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Extreme-value statistics of hierarchically correlated variables deviation from Gumbel statistics
and anomalous persistence
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We study analytically the distribution of the minimum of a set of hierarchically correlated random variables
E,, E,, ..., Ey WhereE; represents the energy of thth path of a directed polymer on a Cayley tree. If the
variables were uncorrelated, the minimum energy would have an asymptotic Gumbel distribution. We show
that due to the hierarchical correlations, the forward tail of the distribution of the minimum energy becomes
highly nonuniversal, depends explicitly on the distribution of the bond eneegiasd is generically different
from the superexponential forward tail of the Gumbel distribution. The consequence of these results to the
persistence of hierarchically correlated random variables is discussed and the persistence is also shown to be
generically anomalous.

DOI: 10.1103/PhysReVE.64.046121 PACS nunier02.50—r, 05.40-a

The extreme-value statistics of random variables is imporshow that for largeN, Py(x) approaches a scaling forf8],
tant in various branches of physics, statistics, and mathemap(x) = F((x+ ay)/by). Hereay andby are functions oiN
ics [1-3]. For example, in the context of disordered systemsand depend explicitly on the distributig(E), but the scal-
the thermodynamics at low temperatures is governed by thig functionF(y) is independent op(E) andN and has the
statistics of the low-energy states. The statistics of extremalniversal superexponential fori(y) = exg —exp)]. As a
guantities also play important roles in binary search prOb'consequence, the distribution of the minimuR,,(y)=
lems in computer sciendd]. The extreme-value statistics is —dF/dy=exdy—expl)] has the universal Gumbel form.
well understood when the random variables iadependent There are two other known universality classes when the

and identically distributed. In this case, depending on the; . . . .. L L
distribution of the random variable, three different universal-dlsmbuuonp(E) is either bounded or has algebraic tails for

ity classes of extreme-value statistics are kndigh Re- Iarge|E|, but we will not be concerned with these cases in
cently there has been an attempt to identify these differenq1IS paper. .

universality classes with the different schemes of replica 1€ guestion we focus on here is whether the Gumbel law
symmetry breaking5]. A natural question is: what are the continues to h.old if thg random variables are unbounded but
universality classes when the random variables are corr&orrelated. This question has recently been addressed by Car-
lated? This question has recently been addrefg&fiand it ~ Pentier and Le Douss6] who deyelo_ped a renormallzatlo_n
has been conjectured that this class of problems correspon@s0up (RG) approach for logarithmically correlated vari-

to the full replica symmetry breakinfp]. To answer this ables. With logarithmic correlations they found that the cu-
important question, it would thus be useful to derive exacimulative distribution functior(y) behavegup to some res-
results for the extreme-value statistics of correlated variablegaling factors as, F(y) =1—yexpf) in the backwardtail

whenever possible. regiony— —o. A pure Gumbel law would have predicted,
More precisely, let us consider a set Nfrandom vari- F(y)=1—exp{) asy— —. Thus the Gumbel law is in-
ablesg;, E,, ..., Ey drawn from a joint probability dis- deed violated in this backward tail region. However, their
tribution p(Ey,Ey, . . . ,Ex). Then the minimum valug,;,, RG approach cannot predict whether the superexponential
:min{El,Ez, . 1EN} is also a random variable and one forward tail of the Gumbel distribution still holds or not. The

would like to know its probability distribution. LetPy(x)  duestion we are interested in is whether strong correlations
= Prolj E,»=x] be the cumulative distribution of the mini- ¢an also modify the superexponenti@rward tail of the
mum. Then clearly, Gumbel distribution. If so, this has interesting consequence
for the persistence of random variables as we discuss below.
. " N The persistence of random variables, a subject that has
PN(X):f . f P(E1,Ey, ... En]] dE;, (1) generated a lot of recent interd3t, is related to the distri-
x X i=1 bution of the minimum in a simple way. For random vari-
ables each with zero mean, the persistence is simply the
since if the minimum is bigger thax then each of the vari- probability that all of them are positive and is given by
ables must also be bigger tham When the variables are Py(0) in Eq.(1). For independent variables, it follows trivi-
uncorrelated and each is drawn from the same distributiomlly from Eq. (1) that Py(0) decays exponentially with,
p(E), the joint distribution factorizesp(E4,E,, ... Ey) Pn(0)=exp(—6N) where 6= —In[[gp(E)dE]. For correlated
=p(E))- - -p(Ey) and from Eq.(1) one simply getsPy(x) variables, this problem has been studied for many decades by
=[[3p(E)dE]N. If the distributionp(E) is unbounded and applied mathematicians who call it the “one sided barrier”
decays faster than a power law for lardg|, then one can problem[8,9]. It is well known thatPy(0) is hard to com-
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FIG. 1. In the figuree;; represents the energy on the bond con-
necting the nodesandj of a Cayley tree with forward branching
rate 2. Thee;;’s corresponding to different bonds are independent, 02 b
identically distributed random variables. ’
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pute analytically even for Gaussian correlated variables, i.e. . .
when the joint distributiop(E4 ,E,, .. . ,Ey) is a multivari- -100 -50 0 50 100
ate Gaussian distributiofB—10]. If the Gaussian variables X

are arranged on a line and if the correlation between tWo g 2. The traveling front for the functio®,(x) for n=10
variablesE; andE; decays faster than[it-j|, thenPy(0) is  (the solid ling, 20 (the dashed line and 30(the dotted ling for
known to decay a®(0)~exp(—6N) for largeN [9], where  exponential distribution (€)= exd —|€]/2. In the inset, we plot the
the persistence exponefiis nontrivial and is known exactly |ogarithm of the collapsed scaling functioggx+wvn) (for different

only in very few special casd8]. It would thus be interest- n). The scaling functiorg(y) evidently has an exponential tail for
ing to know if strong correlations can modify this exponen-largey.
tial decay of the persistence for larte

In this paper, we show that the two issuém, the possi- Clearly, Py(X) =Prol E,;,=X] is also the probability that
bility of a non-Gumbel forward tail of the distribution of the all the N paths up to theth level have energiesx. Since

minimum and(b) the possibility of nonexponential decay of N=2", let us write, for convenienceR,(x)=Py(x). It is

persistence, are related to each other for random variablegasy to see thak,(x) satisfies the recursion relation
that are hierarchically correlated. The hierarchical nature of

the correlation allows us to derive exact asymptotic results

for both the quantities. Our main results are twofdjdl:For Rn+1(X)=

the distribution of minimum value, we show that the super-

exponential forward tail of the Gumbel law is violated under . L . )

generic conditions andli) as a consequence, the persistenceVith the initial conditionRy(x) = 6(—x), where§(x) is the

is anomalous, i.ePy(0) does notlecay exponentially under Usual Heaviside step function. This relation is derived by

the same generic conditions. considering various possibilities for th_e energies of the two
We consider, as a model, the well studied problem of 420nds emerging from the ro@ and taking into account that

directed polymer on a tree. This problem was first studied by"€ WO subsequent daughter trees are statistically indepen-

Derrida and Spohfil1], who were mostly interested in the d€nt- Equation(3) was studied in detail in Ref12] for sev-

finite temperature phase transition in this model. Here we"al distributionsp(e)’s with non-negative support. In par-

focus explicitly on the zero temperature properties. We conticular, for the bivariate distributionp(e) =pé(e—1)+(1

sider a tree rooted 4D (see Fig. 1and a random energgy ~ _ P)9(€), the solution of Eq(3) was shown to undergo a

is associated with every bond of the tree. The variabjes ~ depinning phase transition pt=1/2[12]. Since in this pa-

are independent and each drawn from the same distributioR€” We are mostly interested in the persistence of Ehe

p(€). A directed polymer of size goes down from the root Variables, we restrict ourselves subsequently only to sym-

O to any of the 2 nodes at the levah. Thus, there arél metglc distributionsp(e) with zero mean. DefinindR,(x)

=2 possible paths for the polymer of sizeand the energy = Qn(X), Ed.(3) can be recast into

of any of these paths is given by

150

0 2
f_mdfp(f)Rn(X—é) ()

Qne1(X)= f dep(€)Qa(x—e), (@
Bpar= 2, €. @
& pal with the initial conditionQq(x)= #(—x) and the boundary
conditionsQ,,(x) —0 asx—o andQ,(x)—1 asx— — .
The set ofN=2" variablesE;, E,, ..., Ey are clearly Equation(4) is known[12] to admit a traveling front so-

correlated in a hierarchicéle., ultrametri¢ way and the two  lution, Q,(x)=q(x+wvn) where the front propagates in the
point correlation between the energies of any two paths imegativex direction with a constant velocity asn increases

proportional to the number of bonds they share. We wouldsee Fig. 2 SubstitutingQ,(x) =q(x+wvn) in Eq. (4), we
then like to know the distribution of the minimum energy. get
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% ) Qn(x) indeed approaches the scaling for@,(x)— q(x
q(y)=j_wdep(e)q (y—v—e), (5 +u,«n) and the tail of the scaling function is given by
q(y)~exp(-y) [see the inset of Fig.]2as predicted analyti-
cally.

with the boundary condition 1 as —o and . L
q(y)—0 asy—o zvith the frorﬂ(lsé)c;ed aroﬁg;lzo The For a generic unbounded distribution it is difficult to de-
' ' rive exact results. However, one can easily derive a lower

velocity v can then be determined exactly by analyzing the S
backward tail regiony— —o0 of the functionq(y). In this bouogld for Q(yg- From Eq. _(5)' It is _clear th_at a(y)
regime, substitutingj(y)=1—g(y) in Eq. (5) and neglect- =/y-»dep(€)q°(y—v—e). This follows since the integrand
ing the terms ofO(g?), we find that the resulting linear ©" the RHS of Eq(5) is alwa_ys positive. Smce the function
equation admits an exponential solutiag(y) = a exp(\y) q(y) saturates to 1 very quickly for negatiye we can re-

2
with >0, providedo is related tox via the dispersion Plac€q“(y—v—e) by 1 on the RHS of the above lower
relation bound. This gives, for large, q(y)=f(y), where f(y)

=f;°p(e)de. For example, for the Gaussian distribution,

6 p(e)=e*62’2/\/27-r, this result indicates that(y) should de-
: 6) cay at most as fast aqy)=erfc(y/y/2). Thus, for generic
unbounded distributions, the forward tail of the function

For generic distributiong(e), the functionv, has a unique d(y) for largey is highly nonuniversal and is generally dif-
minimum atA=\* and by the general velocity selection ferent from the superexponential forward tail as in the Gum-

principle [13] this minimum velocityv,« is selected by the bel distribution.
front [11,12. Next, we consider the bounded distributiope). The
Thus the cumulative distribution of the minimum energy lower bound discussed in the previous paragraph continues
approaches a scaling form for larg¥, Py(x)=R,(x) to hold for bounded distributions as well, though for lagge
=Qﬁ(x)—>q2[x+(u)\* /In2)InN], where the functiong(y) it trivially be(_:omes Zero fqr distributions with an upper cut-
is given by the solution of Eq5) andv,« is determined by ~©ff. To obtain more precisely the behavior qly) asy
minimizing Eq. (6). The question we are interested in is; —*. We first consider a specific examplg(e) =ad(e+1)
what is the asymptotic form cj(y) for largey? We show +ad(e—1)+(1—2a)5(e) with 0<a<1/2. The Eq.(5)
below that for any bounded distributign(e) the function then becomes
g(y) for large y indeed has the Gumbel shapg(y) ) 2 5
—exfg—c,expeyy)], wherec, and c, are positive con- aly)=agiy-v-1+agiy-v+1)+(1-2a)q (y_’zg
stants. On the other hand, for unbounded distributions

p(€), the Gumbel law breaks down and asymptotic for-yhere the velocity = v, « is obtained by minimizing E6)

ward tail of q(y) is nonuniversal and is determined expli- \ith respect to\. In this particular case, we get from E@)
citly by the distributionp(e). For example, for the expo-

v=xln 2[ dep(e)e ¢

nential distribution p(e)=exd —|€[}/2, we find exactly 1

q(y)—exp(-y) for largey. For a generic unbounded dis- v\ =y In[4acoshin)+2(1-2a)], C)
tribution, one can prove a lower boundy)>f(y) for large

y, wheref(y)=[;p(€)de. which has a unique minimum at=\*(a) for all 0<a

We first focus on the unbounded distributiopée). Let < 1/2. We then need to analyze the lasgbehavior ofg(y)
us first consider the exponential distributiorp(e)  in Eq. (8) with v=v,«. Note that as one increasgsrom
=exp(—|€)/2. In this case, by first making a change of vari- — o, q(y) remains approximately 1 up to the back edge of
able e—y—v — e inside the integrand on the right-hand side the front aty=0 and then starts decreasing to zeroyas
(RHS) of Eq. (5) and then differentiating twice the resulting increases beyond zero. The idea would be to detero(p
equation, we get for a fixed largey by iterating Eq.(8) backwards iry till we
reach the back edge of the front w&=0 whereq(y)~1.
Anticipating a superexponential decay @fy) for largey,
one can neglect the second and the third term on the RHS of
Eqg. (8) and iterate the equation retaining only the first term.
For largey, clearly the nonlinear term is negligible since Iteratingm times backward we get
g(y) is small. Using the boundary conditiar(y)—0 asy
—a we then getg(y)— A exp(—y) for largey whereA is a q(y)~a2" " qy—m(v+1))]%". (10)
constant. Thus we get an exponential forward tail instead of
the standard superexponential forward tail of the GumbeHow many iterations do we need to reach zero starting from
distribution. Note that the velocity is determined, as be- a fixed largey? Clearly the required value of is given by,
fore, from they— — tail whereq(y)=1—ae"Y and Eq. m=y/(v+1) so that the argument of the function on the
(7) gives,v, =In[2/(1—A?)]/\ with 0<\A<1, in accordance RHS of Eq.(10) becomes 0. Usingj(0)~1, we get from
with the general formula in Eq6). The functionv, has a Eq. (10) the largey behavior
unigue minimum ah* =0.60352 ... and thechosen front i)
velocity is thenp,»=1.8989® .. .. InFig. 2, we show that q(y)wa2y o (11

d2
d—y‘l=q<y>—q2<y—v>. @)
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1 — . . . Note that the velocity in Eq. (14) has to be determined by
‘ minimizing Eq.(6) with a uniform distribution. Thus, in gen-
eral, for any bounded distribution, we expect that for layge

q(y)~exg —c2¥/*1], (15)

where the constantsandv depend explicitly on the distri-
bution p(e).

Let us summarize our results on the tails of the distribu-
tion of the minimal energy path for the directed polymer.
When the bond energies are bounded the path energies are
also bounded for finiten and we find that the forward tail of
the distribution of the minimum path energy has a superex-
ponential Gumbel decay. In the case of unbounded bond en-
ergies, the minimal path energy has a non-Gumbel forward
0 ; . . . . tail, which depends strongly on the distribution of the bond
-175 -125 =75 -25 25 energies. We remark that this behavior in the case of the

X hierarchically correlated variables is quite contrary to what

FIG. 3. The traveling front for the functio®,(x) for n=100  happens in the case of uncorrelated random variables. For
(the solid ling, 150 (the dashed ling and 200(the dotted lingfor ~ uncorrelated variables the minimum value has a forward
the distribution p(€)=ad(e+1)+ad(e—1)+(1—2a)d(e) with ~ non-Gumbel Weibul tail when the distribution of the indi-
a=1/4. In the inset, we plot Ir-In[q(y)]} againsty that clearly ~ Vidual variables is bounded. On the other hand for an un-
shows the superexponential decay of the scaling fundaiig) for ~ bounded distribution of the individual variables, the mini-

Q.(x)
o
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largey. mum value has a superexponential Gumbel forward tail for
uncorrelated variables.
confirming the superexponential forward tail qfy) and Having established the forward tail behavior Bf,(x)

also justifying,a posteriorj the neglect of the second and the =0°(x+vn), we now turn to the persistence. The persis-
third term in the iteration of Eq(8). We have verified the tence is simply given byPy(0)=R,(0)=Q2(0)=g%(vn),
analytical prediction in Eq(11) by direct numerical integra- whereN=2". Thus for largeN or equivalently for largen,
tion of Eqg. (4 with p(e)=ad(e+1)+ad(e—1)+(1 the asymptotic behavior of persistenBg(0)=q?(vn) is
—2a) 8(e€) for a=1/4[see Fig. 3. governed by the forward tail of the functiai{y) for largey.

The argument leading to the result in Efj1) above uses Let us first consider the bounded distributions. In this case,
only the fact that distributiom(€) has an upper cutoff at  using the result from Eq15) for q(y), we get the following
=1. Thus we expect thai(y) will always have a superex- exact result for persistence for larte=2":
ponential forward tail as long as the distributigife) is ) ) N
bounded with an upper cutoff. Let us consider another Pn(0)=Qn(0)=g"(vn)~exg —2cN], (16)
example of a bounded distribution, namely, the uniform dis- B : . L
tribution, p(€)=[ f(e+ 1)— B(e—1)]/2. In this case, we get Wherea—vl(v-i-l). andv is determined by minimizing Eq.
from Eq. (5) (6). Thus the perS|stenc;e has an anomalous stretched expo-

nential decay for larg®\ instead of the standard exponential
decay. We have verified this analytical prediction by numeri-

_lfyrent cally integrating Eq(4) for different bounded distributions.
aly)= ny_v_ldzqz(z). (12 In Fig. 4, we show the result for the distributiopye)
=ad(et+1)+ade—1)+(1-2a)d€). In this case,a=v/(v
Differentiating Eq.(12) with respect toy yields +1) wherev is the minimum value of the dispersion relation

in Eq. (9) and is clearly a continuous function of the param-
etera. In the inset of Fig. 4, we compare the analytical pre-
2(y—p+1)— %qz(y—v ~1). (13) Siction for the expor}en&(a)lzv/(lﬂLu)' with that obtained
rom the numerical integration for various valuesafThe
agreement is evidently very good.
Again we anticipate that(y) will have a superexponential We next consider the unbounded distributions such as
tail for largey. If so, one can make the approximation, »(€)=exd—|€}/2. For this exponential distribution, using
In[ —dg/dy]=In[q(y)]. Using this in Eq.(13) we iterate the the asymptotic behaviay(y)=A exp(-y), we find that for
equation backwards as before after dropping the first term ofrgeN,
the RHS of Eq(13). Using the same line of arguments used o _g
in the previous paragraph, we finally get a superexponential Pn(0)=Qn(0)=ag"(vn)~exd —2vn]~N"", (17
tail for largey as before,

dg 1
dy 2

where=2v/In 2 with v, as usual, determined via minimiz-
ing Eq. (6). Thus in this case, persistence again decays

_ oyl +1) X )
2R (14 anomalously but now as a power law with a nonuniversal

q(y)~2
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FIG. 4. The function If—In[Q,(0)]}, obtained from the numeri-
cal integration of Eq(4), is plotted againsh for the distribution
p(e)=ad(etl)+ad(e—1)+(1—2a)d(e) with a=1/4. The lin-
ear increase witm confirms the stretched exponential decay of
PN(O)=Qﬁ(0) for largeN=2". In the inset is shown the value of
a(a) calculated analyticallysolid line) with that measured numeri-
cally by direct integration of Eq4) (circles.

exponentB. Again we verified this analytical prediction nu-
merically by directly integrating Eq4) with the exponential
distribution [see Fig. . For generic unbounded distribu-
tions, using the lower bound(y)=f(y) for largey where
f(y)=/,p(€)de, we get Py(0)=q?*(nv)=f’[v InN/In2],
again highly anomalous.
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In[Q,(0)]
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n

FIG. 5. The function 1pQ,(0)], obtained from the numerical
integration of Eq.(4), is plotted againsh for the distributionp(e)
=exp(—|€)/2. The linear decrease with confirms the power law
decay ofPN(O)zQﬁ(O) for large N=2" with the exponents
=2v/In 2 wherev~1.89.

effect on the distribution of minimum energy depending on
the distribution of bond energiep(e). In the case of
bounded distributiong(€) of the bond energies, we have
shown that the forward tail has a superexponential tail as in
the Gumbel distribution. However, for unbounded distribu-
tions p(e€) the forward tail is highly nonuniversal and de-
pends explicitly on the distributiop(e€). This rich behavior

of the forward tail of the minimum energy distribution is

In summary, we have investigated in detail the distribu-shown to lead to a variety of anomalous behavior for the

tion of the minimum energy of a directed polymer on a Cay-

persistence probabilit?y(0), ranging from a stretched ex-

ley tree. We have shown that the hierarchical correlationgponential decay for bounded distributiopge) to power law
between the energies of different paths have a considerabtiecay wherp(e€) is exponential.
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