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We study theoretically the complex network of forces that is responsible for the static structure and prop-
erties of granular materials. We present detailed calculations for a model in which the fluctuations in the force
distribution arise because of variations in the contact angles and the constraints imposed by the force balance
on each bead of the pile. We compare our results for the force distribution function for this model, including
exact results for certain contact angle probability distributions, with numerical simulations of force distribu-
tions in random sphere packings. This model reproduces many aspects of the force distribution observed both
in experiment and in numerical simulations of sphere packings. Our model is closely related to some that have
been studied in the context of self-organized criticality. We present evidence that in the force distribution
context, ‘‘critical’’ power-law force distributions occur only when a parameter~hidden in other interpretations!
is tuned. Our numerical, mean field, and exact results all indicate that for almost all contact distributions the
distribution of forces decays exponentially at large forces.@S1063-651X~96!07005-5#

PACS number~s!: 02.50.Ey, 81.05.Rm

I. INTRODUCTION

Disordered geometric packings of granular materials@1#
have fascinated researchers for many years@2#. Such studies,
with their applicability to the geometry of glass-forming sys-
tems, initially were concerned with categorizing the void
shapes and densities. More recently, partly in recognition of
the ubiquity of granular materials and their importance to a
wide variety of technological processes, interest has focused
on how the forces supporting the grains are distributed. Vi-
sualizations of two-dimensional granular systems@3# demon-
strate weight concentration into ‘‘force chains.’’ It is natural
to expect that similar concentrations of forces will occur in
three dimensions. The distinctive forces in bead packs also
give rise to distinctive boundary-layer flow@4# and novel
sound-propagation properties@5#.

Reference @6# presents experiments, simulations, and
theory characterizing the inhomogeneous forces that occur in
stationary three-dimensional bead packs, focusing particu-
larly on the relative abundance of forces that are much larger
than the average. If the bead pack were a perfect lattice, then,
at any given depth, no forces would be greater than some
definite multiple of the average force. At the other extreme,
if the network of force-bearing contacts were fractal@7#, then
fluctuations in the forces~characterized, say, by their vari-
ance! would become arbitrarily large compared to the aver-
age force at a given depth, as the system size is increased.
Reference@6# shows that the forces in bead packs are inter-
mediate between these two extremes. The forces are un-

bounded, but the number of large forces falls off exponen-
tially with the force. The fluctuations remain roughly the
same as the average force, regardless of how large the bead
pack becomes. A simple model was introduced to understand
the results of the experiments and simulations.

This paper presents the detailed analysis of the model
introduced in Ref.@6#. The model yields force distributions
which agree quantitatively with those obtained in numerical
simulations of sphere packings. Generic distributions of con-
tacts lead to force distributions which decay exponentially at
large forces, though a special distribution exists for which
the force distribution is a power law. We discuss the rela-
tionship of this model to other related systems and present
the analysis leading to the results that are quoted in Ref.@6#
without derivation.

The paper is organized as follows. Section II defines the
model, discusses several limiting cases that have been dis-
cussed previously in other contexts, and then presents our
analysis of the force distribution expected in the context of
force chains in bead packs. Special emphasis is placed on
one particular contact distribution, the ‘‘uniform’’ distribu-
tion, which is the most random distribution consistent with
the constraint of force balance. We first present a mean field
solution for this model, and then show that this mean field
solution is exact. We also obtain exact results for a countable
set of nongeneric distributions as well as the mean field and
numerical results for other contact distributions. Evidence is
presented that almost all contact distributions lead to expo-
nentially decaying force distributions. Section III discusses
numerical simulations of sphere packings, which we analyze
to obtain contact probability distributions to be used in theq
model. We show that the force distribution predicted by the*Present address.
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model with this contact distribution agrees quantitatively
with the force distribution in the simulation. The Appendix
presents some mathematical identities concerning the uni-
form q distribution which are used in the text.

II. THE q MODEL

A. Definition of the model

Here we introduce the model, which assumes that the
dominant physical mechanism leading to force chains is the
inhomogeneity of the packing causing an unequal distribu-
tion of the weights on the beads supporting a given grain.
Spatial correlations in these fractions as well as variations in
the coordination numbers of the grains are ignored. We con-
sider a regular lattice of sites, each with a particle of mass
unity. Each sitei in layerD is connected to exactlyN sitesj
in layerD11. Only the vertical components of the forces are
considered explicitly~it is assumed that the effects of the
horizontal forces can be absorbed in the random variablesqi j
defined below!. A fraction qi j of the total weight supported
by particle i in layerD is transmitted to particlej in layer
D11. Thus, the weight supported by the particle in layerD
at thei th site,w(D,i ), satisfies the stochastic equation

w~D11,j !511(
i
qi j ~D !w~D,i !. ~2.1!

We take the fractionsqi j (D) to be random variables, inde-
pendent except for the constraint(jqi j51, which enforces
the condition of force balance on each particle. We assume
that the probability of realizing a given assortment ofq’s at
each site i is given by a distribution function
r(qi1,...,qiN)5$P j f (qi j )%d(( jqi j21). We define the in-
duced distributionh (q) as

h~q!5)
jÞk

E dqi jr~qi1 ,...,qik5q,...,qiN!. ~2.2!

Becauser(qi1,...,qiN) is a probability distribution and
( j51
N qi j51, the induced distribution must satisfy the condi-

tions * 0
1dq h(q)51, * 0

1dq qh(q)51/N.
In this paper we focus on the force distributionQD(w),

which is the probability that a site at depthD is subject to
vertical forcew. We obtainQD(w) for different distributions
of q’s. We will also consider the force distributionPD(v) for
the normalized weight variablev5w/D. Forh(q)5d(q21/
N), where each particle distributes the vertical force acting
on it equally among all its neighbors, the force distribution at
a given depth is homogeneous:QD(w)5d(w2D), or
PD(v)5d(v21). At the other extreme, there is a ‘‘critical’’
limit, when q can only take on the values 1 or 0, so that
weight is transmitted to a single underlying particle. For this,
as discussed in the next section, the force distribution obeys
a scaling form and decays as a power law at large forces,
Q(w)}w2c, wherec(N>3)5 3

2 andc(N52)5 4
3. We dem-

onstrate that this power law does not occur whenq can take
on values other than 1 and 0, as is the case for real packings.
Generic continuous distributions ofq’s lead to a distribution
of weights that, normalized to the mean, is independent of
depth at largeD and which decays exponentially at large
weights. We solve the model exactly for a countable infinite

set ofq distributions, and present mean field and numerical
results for other distributions ofq’s.

B. q model for the ‘‘critical’’ case

We first consider the case where each particle transmits
its weight to exactly one neighbor in the layer below, so that
the variableq is restricted to taking on only the values 0 and
1. We denote this~singular! limiting case of our model by
the ‘‘q0,1 limit.’’ Figure 1 shows the paths of weight support
for a two-dimensional system in this limit. The solid lines
correspond to bonds for whichq51. The paths of weight
support of particles in the top row are coalescing random
walks. Since a random walk of lengthD has typical trans-
verse excursion ofD1/2, for the two-dimensional case the
maximum weight supported by an individual grain at depth
D scales asD3/2 @8#. BecauseD3/2@D, the mean weight
supported at depthD, it is plausible that in theq0,1 limit the
model yields a broad weight distribution.

The defining equations of theq0,1 limit of our model are
known to be identical to those of Scheidegger’s model of
river networks@9# and a model of aggregation with injection
@10,11#; the model is also equivalent to that of directed Abe-
lian sandpiles@12–14#. ~The number of neighbors below a
particle, N, corresponds to the dimensionalityd in these
models.! The last equivalence follows@13,14# if we define
G0(XW 1 ;XW 0) as the probability that the weight of siteXW 1 is
supported by siteXW 0 in the same row or below it. The con-
ditional probability thatXW 1 is supported byXW 0, given thatl
of the N neighboring particles in the row below are sup-
ported byXW 0, is l /N. Thus,

G0~XW 1 ;XW 0!5
1

N (
i51

N

G0~XW 12eW i ;XW 0!1dXW 1 ,XW 0, ~2.3!

where$XW 12eW i% are the neighbors ofXW 1 in the row below it,
and thed-function term follows because each particle must
support its own weight. Similarly, the probability that two
sitesXW 1 andXW 2 in the same row are supported byXW 0 satisfies

G~XW 1 ,XW 2 ;XW 0!5
1

N2 (
i

(
j
G~XW 12eW i ,XW 22eW j ;XW 0!

~2.4!

FIG. 1. Schematic diagram showing the paths of weight support
for a two-dimensional system in theq0,1 limit where each site trans-
mits its weight to exactly one neighbor below. The numbers at each
site are the values ofw( i ,D).
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for XW 1ÞXW 2 . These equations are precisely those that de-
scribe the behavior of the correlations of the avalanches in
the directed Abelian sandpile@12,15#. In this model, an inte-
ger ‘‘height’’ variable z(XW ) is assigned each siteXW on a
lattice. The dynamics are defined by the rule that if anyz(XW )
exceeds a critical valuezc , then the variables atm nearest
neighbor sites along a preferred direction increase by 1,
while z(XW ) decreases bym. In this contextG0(XW 1 ;XW 0) is
identified with the probability that adding a particle atXW 0
creates an avalanche that topples over the siteXW 1. Higher
order correlations are mapped similarly. The distribution of
weights in our model is mapped to the distribution of ava-
lanche sizes.

All these models@9–13# have been studied as examples of
self-organized criticality@16# because they lead to power-law
correlations without an obvious tuning parameter. However,
in the context of our model, theq0,1 limit is a singular one,
where the probability ofqÞ$0,1% has been tuned to zero. As
we shall show in this paper, generic distributionsh(q), for
which the probability thatqÞ$0,1% is nonzero~no matter
how small!, yield completely different results, with the dis-
tribution of weights decaying exponentially at large weights.
With hindsight, we identify the probability for a river to split
in the river network model@9#, and the probability for a
colloidal particle to fragment in the aggregation model
@10,13# as hidden parameters that were tuned to zero. The
corresponding parameter for directed Abelian sandpiles is
less obvious.

The equivalence of our model in theq0,1 limit to the mod-
els discussed above can be exploited to obtain some results
for the distribution of weights. Recalling that the dimension-
ality d in these models corresponds to ourN, we know that
the weight distribution function at a depthD, QD(w), has a
scaling form for allN:

QD~w!5D2ag~w/Db!, ~2.5!

whereg(x)→x2c asx→0 @with a cutoff atw of O~1!#.

The normalization constraints,* 0
`dw QD(w)51 and

* 0
`dw wQD(w)5D, yield the conditions

a5bc, 11a52b, ~2.6!

so that there is only one free exponent. Ford52, the random
walk argument at the beginning of this section suggests that
b5 3

2 @8# which agrees with the exact result@11#. For d.2,
random walks are less likely to coalesce, and this argument
breaks down. In mean field theory one obtains the analytic
resultb52 @10#, and exact analytic results for directed Abe-
lian sandpiles in all dimensions@12# show that mean field
theory is valid ford>3 ~with logarithic corrections ind53!,
and confirm the resultb5 3

2 for d52. ~Our exponentb can be
identified witha11 of Ref. @12#.!

As D→`, the argument of the scaling functiong in Eq.
~2.5! is small for any finitew. Thus, in theq0,1 limit of our
model, the distribution of weights,Q(w), is independent of
D asD→`, and is of a power-law form, and hence is infi-
nitely broad.

C. q model away from criticality

The rest of this paper concerns probability distributions of
theq’s that do not have the property thatq takes on only the
values 1 and 0. We argue that all such distributions lead to
force distributions that differ qualitatively from those de-
scribed in the previous section. Theq0,1 limit is the only one
that yields a power-law force distribution; other distributions
lead to a much faster, typically exponential, decay. In addi-
tion, for otherq distributions, the distribution for thenormal-
izedweightv5w/D, PD(v) converges to a fixed distribution
P(v) as D→`. In contrast, in theq0,1 limit, the quantity
QD(w) converges to a fixed function. In this section we
present evidence for these assertions via both numerical
simulations and mean field analysis.

1. Numerical simulations

Our numerical investigations all indicate that that for allq
distributions except for theq0,1 limit, the normalized force

FIG. 2. Linear-linear and log-
log plots of the normalized weight
distribution functionPD(v) vs v
for a three-dimensional system on
fcc lattice~N53!, for theq distri-
bution defined in Eq.~2.7! with
q050.1. The distributionPD(v)
appears to become independent of
D asD becomes large, and decays
faster than a power law at largev.
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distributionPD(v) becomes independent ofD asD→`. To
illustrate typical behavior, we consider the specificq distri-
bution consisting ofN21 bonds emanating down from each
site with value q5q0,1/(N21) and one bond with
q512(N21)q0 , which has the induced distribution

hq0
~q!5

1

N
d~q2@12$N21%q0# !1

N21

N
d~q2q0!. ~2.7!

Figure 2 displays the normalized force distributionPD(v)
versus v for several different depthsD in a three-
dimensional fcc system~N53! of dimension 51235123D,
with q050.1. Periodic boundary conditions are imposed in
the transverse directions. AsD becomes large,PD(v) con-
verges to a function independent ofD which decays faster
than a power law. Figure 3 is a semilog plot ofPD(v) versus
v for several values ofD, showing that the decay ofP(v) at
largeD is roughly exponential. To see that this behavior is
qualitatively different from that of theq0,1 limit, in Fig. 4 we

display numerical results forPD(v) versusv for a system
which is identical except thatq050. In contrast to theq50.1
case,PD(v) decays as a power law at largev. Also, PD(v)
shows no signs of becoming independent ofD as D→`.
This is consistent with the result in the previous section that
QD(w) becomes independent ofD at largeD.

2. Mean field theory

The technique of the mean field analysis for a generalq
distribution is a generalization of that used for theq0,1 case
@10#. The weight supported by a given site at depthD,
wi(D), depends not only on the weight supported by the sites
at depthD21 but on the values ofq for the relevant bonds:

wi~D !5(
j
qi j wj~D21!11. ~2.8!

In general the values ofw at neighboring sites in layerD are
not independent; the mean field approximation consists of
ignoring these correlations.

As discussed above, whenq is allowed to take on values
other than 0 and 1, it is useful to study the force distribution
function as a function of thenormalizedweight at a given
depth,v5w/D. In terms of the normalized weight variable
v, the mean field approximation leads to a recursive equation
for the weight distribution functionPD(v):

PD~v !5)
j51

N H E
0

1

dqjh~qj !E
0

`

dv j PD21~v j !J
3dS (

j51

N

@~D21!/D#v jqj2~v21/D !D . ~2.9!

The quantityh (q) is defined in Eq.~2.2!. The constraint that
the q’s emanating downward from a site must sum to unity
enters only through the definition ofh (q) because there is
no restriction on theq’s for theancestorsof a site. The only
approximation here is the neglect of possible correlations
between the values ofv among the ancestors.

FIG. 3. Semilog plot of the normalized weight distribution func-
tion PD(v) vs v for a three-dimensional system on a fcc lattice
~N53!, for theq distribution defined in Eq.~2.7! with q050.1. The
behavior ofPD(v) at largev is consistent with exponential decay.

FIG. 4. Linear-linear and log-log
plots of the normalized weight dis-
tribution functionPD(v) vs v for a
three-dimensional system on a fcc
lattice ~N53!, for theq distribution
defined in Eq.~2.7! with q050. For
this special case, the distribution
PD(v) does not become indepen-
dent ofD asD becomes large. The
asymptotic decay ofPD(v) at large
v is a power law.
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By Laplace transforming, one finds thatP̃D(s), the
Laplace transform of the distribution function of the normal-
ized weightPD(v), obeys

P̃D~s!5e2s/DF E
0

1

dq h~q!P̃D21@sq~D21!/D#GN. ~2.10!

Since asD→` the distributionPD(v) becomes independent
of D @17,18#, Eq. ~2.10! then becomes

P̃~s!5F E
0

1

dq h~q!P̃~sq!GN. ~2.11!

First we show that the weight distributionP(v) decays
faster than any power ofv for all q distributions except those
that only take on the values 0,1. We expand the Laplace
transform P̃(s) in powers ofs, P̃(s)511( j51

` Pi j s
j , and

plug into Eq.~2.11!, obtaining

11P1s1(
j52

`

Pjs
j5F11P1s/N1(

j52

`

Pjs
j^qj&GN. ~2.12!

Here, s is the Laplace transform variable,
^qj&5* 0

1dq qjh(q), and we have used̂q&51/N. Equating
the coefficients ofsj on the left and right hand sides of the
equation, we obtain a linear equation forPj :

Pj@N^qj&21#5G~Pj21 ,Pj22 ,...,P1!, ~2.13!

whereG is some complicated polynomial. This can be iter-
ated to obtainPj for successively higher values ofj .

Since Eq.~2.13! is linear inPj , Pj can diverge only if its
coefficient @N^qj&21# is zero. If q can take on only the
values 0 and 1, then̂qj&5^q& and @N^qj&21#50 for all
j.1. However, foranyother distribution ofq’s restricted to
the interval@0, 1#, the distribution forqj is shifted towards
the origin compared to the distribution forqk, whenever
j.k. Since ^qj&,^q&51/N for all j.2, Eq. ~2.13! has a
nonzero coefficient forPj for all j.2, which means that all
moments^v j& of P(v) are finite. ~For the special case of
j51, the equation is degenerate;P1 is set by the normaliza-
tion of v.! If ln P(v) were to behave asymptotically as
2a ln v, then ^v j& would diverge for all j.a21. Hence
P(v) must fall off faster than any power ofv and
~d ln P(v)/d ln v!→2` asv→`.

D. Weight distributions away from criticality:
Mean field results

Now we consider the distribution of weights for noncriti-
cal distributions ofq’s. Motivated by the geometrical disor-
der present in granular materials, we focus especially on con-
tinuous distributions. First we calculate this distribution
within a mean field approximation for the simplest possible
continuous distribution, f (qi j )5const, or r(qi1,...,qiN)
5(N21)!d(( jqi j21) ~the uniform q distribution!. We
show that within mean field theory, all ‘‘typical’’ continuous
q distributions lead to a force distribution that decays expo-
nentially at large weights. We will show later that the mean
field solution isexactfor a countable set ofq distributions,
including the uniformq distribution.

1. Mean field theory for the uniform distribution

One example of aq distribution that can lead to an expo-
nentially decaying distribution of weights is the ‘‘uniform’’
distribution ofq’s, for which the probability of obtaining the
values qi1,...,qiN is r(qi1,...,qiN)5(N21)!d(( jqi j21).
We show in the Appendix that this distribution induces
hu(q)5(N21)(12q)N22. Thus, for thisq distribution in
the limit D→` the mean field force distribution is the solu-
tion to the self-consistent equation:

P̃~s!5F E
0

1

dq~N21!~12q!N22P̃~sq!GN. ~2.14!

First considerN52. For this caseh (q)51, so Eq.~2.14!
becomes

P̃~s!5F E
0

1

dq P̃~sq!G2. ~2.15!

Letting Ṽ(s)5[ P̃(s)] 1/2 andu5qs, one obtains

sṼ~s!5E
0

s

du Ṽ2~u!. ~2.16!

Differentiating with respect tos yields

Ṽ~s!1s
dṼ

ds
5Ṽ2~s!, ~2.17!

which can be integrated to yield

Ṽ~s!5
1

12Cs
. ~2.18!

The constant of integrationC is determined by the definition
of the mean, *0

`dv vP(v)52dP̃/dsus5051. Thus, C
5dṼ/dsus50521

2. Hence one findsP̃(s)54/(s12)2 and
P(v)54ve22v.

This method can be generalized for allN. Defin-
ing ṼN(s)5[ P̃N(s)]

1/N, inserting in Eq.~2.14!, and differen-
tiating N21 times, one finds thatṼN(s) obeys the differen-
tial equation:

dN21

dsN21 @sN21ṼN~s!#5~N21!! ṼN
N~s!. ~2.19!

A solution to this equation isṼN(s)5C/(s1C), whereC is
any constant. This can be shown by induction: Assume that

dN22

dsN22 S sN22
C

s1CD5~N22!! S C

s1CD N21

. ~2.20!

Then
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dN21

dsN21 S sN21
C

s1CD5
dN21

dsN21 S ~s1C2C!sN22
C

s1CD
~2.21!

52C
d

ds F ~N22!! S C

s1CD N21G
~2.22!

5~N21!! S C

s1CD N. ~2.23!

Since direct substitution can be used to show that the identity
holds forN52, it holds for allN.

The conditiondṼ/ds521/N is satisfied whenC5N.
Hence one finds the weight distribution:

PN~v !5
NN

~N21!!
vN21e2Nv. ~2.24!

The question of uniqueness of this solution is discussed
below.

2. Mean field asymptotic force distribution
for generic continuous q distributions

We now show that, within mean field theory, generic con-
tinuousq distributions lead to weight distribution functions
P(v) for the normalized weightv which have the asymptotic
formsP(v)}vN21e2Nv asv→` andP(v)}vN21 asv→0.

We consider q distributions of the form
r(qi1,...,qiN)5$P j f (qi j )%d(( jqi j21) @the uniform distri-
bution is f (qi j )5const#. If f (qi j ) has a nonzero limit as
qi j→0, and does not have ad-function contribution atqi j50,
then phase space restrictions imply that the induced distribu-
tion h(q);(12q)N22 for q→1. This is because if a site
receives a fractionq of the weight from one of its predeces-
sors, then the fractions received by all theothersuccessors of
that predecessor,$q2•••qN%, must add up to 12q. For q
close to 1, this gives a phase-space volume of the order of
(12q)N22.

To determine the largev asymptotics ofP(v), we use the
result of Sec. II C 2, thatP(v) must fall off faster than any
power ofv. We write theD→` limit of Eq. ~2.9! as

P~v !5H )
j51

N E
0

`

dv jF~v j !J dS v2(
j
v j D , ~2.25!

F~v j !5E
0

1

dqjP~v j /qj !h~qj !/qj . ~2.26!

SinceP(v) decays quickly~in particular, faster than 1/v!,
the apparent singularity nearq50 in Eq. ~2.26! is not really
there. The integral is dominated byq'1. This follows be-
cause

P~v/q!5P~v !expF2
] lnP~v/q!

]q U
q51

~12q!1•••G
5P~v !expF vq2 ] lnP~v/q!

]~v/q!
U
q51

~12q!1•••G
5P~v !expF ] lnP~u!

] lnu U
u5v

~12q!1•••G . ~2.27!

Since ] lnP(u)/] lnu→2` as u→`, this expression be-
comes very small as 12q increases. Thus, for largev, since
h(q);(12q)N22 for q'1,

F~v !;P~v !YFU] lnP~v !

] lnv UGN21

. ~2.28!

Already it is clear thatP(v) for any genericq distribution
has the same large-v asymptotics as the uniform distribution,
since the asymptotics are determined entirely by the phase-
space restrictions onh(q) for q'1. This decay also can be
demonstrated explicitly by assuming faster and slower de-
cays and showing inconsistency with Eq.~2.25!. If P(v)
were to decay faster than exponentially, then the convolution
in Eq. ~2.25! would be dominated by the region where all the
v j ’s are roughly equal. But since [P(v/N)]N@P(v), Eq.
~2.25! cannot be satisfied. On the other hand, ifP(v) were to
decay slower than exponentially, then the convolution would
be dominated by the region where one of thev i ’s is 'v and
the others areO~1!. Equation~2.25! would then imply

P~v !;P~v !YFU] lnP~v !

] lnv UGN21

. ~2.29!

Since the expression in square brackets diverges withv,
this is not possible either. Thus one must haveP(v)
5h(v) exp[2av], whereh(v) varies more slowly than an
exponential. Equation~2.25! then implies

h~v !5H )
j51

N E
0

`

dv jh~v j !/v
N21J dS v2(

j
v j D .

~2.30!

This is satisfied byh(v);vN21, so that

P~v !;vN21exp@2av# ~2.31!

for v→`.
Hence we have shown that for generic continuousq dis-

tributions, within mean field theoryP(v)→vN21exp(2av)
asv→`.

3. Mean field theory for singular q distributions

We have shown that allq distributions which satisfy the
condition * q

1dq h(q);(12q)N21 as q→1 have a weight
distribution within mean field theory that is of the form
P(v);vN21 exp[2av] for largev. This condition onh (q)
is satisfied under fairly general assumptions: one requires~1!
that the probability density for anyqi j in Eq. ~2.8! have a
nonzeroqi j→0 limit and ~2! that it not have ad-function

4678 53COPPERSMITH, LIU, MAJUMDAR, NARAYAN, AND WITTEN



contribution atqi j50. However, as we shall see below, to
compare the results of theq model to molecular dynamics
simulations and to experiments on real bead packs, it is use-
ful to consider the case where there is a finite probability for
some of theqi j ’s to be zero, which implies that the induced
distributionh (q) has ad function atq50 ~and in some cases
at q51! @19#. Such a choice forh (q) is also useful in ex-
amining the crossover from the criticalq0,1 limit to the
smoothq distributions considered in the preceding section.
We will see thatq distributions of this type lead to force
distributionsP(v) that decay exponentially, though with dif-
ferent power laws multiplying the exponential than for con-
tinuousq distributions.

We first note that, whenh (q) has a finite weight atq51,
it is impossible forP̃(s) to diverge at anys. The solutions of
the form P̃(s);1/(q1s/s0)

N obtained in Sec. II D 1 were
possible because, in Eq.~2.11!, the integral overq reduces
the singularity, which is compensated by the exponentiation.
With a finite weight atq51, close to a divergence ats0 one
would haveP̃(s)}[ P̃(s)]N, which would be impossible as
s→s0 .

It is instructive to consider first a simplified version of
such singularq distributions. Let us consider the case of
N52, and assume thath (q) has the form

h~q!5 1
2 ~12u!$d~q!1d~12q!%1ud~q2 1

2 !, ~2.32!

with 0,u,1. This h(q) satisfies the conditions*dq h(q)
51 and*dq qh(q)5 1

2 for all u. Equation~2.11! then sim-
plifies to

P̃~s!5@ 1
2 ~12u!1 1

2 ~12u!P̃~s!1u P̃~s/2!#2, ~2.33!

where we have used the fact thatP̃~0!51. Equation~2.33!
can be solved as follows: for smalls, we know that
P̃(s)512s1O(s2) @the coefficient of the linear term being
fixed by the normalization condition*dv vP(v)51#. Start-
ing with a small negative value ofs, whereP̃(s) is approxi-
mated as 12s, Eq. ~2.33! can be iterated to findP̃(2ns) for
n51,2,...@the correct root of the quadratic equation is chosen
by requiringP̃(s)51 for P̃(s/2)51#. Eventually the result of
this iteration scheme is complex rather than real, signifying
thats is in a region whereP̃(s) has a branch cut. It is easiest
to find the origins0 of this branch cut by adjustingP̃(s0/2)
so that Eq.~2.33! has a double root forP̃(s0), and then
iteratingbackwardsto obtainP̃(s0/2

n). As n→`, by match-
ing on to the requirement thatP̃(s)512s for s→0, one can
obtains0. It is clear from Eq.~2.33! that in the vicinity ofs0
P̃(s) is of the formP̃(s0)1aAs2s0. This yields

P~v !;v23/2exp@2s0v# for v→`. ~2.34!

Although the power-law prefactor is different from that in
Eq. ~2.31!, there is still an exponential decay.

We now consider possible changes to Eq.~2.34! from
choosingh (q) of a more complicated form than Eq.~2.32!.
For anyh (q) of the form

h~q!5(
i50

n

cid~q2l i !1S 12( ci D d~q!d~q! ~2.35!

with 0,l,1, one can use the method outlined above to find
that P̃(s) has a square-root branch cut at somes0. This an-
swer is not affected by makingn large, so long asc0 remains
nonzero. Asn→`, with all theci ’s for i.0 tending to zero,
we can approach arbitrary continuous distributions forh (q)
with d functions atq50 andq51.

For N.2, Eq. ~2.33! is changed to a higher order equa-
tion. This, however, does not generically change the results
above. Even for higher order equations, the degeneracy of
the roots generally occurs only pairwise, so that close to the
point of degeneracy the singularly ranging roots still have a
square-root singularity. It will, however, be possible to find
nongenericchoices forh (q) that could result in an asymp-
totic form P(v);v2(111/m) exp[2av] with N>m>2.

E. Beyond mean field theory

1. Proof that mean field theory is exact

In this section we prove that the mean field solution pre-
sented in the preceding section is anexactsolution of the
model with the uniformq distribution for anyN.

In general, the mean field theory presented above is not
exact because it does not account for the fact that two neigh-
boring sites in rowD11 both derive a fraction of their
weight from the same site in rowD. Suppose a sitej in row
D11 hasw( j ) much larger than the average value. Then it is
likely that the weight supported by an ancestorw( i ) in row
D is larger than average also. Because this ancestor transmits
its weight to a neighboring site in rowD11 as well, there is
a ‘‘correlation’’ effect that creates a greater likelihood that in
a given layer sites supporting large weight are close together.
On the other hand, there is a ‘‘anticorrelation’’ effect arising
because(jqi j51; if a large fraction of the weight from sitei
is transmitted to sitej , then small fractions are transmitted to
the other ‘‘offspring’’ sites. When theq’s are chosen from
the uniform distribution, these ‘‘correlation’’ and ‘‘anticor-
relation’’ effects cancel exactly.

The result that the mean field correlation functions are
exact for the uniform distribution ofq’s can be understood
by considering the system in terms of weights on bonds.
Each bond$ i j % corresponds to a particle with ‘‘energy’’
Ei j5v iqi j . Moving down by one layer corresponds to hav-
ing groups ofN particles colliding at each site and emerging
with different energies, subject to the constraint that the total
energy of allN particles colliding at each site is unchanged
by the collision.

For the ‘‘uniform’’ q distribution, each collision takesN
particles of energiesea1

,...,eaN
and changes their energies

to Ea1
,...,EaN

, subject only to the constraint that
(ea5(Ea . If we start with a ‘‘microcanonical’’ ansatz for
the phase-space density, i.e., that it is uniform over the space
(Ea5E, then it is preserved by the collisions. Hence, the
microcanonical density is the correct one for this system.

With a microcanonical density for a large collection of
particles, the density for any finite subgroup is canonical~in
the thermodynamic limit! @20#. Thus, we have shown for this
case that the distribution of ‘‘bond forces’’ is exponential,
which is the most random distribution consistent with the
constraint that the sum of the forces is fixed@20,21#.

Note that this argument does not hold forq distributions
other than the uniform one. For instance, in theq0,1 limit,
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each collision takes all the energy of the group and gives it to
one of the colliding particles. Thus, even if we start with the
microcanonical distribution, it breaks down at the very first
step. For generalq distributions, the phase-space density is
not separable, i.e., mean field theory is not exact and there
are spatial correlations within each layer.

The explicit algebraic proof proceeds by constructing ex-
act recursion relations for the correlation functions describ-
ing the weight distribution in the model in rowD11 in terms
those for rowD, and showing that the mean field correlation
functions are invariant under this recursion. We ignore the
weight added in each row because we are looking for the
fixed distribution very far down the pile.

Let PD(ui) be the probability that sitei in rowD supports
weightui , PD(ui1,ui2) be the probability that sitesi 1 and i 2
support weight ui1 and ui2, respectively, and

PD(ui1,ui2,...,uin) be the normalized joint distribution de-
scribing the probability that sitesi 1 ,i 2 ,...,i n support weights
ui1,...,uin, respectively. The mean field joint probability dis-
tributions are given by the mean fieldP(u) and

P~u1 ,u2 ,...,un!5P~u1!P~u2!•••P~un!. ~2.36!

Consider theM -point correlation function in rowD11
that is obtained when all the correlation functions in rowD
are the the mean field ones. Let$ui% be the weights in rowD
and $v i% be the weights in rowD11. Consider a cluster of
sites j51,...,M in row D11, with ancestors in rowD at
sitesi51,...,p. ~The labels do not imply any particular spa-
tial relation of the sites.! Theq’s describing the bonds ema-
nating from ancestori areqil , wherel51,...,N. We define
h i l ( j ) to be 1 if sitesi and j are connected by bondi l and
zero otherwise. TheM -point correlation function in row
D11, PD11(v1 ,...,vM), must obey

PD11~v1 ,...,vM !5)
i51

p H E
0

1

dqi1•••E
0

1

dqiN~N21!!

3dS 12 (
k51

N

qikD E
0

`

duiPD~ui !J
3)

j51

M

dS v j2(
i51

p

(
l51

N

h i l ~ j !qil ui D .
~2.37!

We define the general Laplace transform

P̃~s1 ,...,sn!5E
0

`

dv1•••E
0

`

dvnP~v1 ,...,vn!

3e2s1v1•••2snvn. ~2.38!

Laplace transforming Eq.~2.37!, one obtains

P̃D11~s1 ,...,sM !5)
i51

p E
0

1

dqi1•••E
0

1

dqiN~N21!!

3dS 12 (
k51

N

qikD
3 P̃DS (

j51

M

(
l51

N

h i l ~ j !qil sj D . ~2.39!

For P̃D(x)5(11x/N)2N, one can use the condition
( l51
N qil51 to write

P̃D11~s1 ,...,sM !5)
i51

p E
0

1

dqi1•••E
0

1

dqiN~N21!!

3dS 12 (
k51

N

qikD
3F(

l51

N

qil S 11(
j51

M

h i l ~ j !sj /ND G2N

.

~2.40!

Using the identity@22#

)
n51

N

~an!
215~N21!!

3E
0

1

dx1•••E
0

1

dxN
d~12x12•••2xN!

~a1x11•••1aNxN!N

~2.41!

with an511( j51
M h in( j )sj /N, one finds

P̃D11~s1 ,...,sM !5)
i51

p

)
n51

N
1

11( j51
M h in~ j !sj /N

.

~2.42!

If a given bond$ in% connects to no sites in the descendant
cluster, then every term in the sum in the denominator of Eq.
~2.42! is zero, and the$ in%th term in the product is unity. If
the bond connects to a site in the descendant cluster, then
h in( j ) is unity for exactly onej . Each sitej in the descen-
dant cluster is connected to exactlyN antecedents in rowD,
so

P̃D11~s1 ,...,sM !5)
j51

M
1

~11sj /N!N
. ~2.43!

Thus, the mean field correlation functions are preserved from
row to row for thisq distribution.

2. Other q distributions

We have identified a countable set ofq distributions for
which mean field theory is exact, those of the form
f (qi j )5qr , for all integer r ~the uniform distribution is
r50!. The resulting force distributionPr(v)}v

r1N21e2Nrv

has Laplace transformP̃r(s)5[11s/(Nr)]2Nr. The demon-
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stration that this solution is exact follows precisely the same
line of reasoning as for ther50 case presented in the pre-
ceding section, utilizing the identity@22#

)
n51

N

~an!
2r5

G~Nr !

@G~r !#N
E
0

1

dx1x1
r21•••E

0

1

dxNxN
r21

3
d~12x12•••2xN!

~a1x11•••1aNxN!Nr
. ~2.44!

In terms of the particle collision picture discussed at the
beginning of Sec. II E 1, a general value ofr corresponds to
the particles having an energy which is the sum ofr11
components~which may be viewed as as spatial coordinates
in some underlying space!, each one of which is conserved
individually in a collision. The microcanonical phase-space
density, uniform in theN(r11)-dimensional space, is pre-
served by the collisions, and yields thePr(v) stated here.

The result that mean field theory yields an exact solution
of the model holds only for a very limited class ofq distri-
butions. For generalq distributions, the phase-space density
is not separable, i.e., mean field theory is not exact, and there
are spatial correlations within each layer. For example, Fig. 5
showsP(v) for a two-dimensional system withN52 and the
q distribution where the two bonds emanating from each take
on the valuesq0 and 12q0, with q050.1. In the model, a site
( i ,D) is connected to sites (i ,D11) and @i11 ~modL),D
11#; in the mean field calculation, site (i ,d) is connected to
sites„p1( i ),D11… and „p2( i ),D11…, wherepW 1 and pW 2 are
permutations of~1,...,L!. This method of simulating mean
field theory destroys the spatial correlations between ances-
tor sites, while ensuring that every site has exactly two an-
cestors and two descendants. The numerical data were ob-
tained by averagingP(v) for rows 10 001–20 000 in a
system of transverse extentL520 000. This figure demon-
strates explicitly that the mean field force distributionP(v)
is not exact for this distribution. However, the deviations of
the mean field theory from the direct simulation are ex-

tremely small forv*0.1, so mean field theory provides an
accurate quantitative estimate forP(v) over a large range of
v.

3. Uniqueness of the steady state distribution

In this section we show that our results~numerical and
analytical! for the force distribution do not depend on either
the boundary conditions imposed at the top of the system or
on the specific realization of randomness a particular system
might have.

Consider a system of finite transverse extentL, in which
weights$w( i )% are put on the particles in the top row. The
weight then propagates downwards according to Eq.~2.8!. If
we now consider the same system with a different loading on
the top row,$w( i )1dw( i )%, then since Eq.~2.8! is linear in
w, the difference between the two solutions satisfies the ho-
mogeneous equation

dw~D11,j !5(
i
qi , j~D !dw~D,i !. ~2.45!

Summing up both sides, we see that( jdw(D11,j )
5( idw(D,i ), which means that the total excess weight
placed on the top of the system propagates downwards unal-
tered. Such a change only affects the normalization of our
distributions. Thus, if we are interested in the normalized
distribution PD(v), we can without loss of generality con-
sider perturbations$dw(D,i )% satisfying the constraint
(idw(D,i )50.

Equation~2.45! can be viewed as a two stage process:~1!
eachdw(D,i ) splits intoN parts,qi , j (D)dw(D,i ), and ~2!
the N fragmentsqi , j (D)dw(D,i ), with i running over the
neighbors ofj in the row above it, combine to givedw(D
11,j ). The important thing is that all theqi , j ’s are positive.
Thus if we define the total difference between the two con-
figurations asD(D)5( i udw(D,i )u, then because all theq’s
are positive and(jqi j51, D is unchanged in the first step,
while in the second step it can either stay constant or de-
crease~depending on whether the signs of the fragments are

FIG. 5. Comparison of force dis-
tribution P(v) versusv for simula-
tion of mean field theory and of the
original model equations~2.1! for a
system with theq distribution Eq.
~2.7! with N52 andq050.1. Both
data sets were obtained by averag-
ing the bottom 10 000 rows of a
20 000320 000 system. Mean field
theory does not yield the exactP(v)
for this q distribution. Nonetheless,
it provides an accurate quantitative
estimate for P(v) over a broad
range ofv.
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the same or different!. Further, while for anyparticular
value ofD it is possible forD(D) to be equal toD~D11!,
the only way in whichD(D) can remain unchanged asD
increases is if all the positivedw’s are segregated from all
the negative ones. Even if this is the case in the top row, this
becomes increasingly unlikely asD is increased. In fact, if
the minimum distance between positive and negativedw is l
in the top row, and if there are nod functions inh (q), then
D~D11! mustbe less thanD(D) for D. l . Thus for a system
of finite transverse extent, the distribution of weights at the
bottom of the system is independent of the loading on the top
row in the limit that the height of the system is infinite. For
the case when all dimensions of the system are made infinite
the situation is trickier; due to the conservation ofSdw un-
der the evolution of Eq.~2.45! discussed above, if one were
to makedw positive on one side of the top row and negative
on the other half, for a system of transverse extentL it would
require a heightO(L2) for the effects of this perturbation to
‘‘diffuse’’ away. For generic loading at the top, however, we
do not expect such an anomalous concentration of fluctua-
tions into only the longest wavelength modes of the system,
andD(D) should decay withD even if all dimensions of the
system are enlarged.

We have seen that the distribution of weight at the bottom
of any infinite system is independent of the details of how
forces are distributed at the top, at least in the limit when the
height of the system is taken to infinity before its transverse
dimensions. This is true for each system individually, and is
therefore also true for the full ensemble of systems with dif-
ferent realizations of randomness~the choice ofqi j ’s!, so
that the solutions we have obtained so far for quantities like
P(v) are unique. For any particular system, however, the
weights on the different sites at the bottomdo depend on the
qi j ’s; in fact, with all theqi j ’s specified, the weights on the
different sites are completely determined. Even for a single
system, however, statistics can be obtained by measuring
quantities across all the sites in the bottom row; for a system
of infinite transverse size the measurements then lead to dis-
tributions. At least for the ‘‘uniform’’ q distribution, any
quantity like, say,P(v), is the same, whether obtained by
averaging over sites in a single system or for a single site
over the entire ensemble. This is because, as we have seen,
the ensemble averaged distribution of$v1 ,...,vL% across the
bottom row is of the form P(v1 ,...,vL)
5P(v1)P(v2)•••P(vL). For any single system chosen ran-
domly from the ensemble, this is the probability density that
the normalized weights in the bottom row take on the spe-
cific values$v1 ,v2 ,...,vL%. The probability thatl of theseL
sites will havev i greater than somev0 is then

S Ll D S Ev0
`

P~v !dv D l S 12E
v0

`

P~v !dv D L2 l

; ~2.46!

asL→`, l /L is sharply peaked around*v0
` P(v)dv, so that

the site averaged result is the same as the ensemble average.
We expect this to be the case even for more generalq dis-
tributions, for which the ensemble averagedP(v1 ,v2 ,...,vL)
does not have a product form, so long as the transverse cor-
relation lengths are finite.

III. NUMERICAL SIMULATIONS OF SPHERE PACKINGS

We now discuss the relevance of theq model to granular
materials. Although we have shown that theq model yields
an exponentially decaying force distribution independent of
the details of theq distribution, to make quantitative com-
parison of this model to granular systems, we must know the
q distribution for a granular material. To make this compari-
son, we have performed molecular dynamics simulations of
three-dimensional sphere packings, analyzed the contact dis-
tributions to estimate the distribution ofq’s, and then calcu-
lated the force distribution in the sphere packing and com-
pared it to that predicted by theq model. Our simulations
yield results for the contact force distributions that are con-
sistent with previous work@23–26#; the new ingredient here
is that the geometry of the packing is characterized simulta-
neously, allowing testing of the statistical assumptions un-
derlying theq model.

Our simulation consists of 500 spherical beads of weight
and diameter unity in a uniform gravitational field with
gravitational constantg51, interacting via a central forceF
of the Hertzian form,F5F0(dr )

3/2. Here,F0 is the force
constant, chosen so that a sphere has a deformation ofdr
50.001 when subjected to its own weight, anddr is the
deformation of each bead at the contact. The box containing
the beads had a fixed bottom, and lateral dimensions of 5.5
35.5. In each simulation, the spheres are initially placed in a
loose rectangular lattice with lattice constants of 13131.5
and have random initial velocities uniformly distributed in
the range2Vmax,Vx,y,z,Vmax, where Vmax550 is large
enough to yield significantly different packings from run to
run. By freezing the motion of the beads whenever the total
kinetic energy of the system reaches a maximum, the kinetic
energy of the system is reduced and eventually the spheres
all settle to the bottom of the box. Starting with a flat bottom,
the regularity of layerlike packing reduces as the height in-
creases. A rough bottom was obtained by selecting the beads
with height betweenH andH11 ~typically,H;10! and this
rough bottom was used for the next simulation. Within a few
iterations, the statistical properties of the rough bottom be-
comes independent of its initial configuration; this configu-
ration of spheres at the bottom of the box is then fixed and
used as a boundary condition for subsequent packing simu-
lations.

In our packings, a sphere can have up to six contacts on
its bottom half. However, on average, the three strongest
vertical forces at these contacts sustain over 98% of the load;
three or fewer particles supported at least 90% of the weight
for over 92% of the particles. Therefore, comparison with the
q model withN53 is reasonable.

We estimate theq distribution for the sphere simulation
by calculating the fractions of the total vertical force sup-
ported by each of the three strongest contacts@27#. To dis-
play our results for theq distribution for the simulation of
hard spheres, we define the variablesa15(q32q2)/),
a25q1 @28#. Because( j51

3 qj51, the possible values of the
a’s can all be represented as points in the interior of an
equilateral triangle, where the values ofq are the perpen-
dicular distances to each side of the triangle. Moreover, for
the uniformq distribution, the density of points in the tri-
angle is constant. If one orders theq’s so thatq3.q2.q1 ,
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then in terms of thea variables, all the points lie in the
triangle shown in Fig. 6, which is bounded by the lines
a1.0,a2.0, and)a11a2,1. As Fig. 6 demonstrates, there
is some deviation from the uniformq distribution because a
nonzero fraction of the particles haveq15a250. A reason-
able description of the numerically observed particle contact
distribution is obtained by taking each particle and assigning
with probabilityp, l , andu into ‘‘point,’’ ‘‘line,’’ and ‘‘uni-
form’’ pieces. In the point piece one of theq’s has value
unity, and the other two are zero. In the line piece one of the
q’s is set to zero, and the other two are determined as in the
N52 uniform distribution. Finally, the particles in the uni-
form piece have theirq’s determined exactly as in theN53
uniform distribution. Our numerical data for the spheres are
consistent with the valuesp50.01760.0023, l50.1635
60.007,u512 l2p50.819560.007.

We now discuss our results for the distribution of vertical
forces. First, we calculated the force distribution at several
different depthsD. Our numerical data indicate that if one
considers the normalized forcev5w/D, the force distribu-
tion P(v) indeed becomes independent of depth forD*5,
and it decays exponentially at largev. The data were ob-
tained by making a histogram of the vertical force exerted by
spheres in horizontal slices of widthDD51. The scales are
set by the normalization requirements*0

`dv P(v)51,
*0

`dv vP(v)51.
We now compare the results of these molecular dynamics

simulations to results from theq model. Figure 7 shows
P(v) calculated via numerical simulation of theq model Eq.
~2.1! with f (q)51 at depthD51024 on a periodically con-
tinued fcc lattice of side 1024, withN53. Within our ap-
proximation of placing the grains on a uniform lattice, the
reasonable choice forN is the dimensionalityd of the sys-
tem: Ford53 the grains are approximated as being in trian-
gular lattice layers, with each layer staggered relative to the
next, so that each grain has three neighbors. As expected,
since the mean field distribution is exact for the uniform
case, there is excellent agreement with Eq.~2.24!. On the
same graph we showP(v) obtained in the sphere simulation
described above. Both the sphere simulation and theq model
exhibit a P(v) that decays exponentially at largev. The
quantitative agreement between the two is surprisingly good
considering the ‘‘arching’’@1# in the sphere simulation, as
reflected in the line and point pieces of theq distribution for
the spheres. To examine the effects of arching on the results,
we examined the force distribution resulting from the ‘‘q
model’’ with the three-pieceq distribution, which more
closely approximates that of the sphere simulation. Figure 8
shows the numerically calculatedP(v) for theq model with
the three-piece distribution withp50.017 andl50.1635, to-
gether with the solution for the uniform distribution and the
numerical data from the sphere simulation. Changing theq
distribution has little effect onP(v); to the extent that there
is a change, it appears to improve the already good agree-
ment between theq model and the sphere simulation.

Thus, our simulations indicate that our sphere packings
are reasonably well-described~at the;15% level! by the
uniform q distribution. Deviations from thisq distribution
are observed; accounting for them improves the already good
agreement between theq model and the simulations.

IV. DISCUSSION

This paper presents a statistical model for the force inho-
mogeneities in static bead packs and compares the results to
numerical simulations of disordered sphere packings. The
irregularities of the packing are described probabilistically,
in terms of spatially uncorrelated random variables. Al-
though there is a specialq distribution for theq model that
leads to a force distribution that decays as a power law at
large forces, we have presented evidence that the force dis-
tribution decays exponentially at large forces for almost allq
distributions. We obtain exact results for all the multipoint
force correlation functions at a given depth for a countable
set of q distributions, including one that is ‘‘generic’’~the
‘‘uniform’’ distribution !. The force distribution function for
the uniform case agrees quantitatively with that obtained for
the sphere simulation. Our numerical calculations demon-
strate that a modified distribution ofq’s which more closely
approximates that observed for the sphere simulation im-
proves the already good agreement between the force distri-
bution predicted by theq model using the uniformq distri-
bution and simulations of spheres. Thus, this model appears
to contain some essential features of the force inhomogene-
ities in granular solids.

Neither our simulations nor theq model of Eq.~2.1! cap-
tures all features of real bead packs. In our simulations, we
have included only central forces and have ignored friction;
theq model ignores the vector nature of the forces, assuming
that only the component along the direction of gravity plays
a vital role. The qualitative consistency between the results
obtained using the different methods as well as with experi-
ment @6# provides some indication that the effects that we
have neglected do not determine the main qualitative fea-
tures of the force distribution at largev.

Several avenues for future investigations are evident. It
should be straightforward to extend the analysis of the model
to calculate longitudinal~along the direction of gravity! cor-
relations of the forces. It is not obvious how to measure these
correlations experimentally, but comparison to sphere simu-
lations is clearly possible and would provide further tests of

FIG. 6. Scatter plot of contact variablesa1, a2 ~defined in the
text! obtained from the sphere simulation described in the text. The
graph has 3229 points. On this plot, the uniformq distribution
would have a uniform density of points. The ‘‘arching’’ in the
simulation is reflected in the fact that a nonzero fraction of points
havea250.
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the statistical model. Similarly, the theory makes clearcut
predictions for the multipoint correlation functions, which
can be tested both by experiment and by simulations. The
model can be generalized to apply to a broader variety of
situations by including vector forces as well as incorporating
boundary effects. Most interestingly, we plan to investigate
whether the statistical theory developed here can be extended
to provide new insight into the complex dynamical effects
exhibited by granular materials@1#.

In summary, we have presented and analyzed a statistical
model for force inhomogeneities in stationary bead packs.
The model, which predicts that force inhomogeneities decay
exponentially at large forces for almost all contact distribu-
tions, agrees well with numerical simulations of sphere pack-
ings as well as experiment@6#.
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APPENDIX: UNIFORM q DISTRIBUTION

Here we consider the ‘‘uniform’’q distribution, which is
the simplestq distribution consistent with the restriction that
( 151
N qi51. It is obtained by choosing each of

q1 ,q2 ,...,qN21 independently from a uniform distribution
between 0 and 1, settingqN512( j51

N21qj , and then keeping
only those sets whereqN>0. Here we show that
hu(q)51/(N21)(12q)N22 for this distribution.

For N52, if one choosesq1 between 0 and 1, then
q2512q1 must also be between 0 and 1, so thathu(q)51.

When N53, configuration will be retained only if
q11q21q3<1. Therefore, the probability of obtaining a
value ofq is given by

hu~q!5ME
0

1

dq1E
0

1

dq2d~12q12q22q!

5ME
0

12q

dq15M ~12q!, ~A1!

whereM is a normalization constant. Since*0
1dq h(q)51,

one immediately findsM525(N21).
For generalN, hu(q) can be written:

hu~q!5V~q!YE
0

1

V~q!dq, ~A2!

where

V~q!5E
0

1

dq2E
0

12q2
dq3•••E

0

12( i51
N21qidqn

3dS 12q2(
i52

N

qi D . ~A3!

Using the identity

E
0

12( j51
n2kqmS 12 (

m51

n2k11

qmD k21

dqn2k11

5
1

k S 12 (
m51

n2k

qmD k, ~A4!

one can show that

hN~q!5~N21!~12q!N22. ~A5!

FIG. 7. The distribution of forcesP(v) as a function of normal-
ized weightv5w/D at a given depthD. Dashed line:P(v) at
D51024 obtained via numerical simulation of the model Eq.~2.1!
with f (q)51 on a periodically continued fcc lattice of transverse
extent 1024. Solid line:Pu(v) obtained from the analytic mean
field solution, Eq.~2.24!. The points areP(v) obtained in the
sphere simulation described in the text at depthD510 ~triangles!
and averaged over depthsD56 throughD513 ~diamonds!. There
are no adjustable parameters; the scales are set by the normalization
requirements*0

`dv P(v)51, *0
`dv vP(v)51.

FIG. 8. The distribution of forcesP(v) as a function of normal-
ized weightv5w/D at a given depthD. Dashed line:Pu(v) ob-
tained from the analytic mean field solution forq model withN53,
Eq. ~2.24!. Solid circles:P(v) obtained in the sphere simulation
averaged over depthsD56 throughD513. Open squares:P(v) at
D516 obtained via numerical simulation of the model Eq.~2.1!
with the three-partq distribution described in the text, with param-
eter values given on the graph, on a periodically continued fcc
lattice of transverse extent 256. This figure demonstrates that using
the measuredq distribution instead of the uniformq distribution
improves the already good agreement between theq model and the
sphere simulation.
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