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Extreme-value statistics of hierarchically correlated variables deviation from Gumbel statistics
and anomalous persistence
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We study analytically the distribution of the minimum of a set of hierarchically correlated random variables
E1 , E2 , . . . , EN whereEi represents the energy of thei th path of a directed polymer on a Cayley tree. If the
variables were uncorrelated, the minimum energy would have an asymptotic Gumbel distribution. We show
that due to the hierarchical correlations, the forward tail of the distribution of the minimum energy becomes
highly nonuniversal, depends explicitly on the distribution of the bond energiese, and is generically different
from the superexponential forward tail of the Gumbel distribution. The consequence of these results to the
persistence of hierarchically correlated random variables is discussed and the persistence is also shown to be
generically anomalous.
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The extreme-value statistics of random variables is imp
tant in various branches of physics, statistics, and mathe
ics @1–3#. For example, in the context of disordered system
the thermodynamics at low temperatures is governed by
statistics of the low-energy states. The statistics of extre
quantities also play important roles in binary search pr
lems in computer science@4#. The extreme-value statistics
well understood when the random variables areindependent
and identically distributed. In this case, depending on
distribution of the random variable, three different univers
ity classes of extreme-value statistics are known@3#. Re-
cently there has been an attempt to identify these diffe
universality classes with the different schemes of rep
symmetry breaking@5#. A natural question is: what are th
universality classes when the random variables are co
lated? This question has recently been addressed@6,5# and it
has been conjectured that this class of problems corresp
to the full replica symmetry breaking@5#. To answer this
important question, it would thus be useful to derive ex
results for the extreme-value statistics of correlated variab
whenever possible.

More precisely, let us consider a set ofN random vari-
ablesE1 , E2 , . . . , EN drawn from a joint probability dis-
tribution p(E1 ,E2 , . . . ,EN). Then the minimum valueEmin
5min$E1,E2, . . . ,EN% is also a random variable and on
would like to know its probability distribution. Let,PN(x)
5Prob@Emin>x# be the cumulative distribution of the min
mum. Then clearly,

PN~x!5E
x

`

•••E
x

`

p~E1 ,E2 , . . . ,EN!)
i 51

N

dEi , ~1!

since if the minimum is bigger thanx, then each of the vari-
ables must also be bigger thanx. When the variables are
uncorrelated and each is drawn from the same distribu
p(E), the joint distribution factorizes,p(E1 ,E2 , . . . ,EN)
5p(Ei)•••p(EN) and from Eq.~1! one simply gets,PN(x)
5@*x

`p(E)dE#N. If the distributionp(E) is unbounded and
decays faster than a power law for largeuEu, then one can
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show that for largeN, PN(x) approaches a scaling form@3#,
PN(x)5F„(x1aN)/bN…. HereaN andbN are functions ofN
and depend explicitly on the distributionp(E), but the scal-
ing functionF(y) is independent ofp(E) andN and has the
universal superexponential form,F(y)5exp@2exp(y)#. As a
consequence, the distribution of the minimumPmin(y)5
2dF/dy5exp@y2exp(y)# has the universal Gumbel form
There are two other known universality classes when
distributionp(E) is either bounded or has algebraic tails f
large uEu, but we will not be concerned with these cases
this paper.

The question we focus on here is whether the Gumbel
continues to hold if the random variables are unbounded
correlated. This question has recently been addressed by
pentier and Le Doussal@6# who developed a renormalizatio
group ~RG! approach for logarithmically correlated var
ables. With logarithmic correlations they found that the c
mulative distribution functionF(y) behaves~up to some res-
caling factors! as, F(y)512y exp(y) in the backward tail
region y→2`. A pure Gumbel law would have predicted
F(y)512exp(y) as y→2`. Thus the Gumbel law is in-
deed violated in this backward tail region. However, th
RG approach cannot predict whether the superexpone
forward tail of the Gumbel distribution still holds or not. Th
question we are interested in is whether strong correlati
can also modify the superexponentialforward tail of the
Gumbel distribution. If so, this has interesting conseque
for the persistence of random variables as we discuss be

The persistence of random variables, a subject that
generated a lot of recent interest@7#, is related to the distri-
bution of the minimum in a simple way. For random va
ables each with zero mean, the persistence is simply
probability that all of them are positive and is given b
PN(0) in Eq. ~1!. For independent variables, it follows trivi
ally from Eq. ~1! that PN(0) decays exponentially withN,
PN(0)5exp(2uN) whereu52 ln@*0

`p(E)dE#. For correlated
variables, this problem has been studied for many decade
applied mathematicians who call it the ‘‘one sided barrie
problem@8,9#. It is well known thatPN(0) is hard to com-
©2001 The American Physical Society21-1
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pute analytically even for Gaussian correlated variables,
when the joint distributionp(E1 ,E2 , . . . ,EN) is a multivari-
ate Gaussian distribution@8–10#. If the Gaussian variable
are arranged on a line and if the correlation between
variablesEi andEj decays faster than 1/u i 2 j u, thenPN(0) is
known to decay asPN(0);exp(2uN) for largeN @9#, where
the persistence exponentu is nontrivial and is known exactly
only in very few special cases@8#. It would thus be interest-
ing to know if strong correlations can modify this expone
tial decay of the persistence for largeN.

In this paper, we show that the two issues,~a! the possi-
bility of a non-Gumbel forward tail of the distribution of th
minimum and~b! the possibility of nonexponential decay o
persistence, are related to each other for random varia
that are hierarchically correlated. The hierarchical nature
the correlation allows us to derive exact asymptotic res
for both the quantities. Our main results are twofold:~i! For
the distribution of minimum value, we show that the sup
exponential forward tail of the Gumbel law is violated und
generic conditions and~ii ! as a consequence, the persisten
is anomalous, i.e.,PN(0) does notdecay exponentially unde
the same generic conditions.

We consider, as a model, the well studied problem o
directed polymer on a tree. This problem was first studied
Derrida and Spohn@11#, who were mostly interested in th
finite temperature phase transition in this model. Here
focus explicitly on the zero temperature properties. We c
sider a tree rooted atO ~see Fig. 1! and a random energye i
is associated with every bond of the tree. The variablese i ’s
are independent and each drawn from the same distribu
r(e). A directed polymer of sizen goes down from the roo
O to any of the 2n nodes at the leveln. Thus, there areN
52n possible paths for the polymer of sizen and the energy
of any of these paths is given by

Epath5 (
i Ppath

e i . ~2!

The set ofN52n variablesE1 , E2 , . . . , EN are clearly
correlated in a hierarchical~i.e., ultrametric! way and the two
point correlation between the energies of any two path
proportional to the number of bonds they share. We wo
then like to know the distribution of the minimum energy

FIG. 1. In the figuree i j represents the energy on the bond co
necting the nodesi and j of a Cayley tree with forward branchin
rate 2. Thee i j ’s corresponding to different bonds are independe
identically distributed random variables.
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Clearly,PN(x)5Prob@Emin>x# is also the probability that
all the N paths up to thenth level have energies>x. Since
N52n, let us write, for convenience,Rn(x)5PN(x). It is
easy to see thatRn(x) satisfies the recursion relation

Rn11~x!5F E
2`

`

der~e!Rn~x2e!G2

~3!

with the initial conditionR0(x)5u(2x), whereu(x) is the
usual Heaviside step function. This relation is derived
considering various possibilities for the energies of the t
bonds emerging from the rootO and taking into account tha
the two subsequent daughter trees are statistically inde
dent. Equation~3! was studied in detail in Ref.@12# for sev-
eral distributionsr(e)’s with non-negative support. In par
ticular, for the bivariate distribution,r(e)5pd(e21)1(1
2p)d(e), the solution of Eq.~3! was shown to undergo a
depinning phase transition atpc51/2 @12#. Since in this pa-
per we are mostly interested in the persistence of theEi
variables, we restrict ourselves subsequently only to sy
metric distributionsr(e) with zero mean. DefiningRn(x)
5Qn

2(x), Eq. ~3! can be recast into

Qn11~x!5E
2`

`

der~e!Qn
2~x2e!, ~4!

with the initial conditionQ0(x)5u(2x) and the boundary
conditionsQn(x)→0 asx→` andQn(x)→1 asx→2`.

Equation~4! is known @12# to admit a traveling front so-
lution, Qn(x)5q(x1vn) where the front propagates in th
negativex direction with a constant velocityv asn increases
~see Fig. 2!. SubstitutingQn(x)5q(x1vn) in Eq. ~4!, we
get

-

t,

FIG. 2. The traveling front for the functionQn(x) for n510
~the solid line!, 20 ~the dashed line!, and 30~the dotted line! for
exponential distributionr(e)5exp@2ueu#/2. In the inset, we plot the
logarithm of the collapsed scaling functionq(x1vn) ~for different
n). The scaling functionq(y) evidently has an exponential tail fo
largey.
1-2
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q~y!5E
2`

`

der~e!q2~y2v2e!, ~5!

with the boundary conditionsq(y)→1 as y→2` and
q(y)→0 asy→`, with the front located aroundy50. The
velocity v can then be determined exactly by analyzing
backward tail regiony→2` of the functionq(y). In this
regime, substitutingq(y)512g(y) in Eq. ~5! and neglect-
ing the terms ofO(g2), we find that the resulting linea
equation admits an exponential solution,g(y)5a exp(ly)
with a.0, providedv is related tol via the dispersion
relation

v5
1

l
lnF2E

2`

`

der~e!e2leG . ~6!

For generic distributionsr(e), the functionvl has a unique
minimum at l5l* and by the general velocity selectio
principle @13# this minimum velocityvl* is selected by the
front @11,12#.

Thus the cumulative distribution of the minimum ener
approaches a scaling form for largeN, PN(x)5Rn(x)
5Qn

2(x)→q2@x1(vl* /ln 2)lnN#, where the functionq(y)
is given by the solution of Eq.~5! andvl* is determined by
minimizing Eq. ~6!. The question we are interested in i
what is the asymptotic form ofq(y) for large y? We show
below that for any bounded distributionr(e) the function
q(y) for large y indeed has the Gumbel shape,q(y)
→exp@2c1exp(c2y)#, where c1 and c2 are positive con-
stants. On the other hand, for unbounded distributi
r(e), the Gumbel law breaks down and asymptotic fo
ward tail of q(y) is nonuniversal and is determined exp
citly by the distributionr(e). For example, for the expo
nential distribution r(e)5exp@2ueu#/2, we find exactly
q(y)→exp(2y) for large y. For a generic unbounded dis
tribution, one can prove a lower boundq(y). f (y) for large
y, where f (y)5*y

`r(e)de.
We first focus on the unbounded distributionsr(e). Let

us first consider the exponential distribution,r(e)
5exp(2ueu)/2. In this case, by first making a change of va
ablee→y2v2e inside the integrand on the right-hand si
~RHS! of Eq. ~5! and then differentiating twice the resultin
equation, we get

d2q

dy2 5q~y!2q2~y2v !. ~7!

For largey, clearly the nonlinear term is negligible sinc
q(y) is small. Using the boundary conditionq(y)→0 asy
→` we then get,q(y)→A exp(2y) for largey whereA is a
constant. Thus we get an exponential forward tail instead
the standard superexponential forward tail of the Gum
distribution. Note that the velocityv is determined, as be
fore, from they→2` tail whereq(y)512aely and Eq.
~7! gives,vl5 ln@2/(12l2)#/l with 0,l,1, in accordance
with the general formula in Eq.~6!. The functionvl has a
unique minimum atl* 50.603 582 . . . and thechosen front
velocity is then,vl* 51.898 99 . . . . In Fig. 2, we show that
04612
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Qn(x) indeed approaches the scaling formQn(x)→q(x
1vl* n) and the tail of the scaling function is given b
q(y);exp(2y) @see the inset of Fig. 2# as predicted analyti-
cally.

For a generic unbounded distribution it is difficult to d
rive exact results. However, one can easily derive a low
bound for q(y). From Eq. ~5!, it is clear that q(y)
>*y2v

` der(e)q2(y2v2e). This follows since the integrand
on the RHS of Eq.~5! is always positive. Since the functio
q(y) saturates to 1 very quickly for negativey, we can re-
place q2(y2v2e) by 1 on the RHS of the above lowe
bound. This gives, for largey, q(y)> f (y), where f (y)
5*y

`r(e)de. For example, for the Gaussian distributio

r(e)5e2e2/2/A2p, this result indicates thatq(y) should de-
cay at most as fast asf (y)5erfc(y/A2). Thus, for generic
unbounded distributions, the forward tail of the functio
q(y) for largey is highly nonuniversal and is generally di
ferent from the superexponential forward tail as in the Gu
bel distribution.

Next, we consider the bounded distributionsr(e). The
lower bound discussed in the previous paragraph contin
to hold for bounded distributions as well, though for largey
it trivially becomes zero for distributions with an upper cu
off. To obtain more precisely the behavior ofq(y) as y
→`, we first consider a specific example,r(e)5ad(e11)
1ad(e21)1(122a)d(e) with 0,a,1/2. The Eq. ~5!
then becomes

q~y!5a q2~y2v21!1a q2~y2v11!1~122a!q2~y2v !,
~8!

where the velocityv5vl* is obtained by minimizing Eq.~6!
with respect tol. In this particular case, we get from Eq.~6!

vl5
1

l
ln@4a cosh~l!12~122a!#, ~9!

which has a unique minimum atl5l* (a) for all 0,a
,1/2. We then need to analyze the largey behavior ofq(y)
in Eq. ~8! with v5vl* . Note that as one increasesy from
2`, q(y) remains approximately 1 up to the back edge
the front at y50 and then starts decreasing to zero asy
increases beyond zero. The idea would be to determineq(y)
for a fixed largey by iterating Eq.~8! backwards iny till we
reach the back edge of the front aty50 whereq(y)'1.
Anticipating a superexponential decay ofq(y) for large y,
one can neglect the second and the third term on the RH
Eq. ~8! and iterate the equation retaining only the first ter
Iteratingm times backward we get

q~y!'a2m21@q„y2m~v11!…#2m
. ~10!

How many iterations do we need to reach zero starting fr
a fixed largey? Clearly the required value ofm is given by,
m5y/(v11) so that the argument of the function on th
RHS of Eq.~10! becomes 0. Usingq(0)'1, we get from
Eq. ~10! the largey behavior

q~y!'a2y/(v11)
, ~11!
1-3
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confirming the superexponential forward tail ofq(y) and
also justifying,a posteriori, the neglect of the second and th
third term in the iteration of Eq.~8!. We have verified the
analytical prediction in Eq.~11! by direct numerical integra
tion of Eq. ~4! with r(e)5ad(e11)1ad(e21)1(1
22a)d(e) for a51/4 @see Fig. 3#.

The argument leading to the result in Eq.~11! above uses
only the fact that distributionr(e) has an upper cutoff ate
51. Thus we expect thatq(y) will always have a superex
ponential forward tail as long as the distributionr(e) is
bounded with an upper cutoffL. Let us consider anothe
example of a bounded distribution, namely, the uniform d
tribution, r(e)5@u(e11)2u(e21)#/2. In this case, we ge
from Eq. ~5!

q~y!5
1

2Ey2v21

y2v11

dzq2~z!. ~12!

Differentiating Eq.~12! with respect toy yields

dq

dy
5

1

2
q2~y2v11!2

1

2
q2~y2v21!. ~13!

Again we anticipate thatq(y) will have a superexponentia
tail for large y. If so, one can make the approximatio
ln@2dq/dy#'ln@q(y)#. Using this in Eq.~13! we iterate the
equation backwards as before after dropping the first term
the RHS of Eq.~13!. Using the same line of arguments us
in the previous paragraph, we finally get a superexponen
tail for largey as before,

q~y!'222y/(v11)
. ~14!

FIG. 3. The traveling front for the functionQn(x) for n5100
~the solid line!, 150 ~the dashed line!, and 200~the dotted line! for
the distribution r(e)5ad(e11)1ad(e21)1(122a)d(e) with
a51/4. In the inset, we plot ln$2ln@q(y)#% againsty that clearly
shows the superexponential decay of the scaling functionq(y) for
largey.
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Note that the velocityv in Eq. ~14! has to be determined b
minimizing Eq.~6! with a uniform distribution. Thus, in gen
eral, for any bounded distribution, we expect that for largy

q~y!'exp@2c 2y/(v11)#, ~15!

where the constantsc andv depend explicitly on the distri-
bution r(e).

Let us summarize our results on the tails of the distrib
tion of the minimal energy path for the directed polyme
When the bond energies are bounded the path energie
also bounded for finiten and we find that the forward tail o
the distribution of the minimum path energy has a super
ponential Gumbel decay. In the case of unbounded bond
ergies, the minimal path energy has a non-Gumbel forw
tail, which depends strongly on the distribution of the bo
energies. We remark that this behavior in the case of
hierarchically correlated variables is quite contrary to wh
happens in the case of uncorrelated random variables.
uncorrelated variables the minimum value has a forw
non-Gumbel Weibul tail when the distribution of the ind
vidual variables is bounded. On the other hand for an
bounded distribution of the individual variables, the min
mum value has a superexponential Gumbel forward tail
uncorrelated variables.

Having established the forward tail behavior ofRn(x)
5q2(x1vn), we now turn to the persistence. The pers
tence is simply given byPN(0)5Rn(0)5Qn

2(0)5q2(vn),
whereN52n. Thus for largeN or equivalently for largen,
the asymptotic behavior of persistencePN(0)5q2(vn) is
governed by the forward tail of the functionq(y) for largey.
Let us first consider the bounded distributions. In this ca
using the result from Eq.~15! for q(y), we get the following
exact result for persistence for largeN52n:

PN~0!5Qn
2~0!5q2~vn!'exp@22cNa#, ~16!

wherea5v/(v11) andv is determined by minimizing Eq
~6!. Thus the persistence has an anomalous stretched e
nential decay for largeN instead of the standard exponenti
decay. We have verified this analytical prediction by nume
cally integrating Eq.~4! for different bounded distributions
In Fig. 4, we show the result for the distributionr(e)
5ad(e11)1ad(e21)1(122a)d(e). In this case,a5v/(v
11) wherev is the minimum value of the dispersion relatio
in Eq. ~9! and is clearly a continuous function of the param
etera. In the inset of Fig. 4, we compare the analytical pr
diction for the exponenta(a)5v/(11v) with that obtained
from the numerical integration for various values ofa. The
agreement is evidently very good.

We next consider the unbounded distributions such
r(e)5exp@2ueu#/2. For this exponential distribution, usin
the asymptotic behaviorq(y)5A exp(2y), we find that for
largeN,

PN~0!5Qn
2~0!5q2~vn!;exp@22vn#;N2b, ~17!

whereb52v/ ln 2 with v, as usual, determined via minimiz
ing Eq. ~6!. Thus in this case, persistence again dec
anomalously but now as a power law with a nonuniver
1-4
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exponentb. Again we verified this analytical prediction nu
merically by directly integrating Eq.~4! with the exponential
distribution @see Fig. 5#. For generic unbounded distribu
tions, using the lower boundq(y)> f (y) for large y where
f (y)5*y

`r(e)de, we get PN(0)5q2(nv)> f 2@v ln N/ln 2#,
again highly anomalous.

In summary, we have investigated in detail the distrib
tion of the minimum energy of a directed polymer on a Ca
ley tree. We have shown that the hierarchical correlati
between the energies of different paths have a consider

FIG. 4. The function ln$2ln@Qn(0)#%, obtained from the numeri-
cal integration of Eq.~4!, is plotted againstn for the distribution
r(e)5ad(e11)1ad(e21)1(122a)d(e) with a51/4. The lin-
ear increase withn confirms the stretched exponential decay
PN(0)5Qn

2(0) for largeN52n. In the inset is shown the value o
a(a) calculated analytically~solid line! with that measured numeri
cally by direct integration of Eq.~4! ~circles!.
is
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effect on the distribution of minimum energy depending
the distribution of bond energiesr(e). In the case of
bounded distributionsr(e) of the bond energies, we hav
shown that the forward tail has a superexponential tail a
the Gumbel distribution. However, for unbounded distrib
tions r(e) the forward tail is highly nonuniversal and de
pends explicitly on the distributionr(e). This rich behavior
of the forward tail of the minimum energy distribution
shown to lead to a variety of anomalous behavior for
persistence probabilityPN(0), ranging from a stretched ex
ponential decay for bounded distributionsr(e) to power law
decay whenr(e) is exponential.

f

FIG. 5. The function ln@Qn(0)#, obtained from the numerica
integration of Eq.~4!, is plotted againstn for the distributionr(e)
5exp(2ueu)/2. The linear decrease withn confirms the power law
decay of PN(0)5Qn

2(0) for large N52n with the exponentb
52v/ ln 2 wherev'1.89.
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