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Formal solution of a class of reaction-diffusion models: Reduction to a single-particle problem
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We consider the trapping reactionA1B→B in space dimensiond<2. By formally eliminating theB
particles from the problem, we derive an effective dynamics for theA particles from which the survival
probability of a givenA particle and the statistics of its spatial fluctuations can be calculated in a rather general
way. The method can be extended to the study of annihilation and coalescence reactions,B1B→0 or B, in
d52.
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First-passage problems involving more than a few degr
of freedom are notoriously difficult to solve@1,2#. In this
paper, we use a technique that enables one to solve a cla
first-passage problems involving an infinite number of d
grees of freedom. For definiteness, we develop the metho
the context of the ‘‘trapping reaction,’’A1B→B, but the
applications are more general, as emphasized in the l
part of the paper. The main result of our approach is to
duce the problem to one described by a single degree
freedom whose late-time behavior can be extracted ana
cally.

The asymptotic dynamics of the trapping reaction h
been a long-standing problem. The main question is how
density ofA particles decreases with time. A related proble
much studied in the context of chemical kinetics@3,4# is the
two-species annihilation reaction,A1B→0, with initial
densitiesrA(0),rB(0). This is equivalent to the trappin
reaction at late times whenrA(t)!rB(t) andrB(t) is essen-
tially constant. Again, the standard problem is to compute
asymptotic form of theA-particle densityrA(t) or, equiva-
lently, the probabilityQ(t) that a givenA particle survives
until time t. Since the particles do not interact with oth
particles of the same species, to computeQ(t) it suffices to
consider asingle Aparticle moving in an infinite sea ofB
particles with densityr (5rB).

Since theA particle dies on the first contact with aB
particle, a natural approach to this type of first-passage p
lem would be to treat theA particle as an absorbing bounda
for the B particles~or vice versa!. Unfortunately, for an ar-
bitrary A-particle trajectory, the absorbing-boundary proble
cannot be solved. In this paper, we introduce a different
proach in which we treat theA andB particles as if they were
noninteracting. We exploit the initial condition that eachB
particle is randomly located anywhere in the system to sh
that certain ‘‘events,’’ where aB particle meets theA particle
for the first time~remember that we are treating them
noninteracting, so they can meet more than once!, have a
Poisson distribution, i.e., the probabilitypn that n such
events have occurred up to timet is given by pn
5(mn/n!)exp(2m), where the meanm of the distribution is
a functionalm@zW# of the trajectoryzW(t), 0<t<t of the A

particle. The probability that the trajectoryzW(t) has survived,
in the original interacting problem, is simplyp0@zW#5exp
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(2m@zW#). Finally, Q(t) is obtained by averaging exp(2m@zW#)

over all possibleA-particle trajectorieszW(t) with the appro-

priate ~Wiener! measure, exp@2(1/4D8)*0
t dt(dzW/dt)2#,

whereD8 is theA particle’s diffusion constant. In this way
the B particles have been eliminated from the problem, a
one has an effectiveA-particle dynamics described by th

Wiener measure and the functionalm@zW#. The final step
which makes further analytical progress possible, is the

servation that the path integral overzW(t) is dominated at late
times by a singleA-particle trajectory.

The main results of this approach are the following.
~i! The trajectory where theA particle is stationary is

proved to be the dominant trajectory and determines
asymptotic form of theA particle’s survival probability@4#,
Q(t);exp(2ldt

d/2) for d,2 ~with a logarithmic correction
in d52), whereld is a calculable constant@5# andd is the
dimensionality of space.

~ii ! Typical fluctuationsof the survivingA-particle trajec-
tories around this dominant path have variance^z2(t)&
;t2f for d,2, wheref>(22d)/4.

~iii ! Exact results are obtained forQ(t) and the form of
the dominant path in a system with a nonuniform initial de
sity of B particles.

~iv! This approach provides a powerful method for calc
lating the first-passage properties for a deterministica
moving boundaryzW(t).

~v! The method also provides a formalism for calculati
Q(t) in the highly nontrivial situation where theB particles
themselves interact, e.g.,B1B→0, at least ind52 where
the density correlations induced by these reactions are
ligible.

We begin by deriving the Poisson property that plays
central role in the analysis. We consider a finite volumeV
containingN5rV B particles~diffusion constantD), ran-
domly distributed within it, and a singleA particle~diffusion
constantD8), initially located at the origin. LetzW(t) be the
A-particle trajectory, and letP(xW ,t) be the probability that a
given B particle, starting atxW , has met theA particle before
time t. The average of this quantity over the initial positionxW

is (1/V)*VdV P(xW ,t)5R(t)/V, where R(t) is an implicit
functional ofzW(t). The probability thatn distinct B particles
©2003 The American Physical Society02-1
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have met theA particle, averaged over their initial position
is pn(t)5( n

N)(R/V)n(12R/V)N2n. Taking the limit N
→`, V→`, with r5N/V andn held fixed, one recovers th
Poisson distribution,pn5(mn/n!)exp(2m), with m5rR.

One can derive an equation for the functionalm@zW# by
calculating, in two ways, the probability density to find aB

particle at the pointzW(t) at time t. First, since the particles
are treated as noninteracting, and theB particles start in a
steady-state configuration of uniform densityr, this prob-
ability density is justr. Second, from the Poisson propert
the probability that aB particle ~i.e., anyB particle! meets
the A particle for the first time in the time interval (t8,t8
1dt8) is ṁ(t8)dt8. The probability density for such a pa
ticle to subsequently arrive atzW(t) at time t is given by the
diffusion propagator G„zW(t),tuzW(t8),t8…5@4pD(t
2t8)#2d/2 exp$2@zW(t)2zW(t8)#2/4D(t2t8)%. Equating the re-
sults from these two methods gives our fundamental eq
tion

r5E
0

t

dt8ṁ~ t8!G„zW~ t !,tuzW~ t8!,t8…, ~1!

which is an implicit equation for the functionalm@zW# @noting
thatm(t50)50, since noB particle can meet theA particle
in zero time#. Finally, Q(t)5^exp(2m@zW#)&z, where the aver-
age is over all pathszW(t) weighted with the Wiener measure

As the first application of this equation we prove that t
trajectory zW50 is the dominant path, i.e., that it gives th
smallest possible value ofm@zW# for all t. This functionm0(t)
satisfies Eq.~1! with zW50:

r5E
0

t

dt8ṁ0~ t8!@4pD~ t2t8!#2d/2. ~2!

By inspection,m0(t) must have the formm0(t)5ldtd/2 ~for
d,2) in order that the right-hand side be independent ot.
Substituting this form in Eq.~2!, and evaluating the integra
gives

ld5rS 2

pdD sinS pd

2 D ~4pD !d/2, d,2, ~3!

while for d52 one finds fort→`, m0(t)→4prDt/ ln t @6#.
The corresponding A-particle survival probability isQ0(t)
5exp@2m0(t)#. This simple case of a staticA particle is
sometimes called the ‘‘target annihilation problem,’’ and o
method reproduces the known results for that problem@7# in
a very simple way. To prove thatzW(t)50 gives the global
minimum of m@zW#, we write m5m01m1 in Eq. ~1!. This
equation can then be rearranged, with the help of Lapl
transform techniques, to give an implicit equation form1@zW#:
06010
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m1@zW#5
sin~pd/2!

p E
0

t dt1

~ t2t1!(22d)/2

3E
0

t1 dt2

~ t12t2!d/2
ṁ~ t2!K~ t1 ,t2!, ~4!

whereK(t1 ,t2)512exp$2@zW(t1)2zW(t2)#
2/4D(t12t2)%.

Equation~4! is ‘‘implicit’’ because the fullm appears on
the right-hand side. Now note thatK(t1 ,t2)>0 and ṁ>0
@becausem(t) is the mean number of differentB particles
that have met theA particle up to timet – clearly a nonde-
creasing function#. Therefore,m1@zW#>0 for all pathszW(t),
with equality whenzW(t)50 for all t. It follows that Q(t)
[^exp(2m02m1)&zW<exp@2m0(t)#. This rigorous upper bound
for Q(t), combined with the identical rigorous lower boun
derived in@5#, proves that the asymptotic form ofQ(t) is the
same as for the target problem, where theA particle is sta-
tionary, for alld<2. The interpretation of this result is tha
since m is large for t→` (m;td/2), the path integral for
Q(t) is dominated by the path that minimizesm, i.e., we are
essentially evaluating the path integral by the method
steepest descents. Small fluctuations around the domi
path will determine the corrections to the asymptotic form

We next discuss the probability distributionP(z,t) of the
position z of the A particle at timet, given that it survives.
Numerical studies@8# suggest that ind51, ^z2(t)&1/2;tf,
with f50.25–0.3, while similar studies ind52 are incon-
clusive. Our methods suggest thatf5(22d)/4 for all d

,2. The technique is to expandm1@zW#, given by Eq.~4!, to
orderzW 2 to compute the variance of the Gaussian fluctuatio
around the dominant trajectoryzW(t)50. To this order, one
can replace m(t2) on the right-hand side bym0(t2)
5ldt2

d/2 , and expand the functionK(t1 ,t2) to orderzW 2. Spe-
cializing to d51, the result is, at timet,

m1@z#5
l1

8pDE
0

t dt1

At2t1
E

0

t1
dt2

@z~ t1!2z~ t2!#2

At2~ t12t2!3/2
. ~5!

The probability distribution forz at time t is given, up to
an overall normalization, by the path integral

P~z,t !5E Dz~ t !expS 2
1

4D8
E

0

t

dt ż2~t!2m1@z# D , ~6!

where the integral is over all paths satisfying the bound
conditionsz(0)50, z(t)5z.

The path integral has the form*Dz(t)exp(2S@z#), where
the actionS@z#5ST@x#1SV@z# is a quadratic functional of
z(t), whereST@z#5(1/4D8)*0

t dt ż2(t) and SV@z#5m1@z#.
Since the integrand is Gaussian, thez dependence of the pat
integral is exactly captured by the path of minimum acti
connectingz(0)50 and z(t)5z. Although we have been
unable to find this path analytically, we can obtain a low
bound on^z2(t)& by noting thatS@z# for any trial function
z(t) provides an upper bound on the minimum action. T
2-2
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linear path z(t)5(t/t)z gives SV5cVl1z2/DAt and ST
5cTz2/D8t, wherecV andcT are unimportant constants. Fo
this path, therefore,SV dominates at larget. The probability
weight for the fluctuationsz(t) of surviving trajectories is
Gaussian, with variancêz2(t)&>(D/2cVl1)At for large t,
i.e., ^z2(t)&;t2f , with f>1/4, consistent with the numeri
cal estimate f50.2520.3. A more detailed study@9#
strongly suggests that the lower boundf>1/4 is saturated,
i.e., f51/4. Similar arguments@9# give the generalization
f>(22d)/4 for d,2.

We turn now to a related problem with a nontrivial dom
nant path that can be exactly determined. Consider, id
51, a system where the density ofB particles att50 has
different values,rL and rR , to the left and right of theA
particle. The derivation of an equation form@z# proceeds
exactly as before, except that the probability density to fin
B particle at the pointz at timet in the noninteracting system
which appears on the left-hand side of Eq.~1!, has to be
recalculated. In terms of the diffusion propagatorG intro-
duced earlier, this probability is~quite generally! PB(z,t)
5*2`

` dx r(x) G(z,tux,0) wherer(x) is the initialB-particle
density at positionx. When r(x)5r, a constant, one find
PB(z,t)5r, as before. Whenr(x)5rL for x,0 andrR for
x.0, the generalized version of Eq.~1! becomes

rF12DerfS z~ t !

A4Dt
D G5E

0

t

dt8ṁ~ t8! G„z~ t !,tuz~ t8!,t8…,

~7!

where r5(rL1rR)/2 is now the mean density,D5(rL
2rR)/(rL1rR) is a measure of the left-right asymmetr
and erf(x) is the error function.

Physical intuition suggests that, because of the asym
try, survivingA-particle trajectories will tend to be those th
drift into the region~the right, say! where theB-particle den-
sity is initially smaller. Upper and lower bounds have be
derived earlier@10# for the asymptotics of theA-particle sur-
vival probabilityQ(t), which show that it has the asymptot
form Q(t);exp@2g(D)l1At#, where g(0)51 for consis-
tency with the symmetric caserL5rR . This form for Q(t)
shows that m@z# for the optimal path has the time
dependencem}At. Both sides of Eq.~7! can then be ren-
dered time independent by the choicez(t)5aA4Dt for all
t<t, wherea is a constant to be determined. A more d
tailed analysis@9# shows that the dominant path is indeed
this form.

Puttingm(t)5g(D)l1At andz(t)5aA4Dt, in Eq. ~7!,
and evaluating the integral on the right-hand side gives

g~D!5
exp~2a2!

12erf2~a!
@12Derf~a!#. ~8!

The final step is to minimize the right-hand side with resp
to a to obtain the optimal path. This can be done nume
cally. The resultingg(D) is shown forD>0 as the inset in
Fig. 1 @note that, by symmetry,g(D) is symmetric around
D50]. It clearly satisfies the bounds 12uDu<g(D)<1 de-
rived in @10#.
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In the main part of Fig. 1, numerical results forg(t)5
2 ln Q(t)/l1At, obtained using the algorithm of Ref.@8#, are
displayed, withD51/2 andrL50.5 in all cases, whilerR
50.25, 0.125, and 0.0625~top to bottom on the right!, cor-
responding toD51/3, 3/5, and 7/9 respectively. The hor
zontal lines on the right show the asymptotic values obtai
from the inset for the corresponding values ofD. The slow
approach to asymptopia is similar to that observed@8,10# in
the symmetric case (D50).

As a bonus, the same calculation solves the first-pass
problem ofB particles with densityrL for x,0 andrR for
x.0 moving in the presence of a deterministically movi
absorbing boundary located atx(t)5aA4Dt. The probabil-
ity that no particle has reached the boundary up to timet has
the simple formQ(t)5exp@2g(D)l1At#, with g(D) given
by Eq. ~8!. We are not aware of any other way of obtainin
this result. Extensions to deterministically moving absorb
boundaries in dimensiond.1 are also possible@9#.

In the final part of this paper, we apply this approach to
nontrivial problem withd52. Consider the annihilation o
coalescence reactionB1B→0 with probability 1/(q21)
andB1B→B with probability (q22)/(q21). The density
of B particles is known to decay asr(t)5ad@(q21)/q#
3(Dt)2d/2 for d,2, where ad is a universal constan
@11,12# equal to 1/2pe for d→2, with e522d. Ford52, a
logarithmic correction is obtained,r(t); ln t/t. Now assume
that one of theB particles is tagged and relabeled as anA
particle, with diffusion constantD8. We consider the prob-
ability ~the ‘‘walker persistence’’ probability@13#! Q(t) that
the A particle has not met anyB particle up to timet. The
limit d→2 provides a simplification because it is the bord
line dimension above which the rate equation approa
dr/dt}2r2, which givesr(t)}1/t, is qualitatively correct
because density fluctuations can be ignored@11,12#. Equation
~1! is readily adapted to this case. As before, we treat thA
particle as if it does not interact with theB particles, while

FIG. 1. Time-dependence ofg(t)[2 ln Q(t)/l1At for density
asymmetriesD51/3, 3/5, and 7/9~top to bottom!. The horizontal
lines show the asymptotic value ofg in each case, while the inse
shows this value as a function ofD.
2-3



o
r

-
r

a

n

r
-

r

ion
on

-

a
ath

th

y,

in

o a
to

e to
to

ort

RAPID COMMUNICATIONS

BRAY, MAJUMDAR, AND BLYTHE PHYSICAL REVIEW E 67, 060102~R! ~2003!
the interactions of theB particles with each other give rise t
their decreasing densityr(t). The Poisson distribution fo
the number of first crossings of theA particle byB particles
still holds for this system. The left-hand side of Eq.~1!, i.e.,
the probability density to find aB particle at the pointzW(t) at
time t, becomesr(t), while on the right-hand side the propa
gator G„zW(t),tuzW(t8),t8… has to be multiplied by a facto
r(t)/r(t8), being the probability of a givenB particle sur-
viving till time t, given that it survives till timet8. The
required generalization of Eq.~1! then reads

15E
0

t dt8

r~ t8!
ṁ~ t8!G„zW~ t !,tuzW~ t8!,t8…. ~9!

It is convenient to approach the limitd→2 from below.
Consider first the caseD850, for which Q(t) becomes the
‘‘site-persistence’’ probability, i.e., the probability that
given point in space~the location of theA particle! has not
been visited by anyB particle. The staticA particle corre-
sponds tozW(t)50 for all t, and withr(t8)5ad@(q21)/q#
3(Dt8)2d/2 for large t, Eq. ~9! becomes

~4p!d/2ad~q21!/q5E
0

t

dt8ṁ~ t8!t8d/2~ t2t8!2d/2 ~10!

for larget. In order that the right-hand side be time indepe
dent for larget, m(t) must have the asymptotic formm(t)
;u ln t. Inserting this form into Eq.~10!, and evaluating the
integral givesu52dpd/221sin(pe/2)ad(q21)/q. Taking the
limit e→0, using ad51/2pe in this limit, gives u5(q
21)/q for d52. Finally, Q(t)5exp@2m(t)#;t2u for t
t

06010
-

→`. The resultu5(q21)/q in d52 agrees with that ob-
tained by Cardy@12# using field-theoretic methods.

If one now considers the caseD8.0, i.e., a diffusingA
particle, one sees immediately that forD85D andq52 ~so
thatB1B→0 always!, theA particle is equivalent to anothe
B particle, andQ(t)5r(t), the density, since every surviv
ing particle has not met any other particle. Hence,Q(t)
5r(t); ln t/t for D85D and q52. This suggests that, fo
generalD8, Q(t) will decay ast2u, whereu is a nontrivial
function of D8/D.

The calculation ofu can readily be extended toD8.0
within the present formalism, using a power-series expans
in D8/D. The method is to use a cumulant expansi
to write Q(t)5^exp(2m)&z5exp(2^m&z1$^m2&z2^m&z

2%/2!
1•••). To first order inD8, one needs only the first cumu
lant. The result isu5(11D8/D)(q21)/q. This class of
problems, whereQ(t) decays as a power law instead of
stretched exponential, marks the borderline where the p
integral for Q(t) is no longer dominated by a single pa
~and small fluctuations about it!, giving a leading large-t
form independent ofD8, but has to be evaluated exactl
with results that depend onD8 even fort→`. Full details of
this calculation, together with results to higher order
D8/D, will be presented elsewhere.

In conclusion, we have applied an analytic approach t
class of reaction-diffusion models, which reduces them
one-particle systems. We hope to use this method in futur
address,inter alia, the problem of the very slow approach
asymptopia in the trapping reaction.
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