

where Qn(z) and qn(z) evolve by the same integral equation, albeit with different initial

conditions:

Qn(z) =
∫ ∞

0
dz′Qn−1(z

′) f(z − z′) dz′ with Q0(z) = z , (22)

qn(z) =
∫ ∞

0
dz′ qn−1(z

′) f(z − z′) dz′ with q0(z) = 1 . (23)

Once the solutions to these two equations are known, the density profile ρn(r) can be

obtained via

ρn(r) =
ρ0

r
[Qn(r −R) +Rqn(r − R)] . (24)

The solutions to the two integral equations in Eqs. (22) and (23) were obtained

explicitly (in the Laplace domain) in Ref. [8]. We will not provide the derivation

here, but just mention the main results. It was shown that the two following Laplace

transforms

ψ̂I(u, s) =
∫ ∞

0

(

∞
∑

n=0

qn(z)sn

)

e−uzdz (25)
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and

ψ̂II(u, s) =
∫ ∞

0

(

∞
∑

n=0

Qn(z)sn

)

e−uzdz , (26)

have the explicit solutions [8]

ψ̂I(u, s) =
1

u
φ(0, s)φ(u, s) (27)

and

ψ̂II(u, s) =
1

u

[

1

u
φ(0, s) − φ′(0, s)

]

φ(u, s) , (28)

where the prime indicates differentiation with respect to u, φ(0, s) = (1 − s)−1/2, and

φ(u, s) =
1

√
1 − s+ σu

√

s/2

× exp

[

−u
π

∫ ∞

0

dk

u2 + k2
ln

(

1 − sf̂(k)

1 − s+ sσ2k2/2

)]

, (29)

where as before f̂(k) =
∫∞
−∞ f(x)eikxdx is the Fourier transform of f(x).

Using these solutions in Eq. (24) one can in principle calculate the full density

profile at all times n. In Ref. [8], we have shown how to obtain the stationary solution

(the n→ ∞ limit) explicitly. In the next section, we show how to obtain the two leading

terms in the expression for flux using the explicit solutions mentioned above.

3. Calculation of the discrete Flux

In this section our aim is to compute the expression for the discrete flux, in particular

to prove the two leading terms in Eq. (6). To proceed, it turns out to be convenient to

compute not the instantaneous flux Φ(t) as in Eq. (6) but rather the cumulative flux

Φcum(t) up to time t. We also replace t by the subscript n to reflect the discrete nature

of time in this problem. From (6) we expect

Φcum
n ∼ 4π(R− ǫ)Dρ0

[

n+
2(R− ǫ)

√
n√

πD
+ O(1)

]

, (30)

where the correction term O(1) is effectively the constant of integration.

To prove the result in Eq. (30), we note that the cumulative flux up to time n is

simply the total number of particles absorbed by the sphere up to time n and is given

precisely by the “missing” mass at that time:

Φcum
n =

∫ ∞

R
4πr2[ρ0 − ρn(r)]dr

= 4πρ0

∫ ∞

R
[r2 − rFn(r)]dr

= 4πρ0

∫ ∞

0
[(z +R)2 − (z +R)(Qn(z) +Rqn(z))]dz , (31)

where in line two we used Fn(r) = ρn(r)/(ρ0r) and in the third line we made the shift

z = r−R and used Fn(z+R) = Hn(z) = (Qn(z)+Rqn(z)) as explained in the previous
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section. Here Qn(z) and qn(z) are the solutions to Eqs. (22) and (23) whose Laplace

transforms are given explicitly in Eqs. (28) and (27) respectively. So, our job is to use

these explicit solutions in the expression in Eq. (31) and obtain the two leading terms

for large n. The rest of the section is devoted precisely to this technical task.

Simplifying (31) further, we find

Φcum
n = 4πρ0

∫ ∞

0
(z +R)[z +R− (Qn(z) +Rqn(z))]dz

= 4πρ0

∫ ∞

0
(z +R)[(z −Qn(z)) +R(1 − qn(z))]dz

= 4πρ0[J
(1)
n +R(J (2)

n + J (3)
n ) +R2J (4)

n ] , (32)

where

J (1)
n =

∫ ∞

0
z(z −Qn(z))dz , (33)

J (2)
n =

∫ ∞

0
(z −Qn(z))dz , (34)

J (3)
n =

∫ ∞

0
z(1 − qn(z))dz , (35)

J (4)
n =

∫ ∞

0
(1 − qn(z))dz . (36)

One can verify that, for the case of the Rayleigh flight of jump length ℓ (11), the

instantaneous flux Φn = Φcum
n − Φcum

n−1 calculated from the above formulas agrees with

Eqs. (13) of Ref. [4]:

Φn = 4πRDρ0[a
(1)(n) − (ℓ/R)b(1)(n) + (R/ℓ)a(2)(n) − b(2)(n)] (37)

where

a(1)(n) = 3
∫ 1

0
(1 − z)Qn(z)dz , b(1)(n) =

3

2

∫ 1

0
(1 − z)2Qn(z)dz ,

a(2)(n) = 3
∫ 1

0
(1 − z)qn(z)dz , b(2)(n) =

3

2

∫ 1

0
(1 − z)2qn(z)dz . (38)

Now, to calculate the integrals J (k)
n for a general jump-length distribution, we

proceed as follows. We first Taylor-expand φ(u, s) defined in Eq. (29) in powers of

u for small u. This gives

φ(u, s) =
φ(0, s)

1 + a(s)u
e−uI2(s)+u3I4(s)+... = φ(0, s)

[

1 −

[a(s) + I2(s)]u+ [a(s)2 + a(s)I2(s) +
1

2
I2(s)

2]u2 + . . .
]

, (39)

where

φ(0, s) = (1 − s)−1/2 , (40)

a(s) =
σ
√
s

√

2(1 − s)
, (41)

In(s) =
1

π

∫ ∞

0

dk

kn
ln

(

1 − sf̂(k)

1 − s+ sσ2k2/2

)

, n ≤ 4 . (42)
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Note that the analytic expansion in small u in the first line of Eq. (39) is valid up to

O(u3) and the ... refers to non-analytic higher order terms. For our purpose, we need

terms only up to O(u3).

Next, we carry out a Taylor-series expansion of ψ̂I and ψ̂II in powers of u:

ψ̂I(u, s) =
1

u(1 − s)
− a(s) + I2(s)

1 − s

+
[a(s)2 + a(s)I2(s) + 1

2
I2(s)

2]u

1 − s
+ . . . (43)

ψ̂II(u, s) =
1

u2(1 − s)
− a(s)I2(s) + 1

2
I2(s)

2

1 − s

+
[a(s)2I2(s) + a(s)I2(s)

2 + 1
3
I2(s)

3 + I4(s)]u

1 − s
+ . . . (44)

and rewrite ψ̂I and ψ̂II in a way that separates off the singular part in u:

ψ̂I(u, s) =
1

u(1 − s)
−

∞
∑

n=0

sn
∫ ∞

0
(1 − qn(z))e−uzdz (45)

ψ̂II(u, s) =
1

u2(1 − s)
−

∞
∑

n=0

sn
∫ ∞

0
(z −Qn(z))e−uzdz , (46)

so that the integrals remain convergent when u → 0. Expanding the exponentials e−uz

in powers of u, we get directly the generating functions of the desired integrals J (k)
n . For

example,
∑

snJ (4)
n follows from (minus) the coefficient of u0 in ψ̂I(u, s). Thus, from Eq.

(43) we deduce
∞
∑

n=0

snJ (4)
n =

a(s) + I2(s)

1 − s
=

σ
√
s√

2(1 − s)3/2
+
I2(s)

1 − s
. (47)

We extract the large-n behaviour of J (k)
n by looking at the behaviour of the generating

function for s→ 1. To carry out expansions to higher order, we use (see Appendix)
√
s

(1 − s)3/2
=

∞
∑

n=0

Cns
n, Cn ∼ 2

√

n

π
+

1

4
√
πn

as n→ ∞ . (48)

We also show in the Appendix that

I2(s) ∼ I2(1) −
√

2µ4

24σ3
(1 − s)1/2 + O(1 − s) , (49)

and

I4(s) ∼ − µ4

24
√

2σ
(1 − s)−1/2 + O(1) , (50)

as s → 1, where µ4 =
∫∞
−∞ x4f(x)dx is the fourth moment of the projected jump

distribution f(x).

Putting these results into (47), and using the Taylor-series expansions of (1− s)1/2

and (1 − s)−1/2, we find

J (4)
n ∼ σ

√

2n

π
− ǫ+

µ4 + 3σ4

12σ3

√

1

2πn
+ O(n−1) , (51)
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where we have used ǫ = −I2(1).

Likewise,
∑

snJ (3)
n follows from the coefficient of u1 in ΨI(u, s):

∞
∑

n=0

snJ (3)
n =

a(s)2 + a(s)I2(s) + 1
2
I2(s)

2

1 − s

=
σ2s

2(1 − s)2
+

σ
√
sI2(s)√

2(1 − s)3/2
+

1
2
I2(s)

2

1 − s
, (52)

and using (49), we find,

J (3)
n ∼ σ2n

2
− σǫ

√

2n

π
+

1

2
ǫ2 − µ4

24σ2
+ O(n−1/2) . (53)

In the same way,
∑

snJ (2)
n follows from the coefficient of u0 in ΨII(u, s):

∞
∑

n=0

snJ (2)
n =

a(s)I2(s) + 1
2
I2(s)

2

1 − s
=

σ
√
sI2(s)√

2(1 − s)3/2
+

1
2
I2(s)

2

1 − s
, (54)

which implies

J (2)
n ∼ −σǫ

√

2n

π
+

1

2
ǫ2 − µ4

24σ2
+ O(n−1/2) . (55)

Finally,
∑

snJ (1)
n follows from the coefficient of u1 in ΨII(u, s):

∞
∑

n=0

snJ (1)
n =

a(s)2I2(s) + a(s)I2(s)
2 + 1

3
I2(s)

3 + I4(s)

1 − s

=
σ2sI2(s)

2(1 − s)2
+

σ
√
sI2(s)

2

√
2(1 − s)3/2

+
1
3
I2(s)

3

1 − s
+
I4(s)

1 − s
. (56)

Note that the first term on the RHS above behaves as

σ2sI2(s)

2(1 − s)2
∼ σ2sI2(1)

2(1 − s)2
+

s
√

2µ4

24σ(1 − s)3/2
, (57)

and the last term of Eq. (56) behaves as

I4(s)

1 − s
∼ − s

√
2µ4

24σ(1 − s)3/2
, (58)

as s→ 1, so between these two expressions, the terms containing µ4 exactly cancel out.

With the remaining terms of (56), we find

J (1)
n ∼ σ2ǫn

2
+ σǫ2

√

2n

π
+ O(1) . (59)

The I2(s)
3 term in Eq. (56) does not contribute to this order.

Finally, putting the four results Eqs. (51), (53), (55) and (59) into Eq. (32), we

find, after some algebra,

Φcum
n = 4πρ0[J

(1)
n +R(J (2)

n + J (3)
n ) +R2J (4)

n ]

= 2πρ0(R− ǫ)σ2



n + 2(R− ǫ)

√

2n

πσ2
+ O(1)



 . (60)
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which is precisely in the form of Eq. (30). Then Φn follows from Φn = Φcum
n − Φcum

n−1,

and the result is exactly in the form of Eq. (6) with D = σ2/2. This is the expected

form of D given that σ is the standard deviation of the one-dimensional projection of

the three-dimensional walk. (For example, for the Rayleigh flight, this corresponds to

the familiar formula D = ℓ2/6 [3].) This completes the proof of our main result, Eq.

(6).

We close this section with the following observation: If we take the difference

between (52) and (54), we find

∞
∑

n=0

sn(J (3)
n − J (2)

n ) =
σ2s

2(1 − s)2
, (61)

which implies

J (3)
n − J (2)

n =
∫ ∞

0
(Qn(z) − zqn(z))dz =

nσ2

2
, (62)

exactly for all n. For the Rayleigh jump case, the rhs is nℓ2/6, and in that case this is

the cumulative equivalent to the identity a(1)(n) = 1 − b(2)(n) observed numerically in

Ref. [4]. Thus, we have proven that result, and shown that it can be generalized for an

arbitrary jump distribution, with the difference given in Eq. (62) depending only upon

the standard deviation σ of the jump distribution.

4. One dimension

Let us now consider a one-dimensional system where the origin represents a trap and

initially we have particles distributed uniformly over the positive line z > 0 with density

ρ0. Each particle jumps at every time step and the jump distance u is drawn from a

symmetric jump distribution f(u). Whenever a particle crosses over the origin to the

negative side it gets trapped by the origin. We ask similar questions as in d = 3: What

is the density profile ρn(z) at step n and what is the instantaneous flux Φn at step n?

Due to the recurrent nature of the random walks in d = 1, it is clear that eventually

all the particles will be absorbed by the origin and hence ρ∞(z) = 0 for all z ≥ 0. This

is a major difference from the 3-d case. In 1-d, the density profile for z > 0 evolves in

time via the integral equation

ρn(z) =
∫ ∞

0
ρn−1(z

′)f(z − z′)dz′ with ρ0(z) = ρ0 . (63)

Clearly, ρn(z) = ρ0qn(z) where qn(z) satisfies the integral equation (23) with the initial

condition q0(z) = 1 for all z > 0, and we already know its solution from section II.

Note that qn(z) can also be interpreted [10] as the probability that a random walker

starting at z > 0 and undergoing discrete jumps drawn from f(z) does not cross the

origin during the first n steps, as discussed in Ref. [10].

Regarding the flux, the cumulative amount Φcum
n is given by the missing mass at

step n

Φcum
n =

∫ ∞

0
[ρ0 − ρn(z)]dz = ρ0

∫ ∞

0
[1 − qn(z)]dz . (64)
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Now, the integral
∫∞
0 [1−qn(z)]dz is precisely J (4)

n of Eq. (36) whose asymptotic behaviour

is given in Eq. (51). The integral
∫∞
0 [1−qn(z)]dz also represents the expected maximum

E[Mn] up to n steps of a random walker starting at the origin and undergoing jumps

drawn from f(z) at every time step [10]. Thus, we have a rather nice relationship

between the cumulative flux and the expected maximum,

Φcum
n = ρ0E[Mn] = ρ0



σ

√

2n

π
− ǫ+

µ4 + 3σ4

12σ3

√

1

2πn
+ O(n−1)



 . (65)

where ǫ is the same quantity in Eq. (9) that appears in the expression for cumulative flux

in three dimensions. However, while in 3-d, ǫ retains its appearence in the expression

for the instantaneous flux Φn = Φcum
n − Φcum

n−1, in 1-d it disappears from Φn, at least up

to this order.

That is, from Eq. (65), we have

Φn = Φcum
n − Φcum

n−1

= ρ0



σ

√

2

π

[

n1/2 − (n− 1)1/2
]

+
µ4 + 3σ4

12σ3
√

2π

[

n−1/2 − (n− 1)−1/2
]





= ρ0σ

√

2

π

(

n1/2
[

1 −
(

1 − 1

2n
− 1

8n2
+ . . .

)]

+
µ4 + 3σ4

24σ4
n−1/2

[

1 −
(

1 +
1

2n
+ . . .

)] )

= ρ0
σ√
2π

(

n−1/2 +
3σ4 − µ4

24σ4
n−3/2 + . . .

)

(66)

which does not involve ǫ. Note that the coefficient of the last term is proportional

to the “excess,” defined as γ2 = µ4/σ
4 − 3. This quantity equals zero for a gaussian

distribution.

For the case of the uniform f(x) of Eq. (11), we have σ2 = ℓ2/3 and µ4 = ℓ4/5, and

from Eq. (66), it follows that the flux is given by

Φn = ρ0ℓ

√

1

6π

(

n−1/2 +
1

20
n−3/2 + . . .

)

. (67)

This result proves one more formula that was conjectured in Ref. [4]. For the uniform

f(x), Φn equals the ρ0ℓa
(2)(n)/6 where a(2)(n)/6 is given in Eq. (38), and in Eq. (21c)

of Ref. [4] is was conjectured from the numerical results that

a(2)(n)/6 = (6π)−1/2n−1/2 + (1/20)(6π)−1/2n−3/2 + O(n−5/2) . (68)

Indeed, the above formula is identical to Eq. (67). Thus, we have proven Eq. (68), and

in particular verified that the coefficient in the second term is exactly 1/20.

Note, finally, for the uniform f(x), Eq. (65) becomes

Φcum
n = ρ0ℓ





√

2

3π
n1/2 − c+

1

5

√

2

3π
n−1/2 + O(n−1)



 (69)
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where c = 0.29795219 . . . as given in Eq. (7). This result agrees with the expectation

of the maximum of a one-dimensional walker with uniform jump density [9, 10], E[Mn],

which is identical to Φcum
n (up to the constant factor ρ0) as mentioned above.

5. Conclusions

Thus, we have proven that Eq. (6) or its integrated form Eq. (30) applies to an arbitrary

jump distribution f(x). Here f(x) is related to the radial projection of the three-

dimensional jump distribution W (|~r− ~r′|) by Eq. (10) as long as W (u) has a cutoff for

large u. The generality of the flux in Eq. (6) implies that there is a universal long-time

behaviour of the intermediate particle density given by

ρ(r, t) ∼ ρ0

(

r − R + ǫ

r

)

(

1 +
R− ǫ√
πDt

)

, (70)

valid for large t and R ≪ r ≪
√
πDt. Only the length ǫ and diffusion coefficient D

depend upon the details of the jump distribution. Eq. (70) is equivalent to Eq. (1) with

R replaced by R− ǫ and the complementary error function expanded to two terms.

The integrated form of the flux of Eq. (30) brings in additional constants that do

not appear in the instantaneous form, Eq. (6), including the quantity ǫ that appears

in the one-dimensional flux, Eq. (69). Indeed, ǫ defined in Eq. (9) is ubiquitous as it

appears in many terms in the expansions of the integrals J (k)
n that apply to both one-

and three-dimensional problems.

The integrated form of the flux also enters directly in the formula for the trap

survival probability (the probability that an adsorbing sphere is not hit by a diffusing

particle up to time t): S(t) = exp[−Φcum(t)]. This quantity has been studied extensively

and has applications to quenching of fluorescence reactions (e.g., [12, 13, 14]).

When the jump probability corresponds to the Rayleigh flight, f(x) becomes the

uniform jump distribution of Eq. (11), in which case ǫ becomes 0.29795219 . . . ℓ found

previously [4, 8]. For this model we have also provided proofs of the conjectured

behaviour of the quantities a(1)(n), b(1)(n), a(2)(n), and b(2)(n) in Eqs. (21a)–(21d) of

Ref. [4] and proven the conjectured identity a(1)(n) = 1 − b(2)(n). We did not derive

expressions for the higher-order corrections of Eq. (21b) and Eq. (21d) of Ref. [4] that

involve the empirically determined constant d = 0.0270103, but these terms enter only

in higher-order corrections to the flux.

We also proved the identity (62) for a general jump distribution. This identity

relates the solution qn(z) with a linear initial condition to the solution Qn(z) with a

constant initial condition, and implies a subtle relation between the corresponding one-

and three-dimensional diffusion processes.

In this paper we have restricted ourselves to the spatial dimensions 1 and 3. A

natural question is: what are the expressions for the density profile ρn(r) and the

cumulative flux Φcum
n in dimensions d 6= 1, 3? Is it possible to compute the Milne

extrapolation length ǫ for d > 3? The reason we restricted ourselves only to d = 1 and

d = 3 can be traced back to the basic integral equation (16). For d = 1 and d = 3,
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this integral equation can be reduced to a one-dimensional integral equation (20) with

a stationary kernel f(z − z′) that is symmetric. For d 6= 1, 3 this step cannot be done

and finding an exact solution of the integral equation seems difficult. For example, in

d = 2, using d~r′ = r′dr′dθ in Eq. (16) one gets

ρn(r) =
∫ ∞

R
dr′ ρn−1(r

′) r′
∫ 2π

0
W
(√

r2 + r′2 − 2rr′ cos θ
)

dθ. (71)

If one performs the angular integration after the substitution z2 = r2 + r′2 − 2rr′ cos θ

one gets the following integral equation

ρn(r) =
∫ ∞

R
dr′ ρn−1(r

′)G(r, r′) (72)

where the kernel G(r, r′) is a rather complicated function of both r and r′

G(r, r′) = 2r′
∫ r+r′

|r−r′|

dz zW (z)
√

4r2r′2 − (z2 − r2 − r′2)2
. (73)

Solving the integral equation (72) or the equivalent integral equations for d > 3 remain

a challenging problem.

Appendix A. Proof of Eqs. (48) and (49)

Proof of Eq. (48): For the terms that involve a(s)/(1−s), we have for s near the singular

point at s = 1,
√
s

(1 − s)3/2
=

(1 − (1 − s))1/2

(1 − s)3/2

∼ (1 − s)−3/2 − 1

2
(1 − s)−1/2

=
∞
∑

n=0

(2n + 1)

(

2n

n

)

sn

22n
− 1

2

∞
∑

n=0

(

2n

n

)

sn

22n

=
∞
∑

n=0

Cns
n . (A.1)

Now, for large n,

1

22n

(

2n

n

)

∼
√

1

πn

[

1 − 1

8n
+ . . .

]

. (A.2)

Therefore, we have

Cn ∼ 1√
πn

[

1 − 1

8n
+ . . .

]

(2n+ 1 − 1

2
) = 2

√

n

π
+

1

4
√
πn

+ . . . , (A.3)

thus contributing to the n1/2 and n−1/2 terms in the large-n behaviour.

Derivation of Eq. (49): First differentiate Eq. (42) (for n = 2) with respect to

s, then put s = 1 − ε where ε is small. Next, inside the corresponding integrand



General flux to a trap in one and three dimensions 15

make the change of variable k =
√
εy and then expand everything for small ε. Use

f̂(k) ∼ 1 − σ2k2/2 + µ4k
4/24. What you get as ε→ 0 is the following:

dI2
dε

∼ µ4

√
2

12πσ3
ε−1/2

∫ ∞

0

z2dz

(1 + z2)2
. (A.4)

The integral gives π/4. Then integrating the above with respect to ε one gets

I4(ε) ∼ I4(ε = 0) + C1

√
ε , (A.5)

where C1 =
√

2µ4/(24σ3).

For I4, the integral is already singular as ε → 0 and there is no need to differentiate.

A direct analysis of the integral gives Eq. (50).
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